|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/01.20.21.1266.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Integrate[E^(p Sqrt[z]) Cos[b z] Cosh[c Sqrt[z]], z] ==
(1/8) (((c - p) Sqrt[Pi] Erfi[(-c + p - 2 I b Sqrt[z])/(2 Sqrt[(-I) b])])/
(E^((I (c - p)^2)/(4 b)) ((-I) b)^(3/2)) +
(Sqrt[(-I) b] (c + p) Sqrt[Pi] Erfi[(c + p - 2 I b Sqrt[z])/
(2 Sqrt[(-I) b])])/(E^((I (c + p)^2)/(4 b)) b^2) -
(Sqrt[I b] E^((I (c - p)^2)/(4 b)) (c - p) Sqrt[Pi]
Erfi[(-c + p + 2 I b Sqrt[z])/(2 Sqrt[I b])])/b^2 -
(E^((I (c + p)^2)/(4 b)) (c + p) Sqrt[Pi]
Erfi[(c + p + 2 I b Sqrt[z])/(2 Sqrt[I b])])/(I b)^(3/2) +
(8 E^(p Sqrt[z]) Cosh[c Sqrt[z]] Sin[b z])/b)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["p", " ", SqrtBox["z"]]]], RowBox[List["Cos", "[", RowBox[List["b", " ", "z"]], "]"]], RowBox[List["Cosh", "[", RowBox[List["c", " ", SqrtBox["z"]]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["c", "-", "p"]], ")"]], "2"]]], RowBox[List["4", " ", "b"]]]]]], " ", RowBox[List["(", RowBox[List["c", "-", "p"]], ")"]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List[RowBox[List["-", "c"]], "+", "p", "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", SqrtBox["z"]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]]]]]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]], ")"]], RowBox[List["3", "/", "2"]]]], "+", FractionBox[RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["c", "+", "p"]], ")"]], "2"]]], RowBox[List["4", " ", "b"]]]]]], " ", RowBox[List["(", RowBox[List["c", "+", "p"]], ")"]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List["c", "+", "p", "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", SqrtBox["z"]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]]]]]], "]"]]]], SuperscriptBox["b", "2"]], "-", FractionBox[RowBox[List[SqrtBox[RowBox[List["\[ImaginaryI]", " ", "b"]]], " ", SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["c", "-", "p"]], ")"]], "2"]]], RowBox[List["4", " ", "b"]]]], " ", RowBox[List["(", RowBox[List["c", "-", "p"]], ")"]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List[RowBox[List["-", "c"]], "+", "p", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", SqrtBox["z"]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["\[ImaginaryI]", " ", "b"]]]]]], "]"]]]], SuperscriptBox["b", "2"]], "-", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["c", "+", "p"]], ")"]], "2"]]], RowBox[List["4", " ", "b"]]]], " ", RowBox[List["(", RowBox[List["c", "+", "p"]], ")"]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List["c", "+", "p", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", SqrtBox["z"]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["\[ImaginaryI]", " ", "b"]]]]]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", "b"]], ")"]], RowBox[List["3", "/", "2"]]]], "+", FractionBox[RowBox[List["8", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["p", " ", SqrtBox["z"]]]], " ", RowBox[List["Cosh", "[", RowBox[List["c", " ", SqrtBox["z"]]], "]"]], " ", RowBox[List["Sin", "[", RowBox[List["b", " ", "z"]], "]"]]]], "b"]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> ∫ </mo> <mrow> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mi> p </mi> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> cosh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> - </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> b </mi> </mrow> </mfrac> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> - </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mi> π </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mi> erfi </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mrow> <mo> - </mo> <mi> c </mi> </mrow> <mo> + </mo> <mi> p </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ⁢ </mo> <mi> b </mi> </mrow> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mfrac> <mo> + </mo> <mfrac> <mrow> <msqrt> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ⁢ </mo> <mi> b </mi> </mrow> </msqrt> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> b </mi> </mrow> </mfrac> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mi> π </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mi> erfi </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mi> c </mi> <mo> + </mo> <mi> p </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ⁢ </mo> <mi> b </mi> </mrow> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mfrac> <mo> + </mo> <mfrac> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> p </mi> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> cosh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mi> b </mi> </mfrac> <mo> - </mo> <mfrac> <mrow> <msqrt> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> </mrow> </msqrt> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> - </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> b </mi> </mrow> </mfrac> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> - </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mi> π </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mi> erfi </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mrow> <mo> - </mo> <mi> c </mi> </mrow> <mo> + </mo> <mi> p </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> </mrow> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mfrac> <mo> - </mo> <mfrac> <mrow> <msup> <mi> ⅇ </mi> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> b </mi> </mrow> </mfrac> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mi> π </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mi> erfi </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mi> c </mi> <mo> + </mo> <mi> p </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> </mrow> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <ci> p </ci> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <cos /> <apply> <times /> <ci> b </ci> <ci> z </ci> </apply> </apply> <apply> <cosh /> <apply> <times /> <ci> c </ci> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 8 </cn> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> b </ci> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> b </ci> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <plus /> <ci> c </ci> <ci> p </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <ci> c </ci> <ci> p </ci> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <apply> <plus /> <ci> c </ci> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> b </ci> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <ci> p </ci> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <cosh /> <apply> <times /> <ci> c </ci> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <sin /> <apply> <times /> <ci> b </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <ci> p </ci> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> b </ci> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <plus /> <ci> c </ci> <ci> p </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <ci> c </ci> <ci> p </ci> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <apply> <plus /> <ci> c </ci> <ci> p </ci> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> b </ci> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["p_", " ", SqrtBox["z_"]]]], " ", RowBox[List["Cos", "[", RowBox[List["b_", " ", "z_"]], "]"]], " ", RowBox[List["Cosh", "[", RowBox[List["c_", " ", SqrtBox["z_"]]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["c", "-", "p"]], ")"]], "2"]]], RowBox[List["4", " ", "b"]]]]]], " ", RowBox[List["(", RowBox[List["c", "-", "p"]], ")"]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List[RowBox[List["-", "c"]], "+", "p", "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", SqrtBox["z"]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]]]]]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]], ")"]], RowBox[List["3", "/", "2"]]]], "+", FractionBox[RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["c", "+", "p"]], ")"]], "2"]]], RowBox[List["4", " ", "b"]]]]]], " ", RowBox[List["(", RowBox[List["c", "+", "p"]], ")"]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List["c", "+", "p", "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", SqrtBox["z"]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]]]]]], "]"]]]], SuperscriptBox["b", "2"]], "-", FractionBox[RowBox[List[SqrtBox[RowBox[List["\[ImaginaryI]", " ", "b"]]], " ", SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["c", "-", "p"]], ")"]], "2"]]], RowBox[List["4", " ", "b"]]]], " ", RowBox[List["(", RowBox[List["c", "-", "p"]], ")"]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List[RowBox[List["-", "c"]], "+", "p", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", SqrtBox["z"]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["\[ImaginaryI]", " ", "b"]]]]]], "]"]]]], SuperscriptBox["b", "2"]], "-", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["c", "+", "p"]], ")"]], "2"]]], RowBox[List["4", " ", "b"]]]], " ", RowBox[List["(", RowBox[List["c", "+", "p"]], ")"]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List["c", "+", "p", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", SqrtBox["z"]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["\[ImaginaryI]", " ", "b"]]]]]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", "b"]], ")"]], RowBox[List["3", "/", "2"]]]], "+", FractionBox[RowBox[List["8", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["p", " ", SqrtBox["z"]]]], " ", RowBox[List["Cosh", "[", RowBox[List["c", " ", SqrtBox["z"]]], "]"]], " ", RowBox[List["Sin", "[", RowBox[List["b", " ", "z"]], "]"]]]], "b"]]], ")"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|