html, body, form { margin: 0; padding: 0; width: 100%; } #calculate { position: relative; width: 177px; height: 110px; background: transparent url(/images/alphabox/embed_functions_inside.gif) no-repeat scroll 0 0; } #i { position: relative; left: 18px; top: 44px; width: 133px; border: 0 none; outline: 0; font-size: 11px; } #eq { width: 9px; height: 10px; background: transparent; position: absolute; top: 47px; right: 18px; cursor: pointer; }

 Cosh

 http://functions.wolfram.com/01.20.21.1426.01

 Input Form

 Integrate[z^(\[Alpha] - 1) E^(p z) Cos[c z]^m Cosh[a z], z] == 2^(-1 - m) z^\[Alpha] (Binomial[m, m/2] (ExpIntegralE[1 - \[Alpha], (a - p) z] + ExpIntegralE[1 - \[Alpha], (-(a + p)) z]) (-1 + Mod[m, 2]) - Sum[Binomial[m, k] (ExpIntegralE[1 - \[Alpha], (a - p + 2 I c k - I c m) z] + ExpIntegralE[1 - \[Alpha], (-(a + p + 2 I c k - I c m)) z] + ExpIntegralE[1 - \[Alpha], (-(a + p - 2 I c k + I c m)) z] + ExpIntegralE[1 - \[Alpha], (a - p + I c (-2 k + m)) z]), {k, 0, Floor[(1/2) (-1 + m)]}]) /; Element[m, Integers] && m > 0

 Standard Form

 Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["z", RowBox[List["\[Alpha]", "-", "1"]]], SuperscriptBox["\[ExponentialE]", RowBox[List["p", " ", "z"]]], " ", SuperscriptBox[RowBox[List["Cos", "[", RowBox[List["c", " ", "z"]], "]"]], "m"], " ", RowBox[List["Cosh", "[", RowBox[List["a", " ", "z"]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", "m"]]], " ", SuperscriptBox["z", "\[Alpha]"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Binomial", "[", RowBox[List["m", ",", FractionBox["m", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["ExpIntegralE", "[", RowBox[List[RowBox[List["1", "-", "\[Alpha]"]], ",", RowBox[List[RowBox[List["(", RowBox[List["a", "-", "p"]], ")"]], " ", "z"]]]], "]"]], "+", RowBox[List["ExpIntegralE", "[", RowBox[List[RowBox[List["1", "-", "\[Alpha]"]], ",", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["a", "+", "p"]], ")"]]]], " ", "z"]]]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["Mod", "[", RowBox[List["m", ",", "2"]], "]"]]]], ")"]]]], "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]]]], "]"]]], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["m", ",", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["ExpIntegralE", "[", RowBox[List[RowBox[List["1", "-", "\[Alpha]"]], ",", RowBox[List[RowBox[List["(", RowBox[List["a", "-", "p", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "c", " ", "m"]]]], ")"]], " ", "z"]]]], "]"]], "+", RowBox[List["ExpIntegralE", "[", RowBox[List[RowBox[List["1", "-", "\[Alpha]"]], ",", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["a", "+", "p", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "c", " ", "m"]]]], ")"]]]], " ", "z"]]]], "]"]], "+", RowBox[List["ExpIntegralE", "[", RowBox[List[RowBox[List["1", "-", "\[Alpha]"]], ",", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["a", "+", "p", "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "c", " ", "m"]]]], ")"]]]], " ", "z"]]]], "]"]], "+", RowBox[List["ExpIntegralE", "[", RowBox[List[RowBox[List["1", "-", "\[Alpha]"]], ",", RowBox[List[RowBox[List["(", RowBox[List["a", "-", "p", "+", RowBox[List["\[ImaginaryI]", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]]]], ")"]], " ", "z"]]]], "]"]]]], ")"]]]]]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List["m", "\[Element]", "Integers"]], "\[And]", RowBox[List["m", ">", "0"]]]]]]]]

