|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/01.20.21.1374.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Integrate[z^(\[Alpha] - 1) E^(p z) Sin[c z]^m Cosh[a z], z] ==
2^(-1 - m) z^\[Alpha]
((Binomial[m, m/2] (((-(a + p)) z)^\[Alpha] Gamma[\[Alpha], (a - p) z] +
((a - p) z)^\[Alpha] Gamma[\[Alpha], (-(a + p)) z]) (-1 + Mod[m, 2]))/
(((a - p) z)^\[Alpha] ((-(a + p)) z)^\[Alpha]) -
Sum[((-1)^k Binomial[m, k] (((a - p + I c (2 k - m)) z)^\[Alpha]
(((-(a + p + 2 I c k - I c m)) z)^\[Alpha]
(((a - p + I c (-2 k + m)) z)^\[Alpha] Gamma[\[Alpha],
(-(a + p - 2 I c k + I c m)) z] (Cos[(m Pi)/2] -
I Sin[(m Pi)/2]) + ((-(a + p - 2 I c k + I c m)) z)^\[Alpha]
Gamma[\[Alpha], (a - p + I c (-2 k + m)) z] (Cos[(m Pi)/2] +
I Sin[(m Pi)/2])) + ((-(a + p - 2 I c k + I c m)) z)^\[Alpha]
((a - p + I c (-2 k + m)) z)^\[Alpha] Gamma[\[Alpha],
(-(a + p + 2 I c k - I c m)) z] (Cos[(m Pi)/2] +
I Sin[(m Pi)/2])) + ((-(a + p + I c (2 k - m))) z)^\[Alpha]
((-(a + p - 2 I c k + I c m)) z)^\[Alpha]
((a - p + I c (-2 k + m)) z)^\[Alpha] Gamma[\[Alpha],
(a - p + I c (2 k - m)) z] (Cos[(m Pi)/2] - I Sin[(m Pi)/2])))/
(((a - p + I c (2 k - m)) z)^\[Alpha] ((-(a + p + I c (2 k - m))) z)^
\[Alpha] ((-(a + p - 2 I c k + I c m)) z)^\[Alpha]
((a - p + I c (-2 k + m)) z)^\[Alpha]),
{k, 0, Floor[(1/2) (-1 + m)]}]) /; Element[m, Integers] && m > 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["z", RowBox[List["\[Alpha]", "-", "1"]]], SuperscriptBox["\[ExponentialE]", RowBox[List["p", " ", "z"]]], " ", SuperscriptBox[RowBox[List["Sin", "[", RowBox[List["c", " ", "z"]], "]"]], "m"], " ", RowBox[List["Cosh", "[", RowBox[List["a", " ", "z"]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", "m"]]], " ", SuperscriptBox["z", "\[Alpha]"], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["a", "-", "p"]], ")"]], " ", "z"]], ")"]], RowBox[List["-", "\[Alpha]"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["a", "+", "p"]], ")"]]]], " ", "z"]], ")"]], RowBox[List["-", "\[Alpha]"]]], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", FractionBox["m", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["a", "+", "p"]], ")"]]]], " ", "z"]], ")"]], "\[Alpha]"], " ", RowBox[List["Gamma", "[", RowBox[List["\[Alpha]", ",", RowBox[List[RowBox[List["(", RowBox[List["a", "-", "p"]], ")"]], " ", "z"]]]], "]"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["a", "-", "p"]], ")"]], " ", "z"]], ")"]], "\[Alpha]"], " ", RowBox[List["Gamma", "[", RowBox[List["\[Alpha]", ",", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["a", "+", "p"]], ")"]]]], " ", "z"]]]], "]"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["Mod", "[", RowBox[List["m", ",", "2"]], "]"]]]], ")"]]]], "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["a", "-", "p", "+", RowBox[List["\[ImaginaryI]", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]]]], ")"]], " ", "z"]], ")"]], RowBox[List["-", "\[Alpha]"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["a", "+", "p", "+", RowBox[List["\[ImaginaryI]", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]]]], ")"]]]], " ", "z"]], ")"]], RowBox[List["-", "\[Alpha]"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["a", "+", "p", "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "c", " ", "m"]]]], ")"]]]], " ", "z"]], ")"]], RowBox[List["-", "\[Alpha]"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["a", "-", "p", "+", RowBox[List["\[ImaginaryI]", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]]]], ")"]], " ", "z"]], ")"]], RowBox[List["-", "\[Alpha]"]]], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["a", "-", "p", "+", RowBox[List["\[ImaginaryI]", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]]]], ")"]], " ", "z"]], ")"]], "\[Alpha]"], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["a", "+", "p", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "c", " ", "m"]]]], ")"]]]], " ", "z"]], ")"]], "\[Alpha]"], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["a", "-", "p", "+", RowBox[List["\[ImaginaryI]", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]]]], ")"]], " ", "z"]], ")"]], "\[Alpha]"], " ", RowBox[List["Gamma", "[", RowBox[List["\[Alpha]", ",", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["a", "+", "p", "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "c", " ", "m"]]]], ")"]]]], " ", "z"]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Cos", "[", FractionBox[RowBox[List["m", " ", "\[Pi]"]], "2"], "]"]], "-", RowBox[List["\[ImaginaryI]", " ", RowBox[List["Sin", "[", FractionBox[RowBox[List["m", " ", "\[Pi]"]], "2"], "]"]]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["a", "+", "p", "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "c", " ", "m"]]]], ")"]]]], " ", "z"]], ")"]], "\[Alpha]"], " ", RowBox[List