Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Cosh






Mathematica Notation

Traditional Notation









Elementary Functions > Cosh[z] > Integration > Indefinite integration > Involving one direct function and elementary functions > Involving trigonometric and exponential functions > Involving cos and exp > Involving ep zr cos(b zr)cosh(c zr)





http://functions.wolfram.com/01.20.21.1270.01









  


  










Input Form





Integrate[E^(p z^2) Cos[b z^2] Cosh[c z^2], z] == (1/8) Sqrt[Pi] (Erf[Sqrt[c + I b - p] z]/Sqrt[c + I b - p] + Erf[Sqrt[c - I b - p] z]/Sqrt[c - I b - p] + Erfi[Sqrt[c - I b + p] z]/ Sqrt[c - I b + p] + Erfi[Sqrt[c + I b + p] z]/Sqrt[c + I b + p])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["p", " ", SuperscriptBox["z", "2"]]]], " ", RowBox[List["Cos", "[", RowBox[List["b", " ", SuperscriptBox["z", "2"]]], "]"]], " ", RowBox[List["Cosh", "[", RowBox[List["c", " ", SuperscriptBox["z", "2"]]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox["1", "8"], " ", SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List["Erf", "[", RowBox[List[SqrtBox[RowBox[List["c", "+", RowBox[List["\[ImaginaryI]", " ", "b"]], "-", "p"]]], " ", "z"]], "]"]], SqrtBox[RowBox[List["c", "+", RowBox[List["\[ImaginaryI]", " ", "b"]], "-", "p"]]]], "+", FractionBox[RowBox[List["Erf", "[", RowBox[List[SqrtBox[RowBox[List["c", "-", RowBox[List["\[ImaginaryI]", " ", "b"]], "-", "p"]]], "z"]], "]"]], SqrtBox[RowBox[List["c", "-", RowBox[List["\[ImaginaryI]", " ", "b"]], "-", "p"]]]], "+", FractionBox[RowBox[List["Erfi", "[", RowBox[List[SqrtBox[RowBox[List["c", "-", RowBox[List["\[ImaginaryI]", " ", "b"]], "+", "p"]]], " ", "z"]], "]"]], SqrtBox[RowBox[List["c", "-", RowBox[List["\[ImaginaryI]", " ", "b"]], "+", "p"]]]], "+", FractionBox[RowBox[List["Erfi", "[", RowBox[List[SqrtBox[RowBox[List["c", "+", RowBox[List["\[ImaginaryI]", " ", "b"]], "+", "p"]]], " ", "z"]], "]"]], SqrtBox[RowBox[List["c", "+", RowBox[List["\[ImaginaryI]", " ", "b"]], "+", "p"]]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mi> p </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> <mo> &#8290; </mo> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> erf </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msqrt> <mrow> <mi> c </mi> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mtext> </mtext> <mo> - </mo> <mi> p </mi> </mrow> </msqrt> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <msqrt> <mrow> <mi> c </mi> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mtext> </mtext> <mo> - </mo> <mi> p </mi> </mrow> </msqrt> </mfrac> <mo> + </mo> <mfrac> <mrow> <mi> erf </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msqrt> <mrow> <mi> c </mi> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> - </mo> <mi> p </mi> </mrow> </msqrt> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <msqrt> <mrow> <mi> c </mi> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> - </mo> <mi> p </mi> </mrow> </msqrt> </mfrac> <mo> + </mo> <mfrac> <mrow> <mi> erfi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msqrt> <mrow> <mi> c </mi> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mtext> </mtext> <mo> + </mo> <mi> p </mi> </mrow> </msqrt> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <msqrt> <mrow> <mi> c </mi> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mtext> </mtext> <mo> + </mo> <mi> p </mi> </mrow> </msqrt> </mfrac> <mo> + </mo> <mfrac> <mrow> <mi> erfi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msqrt> <mrow> <mi> c </mi> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> + </mo> <mi> p </mi> </mrow> </msqrt> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <msqrt> <mrow> <mi> c </mi> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> + </mo> <mi> p </mi> </mrow> </msqrt> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <ci> p </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <cos /> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <cosh /> <apply> <times /> <ci> c </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 8 </cn> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <apply> <ci> Erf </ci> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> c </ci> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> c </ci> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <ci> Erf </ci> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <ci> Erfi </ci> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> c </ci> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> <ci> p </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> c </ci> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> <ci> p </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <ci> Erfi </ci> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> </apply> <ci> p </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> </apply> <ci> p </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["p_", " ", SuperscriptBox["z_", "2"]]]], " ", RowBox[List["Cos", "[", RowBox[List["b_", " ", SuperscriptBox["z_", "2"]]], "]"]], " ", RowBox[List["Cosh", "[", RowBox[List["c_", " ", SuperscriptBox["z_", "2"]]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox["1", "8"], " ", SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List["Erf", "[", RowBox[List[SqrtBox[RowBox[List["c", "+", RowBox[List["\[ImaginaryI]", " ", "b"]], "-", "p"]]], " ", "z"]], "]"]], SqrtBox[RowBox[List["c", "+", RowBox[List["\[ImaginaryI]", " ", "b"]], "-", "p"]]]], "+", FractionBox[RowBox[List["Erf", "[", RowBox[List[SqrtBox[RowBox[List["c", "-", RowBox[List["\[ImaginaryI]", " ", "b"]], "-", "p"]]], " ", "z"]], "]"]], SqrtBox[RowBox[List["c", "-", RowBox[List["\[ImaginaryI]", " ", "b"]], "-", "p"]]]], "+", FractionBox[RowBox[List["Erfi", "[", RowBox[List[SqrtBox[RowBox[List["c", "-", RowBox[List["\[ImaginaryI]", " ", "b"]], "+", "p"]]], " ", "z"]], "]"]], SqrtBox[RowBox[List["c", "-", RowBox[List["\[ImaginaryI]", " ", "b"]], "+", "p"]]]], "+", FractionBox[RowBox[List["Erfi", "[", RowBox[List[SqrtBox[RowBox[List["c", "+", RowBox[List["\[ImaginaryI]", " ", "b"]], "+", "p"]]], " ", "z"]], "]"]], SqrtBox[RowBox[List["c", "+", RowBox[List["\[ImaginaryI]", " ", "b"]], "+", "p"]]]]]], ")"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18