 MathML Form

 z α - 1 p z cos m ( c z ) cosh ( a z ) z 2 - 1 - m z α ( ( m m 2 ) TagBox[RowBox[List["(", GridBox[List[List[TagBox["m", Identity]], List[TagBox[FractionBox["m", "2"], Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] ( E TagBox["E", ExpIntegralE] 1 - α ( ( a - p ) z ) + E TagBox["E", ExpIntegralE] 1 - α ( - ( a + p ) z ) ) ( m mod 2 \$CellContext`m 2 - 1 ) - k = 0 m - 1 2 ( m k ) TagBox[RowBox[List["(", GridBox[List[List[TagBox["m", Identity]], List[TagBox["k", Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] ( E TagBox["E", ExpIntegralE] 1 - α ( - ( a + p - 2 c k + c m ) z ) + E TagBox["E", ExpIntegralE] 1 - α ( ( a - p + 2 c k - c m ) z ) + E TagBox["E", ExpIntegralE] 1 - α ( - ( a + p + 2 c k - c m ) z ) + E TagBox["E", ExpIntegralE] 1 - α ( ( a - p + c ( m - 2 k ) ) z ) ) ) /; m + Condition z z α -1 p z c z m a z 2 -1 -1 m z α Binomial m m 2 -1 ExpIntegralE 1 -1 α a -1 p z ExpIntegralE 1 -1 α -1 a p z \$CellContext`m 2 -1 -1 k 0 m -1 2 -1 Binomial m k ExpIntegralE 1 -1 α -1 a p -1 2 c k c m z ExpIntegralE 1 -1 α a -1 p 2 c k -1 c m z ExpIntegralE 1 -1 α -1 a p 2 c k -1 c m z ExpIntegralE 1 -1 α a -1 p c m -1 2 k z m SuperPlus [/itex]

 Rule Form

 Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["z_", RowBox[List["\[Alpha]_", "-", "1"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["p_", " ", "z_"]]], " ", SuperscriptBox[RowBox[List["Cos", "[", RowBox[List["c_", " ", "z_"]], "]"]], "m_"], " ", RowBox[List["Cosh", "[", RowBox[List["a_", " ", "z_"]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", "m"]]], " ", SuperscriptBox["z", "\[Alpha]"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Binomial", "[", RowBox[List["m", ",", FractionBox["m", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["ExpIntegralE", "[", RowBox[List[RowBox[List["1", "-", "\[Alpha]"]], ",", RowBox[List[RowBox[List["(", RowBox[List["a", "-", "p"]], ")"]], " ", "z"]]]], "]"]], "+", RowBox[List["ExpIntegralE", "[", RowBox[List[RowBox[List["1", "-", "\[Alpha]"]], ",", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["a", "+", "p"]], ")"]]]], " ", "z"]]]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["Mod", "[", RowBox[List["m", ",", "2"]], "]"]]]], ")"]]]], "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]]]], "]"]]], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["m", ",", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["ExpIntegralE", "[", RowBox[List[RowBox[List["1", "-", "\[Alpha]"]], ",", RowBox[List[RowBox[List["(", RowBox[List["a", "-", "p", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "c", " ", "m"]]]], ")"]], " ", "z"]]]], "]"]], "+", RowBox[List["ExpIntegralE", "[", RowBox[List[RowBox[List["1", "-", "\[Alpha]"]], ",", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["a", "+", "p", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "c", " ", "m"]]]], ")"]]]], " ", "z"]]]], "]"]], "+", RowBox[List["ExpIntegralE", "[", RowBox[List[RowBox[List["1", "-", "\[Alpha]"]], ",", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["a", "+", "p", "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "c", " ", "m"]]]], ")"]]]], " ", "z"]]]], "]"]], "+", RowBox[List["ExpIntegralE", "[", RowBox[List[RowBox[List["1", "-", "\[Alpha]"]], ",", RowBox[List[RowBox[List["(", RowBox[List["a", "-", "p", "+", RowBox[List["\[ImaginaryI]", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]]]], ")"]], " ", "z"]]]], "]"]]]], ")"]]]]]]]], ")"]]]], "/;", RowBox[List[RowBox[List["m", "\[Element]", "Integers"]], "&&", RowBox[List["m", ">", "0"]]]]]]]]]]

 Date Added to functions.wolfram.com (modification date)

 2002-12-18