["Gamma", "[", RowBox[List["\[Alpha]", ",", RowBox[List[RowBox[List["(", RowBox[List["a", "-", "p", "+", RowBox[List["\[ImaginaryI]", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]]]], ")"]], " ", "z"]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Cos", "[", FractionBox[RowBox[List["m", " ", "\[Pi]"]], "2"], "]"]], "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["Sin", "[", FractionBox[RowBox[List["m", " ", "\[Pi]"]], "2"], "]"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["a", "+", "p", "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "c", " ", "m"]]]], ")"]]]], " ", "z"]], ")"]], "\[Alpha]"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["a", "-", "p", "+", RowBox[List["\[ImaginaryI]", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]]]], ")"]], " ", "z"]], ")"]], "\[Alpha]"], " ", RowBox[List["Gamma", "[", RowBox[List["\[Alpha]", ",", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["a", "+", "p", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "c", " ", "m"]]]], ")"]]]], " ", "z"]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Cos", "[", FractionBox[RowBox[List["m", " ", "\[Pi]"]], "2"], "]"]], "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["Sin", "[", FractionBox[RowBox[List["m", " ", "\[Pi]"]], "2"], "]"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["a", "+", "p", "+", RowBox[List["\[ImaginaryI]", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]]]], ")"]]]], " ", "z"]], ")"]], "\[Alpha]"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["a", "+", "p", "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "c", " ", "m"]]]], ")"]]]], " ", "z"]], ")"]], "\[Alpha]"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["a", "-", "p", "+", RowBox[List["\[ImaginaryI]", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]]]], ")"]], " ", "z"]], ")"]], "\[Alpha]"], " ", RowBox[List["Gamma", "[", RowBox[List["\[Alpha]", ",", RowBox[List[RowBox[List["(", RowBox[List["a", "-", "p", "+", RowBox[List["\[ImaginaryI]", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]]]], ")"]], " ", "z"]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Cos", "[", FractionBox[RowBox[List["m", " ", "\[Pi]"]], "2"], "]"]], "-", RowBox[List["\[ImaginaryI]", " ", RowBox[List["Sin", "[", FractionBox[RowBox[List["m", " ", "\[Pi]"]], "2"], "]"]]]]]], ")"]]]]]], ")"]]]]]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List["m", "\[Element]", "Integers"]], "\[And]", RowBox[List["m", ">", "0"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mo> ∫ </mo> <mrow> <msup> <mi> z </mi> <mrow> <mi> α </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> p </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mi> m </mi> </msup> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> cosh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <msup> <mn> 2 </mn> <mrow> <mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mi> α </mi> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> α </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> α </mi> </mrow> </msup> <mo> ⁢ </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> m </mi> </mtd> </mtr> <mtr> <mtd> <mfrac> <mi> m </mi> <mn> 2 </mn> </mfrac> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["m", Identity]], List[TagBox[FractionBox["m", "2"], Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> α </mi> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mi> α </mi> </msup> </mrow> <mo> + </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mi> α </mi> </msup> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> α </mi> <mo> , </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <semantics> <mrow> <mi> m </mi> <mo> ⁢ </mo> <mi> mod </mi> <mo> ⁢ </mo> <mn> 2 </mn> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <rem /> <ci> $CellContext`m </ci> <cn type='integer'> 2 </cn> </apply> </annotation-xml> </semantics> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mo> ⌊ </mo> <mfrac> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> ⌋ </mo> </mrow> </munderover> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> p </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> α </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> p </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> α </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> p </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> α </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> p </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> α </mi> </mrow> </msup> <mo> ⁢ </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> m </mi> </mtd> </mtr> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["m", Identity]], List[TagBox["k", Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> α </mi> <mo> , </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> p </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mi> m </mi> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mi> m </mi> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> p </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mi> α </mi> </msup> </mrow> <mo> + </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> p </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mi> α </mi> </msup> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> α </mi> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> p </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mi> m </mi> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mi> m </mi> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> p </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mi> α </mi> </msup> </mrow> <mo> + </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> p </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mi> α </mi> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> p </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mi> α </mi> </msup> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> α </mi> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> p </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mi> m </mi> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mi> m </mi> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> p </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mi> α </mi> </msup> </mrow> <mo> + </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> p </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mi> α </mi> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> p </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mi> α </mi> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> p </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mi> α </mi> </msup> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> α </mi> <mo> , </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> p </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mi> m </mi> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mi> m </mi> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> m </mi> <mo> ∈ </mo> <msup> <mi> ℕ </mi> <mo> + </mo> </msup> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> α </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <ci> p </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <sin /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <ci> m </ci> </apply> <apply> <cosh /> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <ci> α </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> </apply> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> a </ci> <ci> p </ci> </apply> </apply> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> </apply> <apply> <ci> Binomial </ci> <ci> m </ci> <apply> <times /> <ci> m </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <ci> Gamma </ci> <ci> α </ci> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> a </ci> <ci> p </ci> </apply> </apply> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> </apply> <ci> z </ci> </apply> <ci> α </ci> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> a </ci> <ci> p </ci> </apply> </apply> <ci> z </ci> </apply> <ci> α </ci> </apply> <apply> <ci> Gamma </ci> <ci> α </ci> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> </apply> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <rem /> <ci> $CellContext`m </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <floor /> <apply> <times /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> <apply> <times /> <ci> c </ci> <imaginaryi /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> </apply> </apply> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> a </ci> <ci> p </ci> <apply> <times /> <ci> c </ci> <imaginaryi /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> </apply> </apply> </apply> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> a </ci> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> c </ci> <ci> k </ci> </apply> </apply> <apply> <times /> <imaginaryi /> <ci> c </ci> <ci> m </ci> </apply> </apply> </apply> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> <apply> <times /> <ci> c </ci> <imaginaryi /> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> </apply> <apply> <ci> Binomial </ci> <ci> m </ci> <ci> k </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <ci> Gamma </ci> <ci> α </ci> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> <apply> <times /> <ci> c </ci> <imaginaryi /> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <cos /> <apply> <times /> <ci> m </ci> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <imaginaryi /> <apply> <sin /> <apply> <times /> <ci> m </ci> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> a </ci> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> c </ci> <ci> k </ci> </apply> </apply> <apply> <times /> <imaginaryi /> <ci> c </ci> <ci> m </ci> </apply> </apply> </apply> <ci> z </ci> </apply> <ci> α </ci> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> <apply> <times /> <ci> c </ci> <imaginaryi /> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> <ci> z </ci> </apply> <ci> α </ci> </apply> <apply> <ci> Gamma </ci> <ci> α </ci> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> a </ci> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> c </ci> <ci> k </ci> </apply> </apply> <apply> <times /> <imaginaryi /> <ci> c </ci> <ci> m </ci> </apply> </apply> </apply> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <cos /> <apply> <times /> <ci> m </ci> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <sin /> <apply> <times /> <ci> m </ci> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> a </ci> <ci> p </ci> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> c </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> c </ci> <ci> m </ci> </apply> </apply> </apply> </apply> <ci> z </ci> </apply> <ci> α </ci> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> a </ci> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> c </ci> <ci> k </ci> </apply> </apply> <apply> <times /> <imaginaryi /> <ci> c </ci> <ci> m </ci> </apply> </apply> </apply> <ci> z </ci> </apply> <ci> α </ci> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> <apply> <times /> <ci> c </ci> <imaginaryi /> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> <ci> z </ci> </apply> <ci> α </ci> </apply> <apply> <ci> Gamma </ci> <ci> α </ci> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> a </ci> <ci> p </ci> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> c </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> c </ci> <ci> m </ci> </apply> </apply> </apply> </apply> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <cos /> <apply> <times /> <ci> m </ci> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <imaginaryi /> <apply> <sin /> <apply> <times /> <ci> m </ci> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> <apply> <times /> <ci> c </ci> <imaginaryi /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> </apply> </apply> <ci> z </ci> </apply> <ci> α </ci> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> a </ci> <ci> p </ci> <apply> <times /> <ci> c </ci> <imaginaryi /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> </apply> </apply> </apply> <ci> z </ci> </apply> <ci> α </ci> </apply> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> a </ci> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> c </ci> <ci> k </ci> </apply> </apply> <apply> <times /> <imaginaryi /> <ci> c </ci> <ci> m </ci> </apply> </apply> </apply> <ci> z </ci> </apply> <ci> α </ci> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> <apply> <times /> <ci> c </ci> <imaginaryi /> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> <ci> z </ci> </apply> <ci> α </ci> </apply> <apply> <ci> Gamma </ci> <ci> α </ci> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> <apply> <times /> <ci> c </ci> <imaginaryi /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> </apply> </apply> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <cos /> <apply> <times /> <ci> m </ci> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <sin /> <apply> <times /> <ci> m </ci> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <ci> m </ci> <apply> <ci> SuperPlus </ci> <ci> ℕ </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["z_", RowBox[List["\[Alpha]_", "-", "1"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["p_", " ", "z_"]]], " ", SuperscriptBox[RowBox[List["Sin", "[", RowBox[List["c_", " ", "z_"]], "]"]], "m_"], " ", RowBox[List["Cosh", "[", RowBox[List["a_", " ", "z_"]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", "m"]]], " ", SuperscriptBox["z", "\[Alpha]"], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["a", "-", "p"]], ")"]], " ", "z"]], ")"]], RowBox[List["-", "\[Alpha]"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["a", "+", "p"]], ")"]]]], " ", "z"]], ")"]], RowBox[List["-", "\[Alpha]"]]], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", FractionBox["m", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["a", "+", "p"]], ")"]]]], " ", "z"]], ")"]], "\[Alpha]"], " ", RowBox[List["Gamma", "[", RowBox[List["\[Alpha]", ",", RowBox[List[RowBox[List["(", RowBox[List["a", "-", "p"]], ")"]], " ", "z"]]]], "]"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["a", "-", "p"]], ")"]], " ", "z"]], ")"]], "\[Alpha]"], " ", RowBox[List["Gamma", "[", RowBox[List["\[Alpha]", ",", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