Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Cosh






Mathematica Notation

Traditional Notation









Elementary Functions > Cosh[z] > Integration > Indefinite integration > Involving one direct function and elementary functions > Involving trigonometric and exponential functions > Involving cos and exp > Involving ep z cos(b z)cosh(c zr)





http://functions.wolfram.com/01.20.21.1263.01









  


  










Input Form





Integrate[E^(p z) Cos[b z] Cosh[c z^2], z] == (1/(8 c)) (Sqrt[Pi] (((-Sqrt[-c]) Erfi[((-I) b + p - 2 c z)/(2 Sqrt[-c])])/ E^((b + I p)^2/(4 c)) + E^((b - I p)^2/(4 c)) ((-Sqrt[-c]) E^((I b + p)^2/(2 c)) Erfi[(I b + p - 2 c z)/ (2 Sqrt[-c])] + Sqrt[c] (E^((I b p)/c) Erfi[((-I) b + p + 2 c z)/(2 Sqrt[c])] + Erfi[(I b + p + 2 c z)/(2 Sqrt[c])]))))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["p", " ", "z"]]], " ", RowBox[List["Cos", "[", RowBox[List["b", " ", "z"]], "]"]], " ", RowBox[List["Cosh", "[", RowBox[List["c", " ", SuperscriptBox["z", "2"]]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["8", " ", "c"]]], RowBox[List["(", RowBox[List[SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SqrtBox[RowBox[List["-", "c"]]]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], ")"]], "2"], RowBox[List["4", " ", "c"]]]]]], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]], "+", "p", "-", RowBox[List["2", " ", "c", " ", "z"]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["-", "c"]]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["b", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], ")"]], "2"], RowBox[List["4", " ", "c"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SqrtBox[RowBox[List["-", "c"]]]]], " ", SuperscriptBox["\[ExponentialE]", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", "p"]], ")"]], "2"], RowBox[List["2", " ", "c"]]]], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", "p", "-", RowBox[List["2", " ", "c", " ", "z"]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["-", "c"]]]]]], "]"]]]], "+", RowBox[List[SqrtBox["c"], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["\[ImaginaryI]", " ", "b", " ", "p"]], "c"]], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]], "+", "p", "+", RowBox[List["2", " ", "c", " ", "z"]]]], RowBox[List["2", " ", SqrtBox["c"]]]], "]"]]]], "+", RowBox[List["Erfi", "[", FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", "p", "+", RowBox[List["2", " ", "c", " ", "z"]]]], RowBox[List["2", " ", SqrtBox["c"]]]], "]"]]]], ")"]]]]]], ")"]]]]]], ")"]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mi> p </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mrow> <msqrt> <mi> &#960; </mi> </msqrt> <mtext> </mtext> </mrow> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> &#8519; </mi> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> p </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mfrac> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mi> c </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> &#8519; </mi> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> p </mi> </mrow> <mi> c </mi> </mfrac> </msup> <mo> &#8290; </mo> <mrow> <mi> erfi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> + </mo> <mi> p </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mi> c </mi> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> erfi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> + </mo> <mi> p </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mi> c </mi> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msqrt> <mrow> <mo> - </mo> <mi> c </mi> </mrow> </msqrt> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mfrac> </msup> <mo> &#8290; </mo> <mrow> <mi> erfi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> + </mo> <mi> p </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <mi> c </mi> </mrow> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msqrt> <mrow> <mo> - </mo> <mi> c </mi> </mrow> </msqrt> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mo> - </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> p </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mfrac> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> erfi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> + </mo> <mi> p </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <mi> c </mi> </mrow> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <ci> p </ci> <ci> z </ci> </apply> </apply> <apply> <cos /> <apply> <times /> <ci> b </ci> <ci> z </ci> </apply> </apply> <apply> <cosh /> <apply> <times /> <ci> c </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 8 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> p </ci> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> c </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <ci> b </ci> <ci> p </ci> <apply> <power /> <ci> c </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> b </ci> </apply> <ci> p </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> c </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> <ci> p </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> c </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> <ci> p </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> b </ci> <apply> <times /> <imaginaryi /> <ci> p </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> b </ci> </apply> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["p_", " ", "z_"]]], " ", RowBox[List["Cos", "[", RowBox[List["b_", " ", "z_"]], "]"]], " ", RowBox[List["Cosh", "[", RowBox[List["c_", " ", SuperscriptBox["z_", "2"]]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SqrtBox[RowBox[List["-", "c"]]]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], ")"]], "2"], RowBox[List["4", " ", "c"]]]]]], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]], "+", "p", "-", RowBox[List["2", " ", "c", " ", "z"]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["-", "c"]]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["b", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], ")"]], "2"], RowBox[List["4", " ", "c"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SqrtBox[RowBox[List["-", "c"]]]]], " ", SuperscriptBox["\[ExponentialE]", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", "p"]], ")"]], "2"], RowBox[List["2", " ", "c"]]]], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", "p", "-", RowBox[List["2", " ", "c", " ", "z"]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["-", "c"]]]]]], "]"]]]], "+", RowBox[List[SqrtBox["c"], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["\[ImaginaryI]", " ", "b", " ", "p"]], "c"]], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]], "+", "p", "+", RowBox[List["2", " ", "c", " ", "z"]]]], RowBox[List["2", " ", SqrtBox["c"]]]], "]"]]]], "+", RowBox[List["Erfi", "[", FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", "p", "+", RowBox[List["2", " ", "c", " ", "z"]]]], RowBox[List["2", " ", SqrtBox["c"]]]], "]"]]]], ")"]]]]]], ")"]]]]]], ")"]]]], RowBox[List["8", " ", "c"]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18