|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/01.20.21.1276.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Integrate[E^(b Sqrt[z] + d z + e) Cos[a Sqrt[z] + p z + q]
Cosh[c Sqrt[z] + f z + g], z] == (1/8) E^(e - g - I q)
(2 (E^(((-I) a + b - c) Sqrt[z] + (d - f - I p) z)/(d - f - I p) +
E^(2 g + ((-I) a + b + c) Sqrt[z] + (d + f - I p) z)/(d + f - I p) +
E^(2 I q + (I a + b - c) Sqrt[z] + (d - f + I p) z)/(d - f + I p) +
E^(2 g + 2 I q + (I a + b + c) Sqrt[z] + (d + f + I p) z)/
(d + f + I p)) - (((-I) a + b - c)
E^((a + I (b - c))^2/(4 (d - f - I p))) Sqrt[Pi]
Erfi[((-I) a + b - c + 2 (d - f - I p) Sqrt[z])/(2 Sqrt[d - f - I p])])/
(d - f - I p)^(3/2) -
(((-I) a + b + c) E^(2 g + (a + I (b + c))^2/(4 (d + f - I p))) Sqrt[Pi]
Erfi[((-I) a + b + c + 2 (d + f - I p) Sqrt[z])/(2 Sqrt[d + f - I p])])/
(d + f - I p)^(3/2) -
((I a + b - c) E^(-((I a + b - c)^2/(4 (d - f + I p))) + 2 I q) Sqrt[Pi]
Erfi[(I a + b - c + 2 (d - f + I p) Sqrt[z])/(2 Sqrt[d - f + I p])])/
(d - f + I p)^(3/2) -
((I a + b + c) E^(2 g - (I a + b + c)^2/(4 (d + f + I p)) + 2 I q)
Sqrt[Pi] Erfi[(I a + b + c + 2 (d + f + I p) Sqrt[z])/
(2 Sqrt[d + f + I p])])/(d + f + I p)^(3/2))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["b", " ", SqrtBox["z"]]], "+", RowBox[List["d", " ", "z"]], "+", "e"]]], RowBox[List["Cos", "[", RowBox[List[RowBox[List["a", " ", SqrtBox["z"]]], "+", RowBox[List["p", " ", "z"]], "+", "q"]], "]"]], RowBox[List["Cosh", "[", RowBox[List[RowBox[List["c", " ", SqrtBox["z"]]], "+", RowBox[List["f", " ", "z"]], "+", "g"]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox["1", "8"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["e", "-", "g", "-", RowBox[List["\[ImaginaryI]", " ", "q"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["(", RowBox[List[FractionBox[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "+", "b", "-", "c"]], ")"]], " ", SqrtBox["z"]]], "+", RowBox[List[RowBox[List["(", RowBox[List["d", "-", "f", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], ")"]], " ", "z"]]]]], RowBox[List["d", "-", "f", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]]], "+", FractionBox[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["2", " ", "g"]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "+", "b", "+", "c"]], ")"]], " ", SqrtBox["z"]]], "+", RowBox[List[RowBox[List["(", RowBox[List["d", "+", "f", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], ")"]], " ", "z"]]]]], RowBox[List["d", "+", "f", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]]], "+", FractionBox[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["2", " ", "\[ImaginaryI]", " ", "q"]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "+", "b", "-", "c"]], ")"]], " ", SqrtBox["z"]]], "+", RowBox[List[RowBox[List["(", RowBox[List["d", "-", "f", "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], ")"]], " ", "z"]]]]], RowBox[List["d", "-", "f", "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]]], "+", FractionBox[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["2", " ", "g"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "q"]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "+", "b", "+", "c"]], ")"]], " ", SqrtBox["z"]]], "+", RowBox[List[RowBox[List["(", RowBox[List["d", "+", "f", "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], ")"]], " ", "z"]]]]], RowBox[List["d", "+", "f", "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]]]]], ")"]]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "+", "b", "-", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["b", "-", "c"]], ")"]]]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List["d", "-", "f", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], ")"]]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "+", "b", "-", "c", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["d", "-", "f", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], ")"]], " ", SqrtBox["z"]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["d", "-", "f", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]]]]]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["d", "-", "f", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], ")"]], RowBox[List["3", "/", "2"]]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "+", "b", "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["2", " ", "g"]], "+", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]]]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List["d", "+", "f", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], ")"]]]]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "+", "b", "+", "c", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["d", "+", "f", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], ")"]], " ", SqrtBox["z"]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["d", "+", "f", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]]]]]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", "f", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], ")"]], RowBox[List["3", "/", "2"]]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "+", "b", "-", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "+", "b", "-", "c"]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List["d", "-", "f", "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], ")"]]]]]]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "q"]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "+", "b", "-", "c", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["d", "-", "f", "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], ")"]], " ", SqrtBox["z"]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["d", "-", "f", "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]]]]]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["d", "-", "f", "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], ")"]], RowBox[List["3", "/", "2"]]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "+", "b", "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["2", " ", "g"]], "-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "+", "b", "+", "c"]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List["d", "+", "f", "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], ")"]]]]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "q"]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "+", "b", "+", "c", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["d", "+", "f", "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], ")"]], " ", SqrtBox["z"]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["d", "+", "f", "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]]]]]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", "f", "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], ")"]], RowBox[List["3", "/", "2"]]]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> ∫ </mo> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> + </mo> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mi> e </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mrow> <mi> p </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> cosh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> + </mo> <mrow> <mi> f </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mi> g </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> e </mi> <mo> - </mo> <mi> g </mi> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> q </mi> </mrow> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <msup> <mi> ⅇ </mi> <mrow> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mi> c </mi> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> a </mi> </mrow> </mrow> <mtext> </mtext> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> g </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> q </mi> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mi> f </mi> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> p </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> </msup> <mrow> <mi> d </mi> <mo> + </mo> <mi> f </mi> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> p </mi> </mrow> </mrow> </mfrac> <mo> + </mo> <mfrac> <msup> <mi> ⅇ </mi> <mrow> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> c </mi> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> a </mi> </mrow> </mrow> <mtext> </mtext> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> - </mo> <mi> f </mi> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> p </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> </msup> <mrow> <mi> d </mi> <mo> - </mo> <mi> f </mi> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> p </mi> </mrow> </mrow> </mfrac> <mo> + </mo> <mfrac> <msup> <mi> ⅇ </mi> <mrow> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mi> c </mi> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> a </mi> </mrow> </mrow> <mtext> </mtext> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> g </mi> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mi> f </mi> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> p </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> </msup> <mrow> <mi> d </mi> <mo> + </mo> <mi> f </mi> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> p </mi> </mrow> </mrow> </mfrac> <mo> + </mo> <mfrac> <msup> <mi> ⅇ </mi> <mrow> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> c </mi> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> a </mi> </mrow> </mrow> <mtext> </mtext> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> q </mi> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> - </mo> <mi> f </mi> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> p </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> </msup> <mrow> <mi> d </mi> <mo> - </mo> <mi> f </mi> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> p </mi> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> c </mi> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> a </mi> </mrow> </mrow> <mtext> </mtext> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> q </mi> </mrow> <mo> - </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> c </mi> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> a </mi> </mrow> </mrow> <mtext> </mtext> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> - </mo> <mi> f </mi> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> p </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> </msup> <mo> ⁢ </mo> <msqrt> <mi> π </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mi> erfi </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mi> b </mi> <mo> - </mo> <mi> c </mi> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mtext> </mtext> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> - </mo> <mi> f </mi> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> p </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mi> d </mi> <mo> - </mo> <mi> f </mi> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> p </mi> </mrow> </mrow> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> - </mo> <mi> f </mi> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> p </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mfrac> <mo> - </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mi> c </mi> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> a </mi> </mrow> </mrow> <mtext> </mtext> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mo> - </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mi> c </mi> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> a </mi> </mrow> </mrow> <mtext> </mtext> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mi> f </mi> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> p </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> g </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> q </mi> </mrow> </mrow> </msup> <mo> ⁢ </mo> <msqrt> <mi> π </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mi> erfi </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mi> b </mi> <mo> + </mo> <mi> c </mi> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mtext> </mtext> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mi> f </mi> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> p </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mi> d </mi> <mo> + </mo> <mi> f </mi> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> p </mi> </mrow> </mrow> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mi> f </mi> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> p </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mfrac> <mo> - </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> c </mi> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> a </mi> </mrow> </mrow> <mtext> </mtext> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> ⅈ </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> - </mo> <mi> f </mi> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> p </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </msup> <mo> ⁢ </mo> <msqrt> <mi> π </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mi> erfi </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mi> b </mi> <mo> - </mo> <mi> c </mi> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mtext> </mtext> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> - </mo> <mi> f </mi> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> p </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mi> d </mi> <mo> - </mo> <mi> f </mi> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> p </mi> </mrow> </mrow> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> - </mo> <mi> f </mi> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> p </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mfrac> <mo> - </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mi> c </mi> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> a </mi> </mrow> </mrow> <mtext> </mtext> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> ⅈ </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mi> f </mi> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> p </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> g </mi> </mrow> </mrow> </msup> <mo> ⁢ </mo> <msqrt> <mi> π </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mi> erfi </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mi> b </mi> <mo> + </mo> <mi> c </mi> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mtext> </mtext> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mi> f </mi> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> p </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mi> d </mi> <mo> + </mo> <mi> f </mi> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> p </mi> </mrow> </mrow> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mi> f </mi> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> p </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> b </ci> </apply> <apply> <times /> <ci> d </ci> <ci> z </ci> </apply> <ci> e </ci> </apply> </apply> <apply> <cos /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> a </ci> </apply> <apply> <times /> <ci> p </ci> <ci> z </ci> </apply> <ci> q </ci> </apply> </apply> <apply> <cosh /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> c </ci> </apply> <apply> <times /> <ci> f </ci> <ci> z </ci> </apply> <ci> g </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 8 </cn> <apply> <power /> <exponentiale /> <apply> <plus /> <ci> e </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> g </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> q </ci> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> b </ci> <ci> c </ci> <apply> <times /> <imaginaryi /> <ci> a </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> g </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> q </ci> </apply> <apply> <times /> <apply> <plus /> <ci> d </ci> <ci> f </ci> <apply> <times /> <imaginaryi /> <ci> p </ci> </apply> </apply> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> d </ci> <ci> f </ci> <apply> <times /> <imaginaryi /> <ci> p </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> a </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> f </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> p </ci> </apply> </apply> </apply> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> f </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> p </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> b </ci> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> a </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> g </ci> </apply> <apply> <times /> <apply> <plus /> <ci> d </ci> <ci> f </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> p </ci> </apply> </apply> </apply> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> d </ci> <ci> f </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> p </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <apply> <times /> <imaginaryi /> <ci> a </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> q </ci> </apply> <apply> <times /> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> f </ci> </apply> <apply> <times /> <imaginaryi /> <ci> p </ci> </apply> </apply> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> f </ci> </apply> <apply> <times /> <imaginaryi /> <ci> p </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <apply> <times /> <imaginaryi /> <ci> a </ci> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> q </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <apply> <times /> <imaginaryi /> <ci> a </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> f </ci> </apply> <apply> <times /> <imaginaryi /> <ci> p </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <apply> <times /> <imaginaryi /> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> f </ci> </apply> <apply> <times /> <imaginaryi /> <ci> p </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> f </ci> </apply> <apply> <times /> <imaginaryi /> <ci> p </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> f </ci> </apply> <apply> <times /> <imaginaryi /> <ci> p </ci> </apply> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> b </ci> <ci> c </ci> <apply> <times /> <imaginaryi /> <ci> a </ci> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> b </ci> <ci> c </ci> <apply> <times /> <imaginaryi /> <ci> a </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <ci> d </ci> <ci> f </ci> <apply> <times /> <imaginaryi /> <ci> p </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> g </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> q </ci> </apply> </apply> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <apply> <plus /> <ci> b </ci> <ci> c </ci> <apply> <times /> <imaginaryi /> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> d </ci> <ci> f </ci> <apply> <times /> <imaginaryi /> <ci> p </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> d </ci> <ci> f </ci> <apply> <times /> <imaginaryi /> <ci> p </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> d </ci> <ci> f </ci> <apply> <times /> <imaginaryi /> <ci> p </ci> </apply> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> a </ci> </apply> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> <imaginaryi /> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> f </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> p </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> a </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> f </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> p </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> f </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> p </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> f </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> p </ci> </apply> </apply> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> b </ci> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> a </ci> </apply> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <apply> <plus /> <ci> b </ci> <ci> c </ci> </apply> <imaginaryi /> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <ci> d </ci> <ci> f </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> p </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> g </ci> </apply> </apply> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <apply> <plus /> <ci> b </ci> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> a </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> d </ci> <ci> f </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> p </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> d </ci> <ci> f </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> p </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> d </ci> <ci> f </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> p </ci> </apply> </apply> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["b_", " ", SqrtBox["z_"]]], "+", RowBox[List["d_", " ", "z_"]], "+", "e_"]]], " ", RowBox[List["Cos", "[", RowBox[List[RowBox[List["a_", " ", SqrtBox["z_"]]], "+", RowBox[List["p_", " ", "z_"]], "+", "q_"]], "]"]], " ", RowBox[List["Cosh", "[", RowBox[List[RowBox[List["c_", " ", SqrtBox["z_"]]], "+", RowBox[List["f_", " ", "z_"]], "+", "g_"]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox["1", "8"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["e", "-", "g", "-", RowBox[List["\[ImaginaryI]", " ", "q"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["(", RowBox[List[FractionBox[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "+", "b", "-", "c"]], ")"]], " ", SqrtBox["z"]]], "+", RowBox[List[RowBox[List["(", RowBox[List["d", "-", "f", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], ")"]], " ", "z"]]]]], RowBox[List["d", "-", "f", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]]], "+", FractionBox[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["2", " ", "g"]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "+", "b", "+", "c"]], ")"]], " ", SqrtBox["z"]]], "+", RowBox[List[RowBox[List["(", RowBox[List["d", "+", "f", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], ")"]], " ", "z"]]]]], RowBox[List["d", "+", "f", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]]], "+", FractionBox[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["2", " ", "\[ImaginaryI]", " ", "q"]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "+", "b", "-", "c"]], ")"]], " ", SqrtBox["z"]]], "+", RowBox[List[RowBox[List["(", RowBox[List["d", "-", "f", "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], ")"]], " ", "z"]]]]], RowBox[List["d", "-", "f", "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]]], "+", FractionBox[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["2", " ", "g"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "q"]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "+", "b", "+", "c"]], ")"]], " ", SqrtBox["z"]]], "+", RowBox[List[RowBox[List["(", RowBox[List["d", "+", "f", "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], ")"]], " ", "z"]]]]], RowBox[List["d", "+", "f", "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]]]]], ")"]]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "+", "b", "-", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["b", "-", "c"]], ")"]]]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List["d", "-", "f", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], ")"]]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "+", "b", "-", "c", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["d", "-", "f", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], ")"]], " ", SqrtBox["z"]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["d", "-", "f", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]]]]]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["d", "-", "f", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], ")"]], RowBox[List["3", "/", "2"]]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "+", "b", "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["2", " ", "g"]], "+", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]]]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List["d", "+", "f", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], ")"]]]]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "+", "b", "+", "c", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["d", "+", "f", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], ")"]], " ", SqrtBox["z"]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["d", "+", "f", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]]]]]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", "f", "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], ")"]], RowBox[List["3", "/", "2"]]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "+", "b", "-", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "+", "b", "-", "c"]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List["d", "-", "f", "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], ")"]]]]]]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "q"]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "+", "b", "-", "c", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["d", "-", "f", "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], ")"]], " ", SqrtBox["z"]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["d", "-", "f", "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]]]]]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["d", "-", "f", "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], ")"]], RowBox[List["3", "/", "2"]]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "+", "b", "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["2", " ", "g"]], "-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "+", "b", "+", "c"]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List["d", "+", "f", "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], ")"]]]]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "q"]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "+", "b", "+", "c", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["d", "+", "f", "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], ")"]], " ", SqrtBox["z"]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["d", "+", "f", "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]]]]]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", "f", "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], ")"]], RowBox[List["3", "/", "2"]]]]]], ")"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|