["a", "+", "p"]], ")"]]]], " ", "z"]]]], "]"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["Mod", "[", RowBox[List["m", ",", "2"]], "]"]]]], ")"]]]], "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["a", "-", "p", "+", RowBox[List["\[ImaginaryI]", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]]]], ")"]], " ", "z"]], ")"]], RowBox[List["-", "\[Alpha]"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["a", "+", "p", "+", RowBox[List["\[ImaginaryI]", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]]]], ")"]]]], " ", "z"]], ")"]], RowBox[List["-", "\[Alpha]"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["a", "+", "p", "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "c", " ", "m"]]]], ")"]]]], " ", "z"]], ")"]], RowBox[List["-", "\[Alpha]"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["a", "-", "p", "+", RowBox[List["\[ImaginaryI]", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]]]], ")"]], " ", "z"]], ")"]], RowBox[List["-", "\[Alpha]"]]], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["a", "-", "p", "+", RowBox[List["\[ImaginaryI]", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]]]], ")"]], " ", "z"]], ")"]], "\[Alpha]"], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["a", "+", "p", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "c", " ", "m"]]]], ")"]]]], " ", "z"]], ")"]], "\[Alpha]"], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["a", "-", "p", "+", RowBox[List["\[ImaginaryI]", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]]]], ")"]], " ", "z"]], ")"]], "\[Alpha]"], " ", RowBox[List["Gamma", "[", RowBox[List["\[Alpha]", ",", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["a", "+", "p", "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "c", " ", "m"]]]], ")"]]]], " ", "z"]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Cos", "[", FractionBox[RowBox[List["m", " ", "\[Pi]"]], "2"], "]"]], "-", RowBox[List["\[ImaginaryI]", " ", RowBox[List["Sin", "[", FractionBox[RowBox[List["m", " ", "\[Pi]"]], "2"], "]"]]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["a", "+", "p", "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "c", " ", "m"]]]], ")"]]]], " ", "z"]], ")"]], "\[Alpha]"], " ", RowBox[List["Gamma", "[", RowBox[List["\[Alpha]", ",", RowBox[List[RowBox[List["(", RowBox[List["a", "-", "p", "+", RowBox[List["\[ImaginaryI]", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]]]], ")"]], " ", "z"]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Cos", "[", FractionBox[RowBox[List["m", " ", "\[Pi]"]], "2"], "]"]], "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["Sin", "[", FractionBox[RowBox[List["m", " ", "\[Pi]"]], "2"], "]"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["a", "+", "p", "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "c", " ", "m"]]]], ")"]]]], " ", "z"]], ")"]], "\[Alpha]"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["a", "-", "p", "+", RowBox[List["\[ImaginaryI]", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]]]], ")"]], " ", "z"]], ")"]], "\[Alpha]"], " ", RowBox[List["Gamma", "[", RowBox[List["\[Alpha]", ",", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["a", "+", "p", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "c", " ", "m"]]]], ")"]]]], " ", "z"]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Cos", "[", FractionBox[RowBox[List["m", " ", "\[Pi]"]], "2"], "]"]], "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["Sin", "[", FractionBox[RowBox[List["m", " ", "\[Pi]"]], "2"], "]"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["a", "+", "p", "+", RowBox[List["\[ImaginaryI]", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]]]], ")"]]]], " ", "z"]], ")"]], "\[Alpha]"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["a", "+", "p", "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "c", " ", "m"]]]], ")"]]]], " ", "z"]], ")"]], "\[Alpha]"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["a", "-", "p", "+", RowBox[List["\[ImaginaryI]", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]]]], ")"]], " ", "z"]], ")"]], "\[Alpha]"], " ", RowBox[List["Gamma", "[", RowBox[List["\[Alpha]", ",", RowBox[List[RowBox[List["(", RowBox[List["a", "-", "p", "+", RowBox[List["\[ImaginaryI]", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]]]], ")"]], " ", "z"]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Cos", "[", FractionBox[RowBox[List["m", " ", "\[Pi]"]], "2"], "]"]], "-", RowBox[List["\[ImaginaryI]", " ", RowBox[List["Sin", "[", FractionBox[RowBox[List["m", " ", "\[Pi]"]], "2"], "]"]]]]]], ")"]]]]]], ")"]]]]]]]], ")"]]]], "/;", RowBox[List[RowBox[List["m", "\[Element]", "Integers"]], "&&", RowBox[List["m", ">", "0"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|