|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/01.20.21.1471.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Integrate[Sinh[b z^2 + e] Cosh[f z + g], z] ==
(1/8) Sqrt[Pi] ((Sqrt[-b] E^(-e + f^2/(4 b) - g)
Erfi[(-f - 2 b z)/(2 Sqrt[-b])])/b +
(E^(-e + f^2/(4 b) + g) (Sqrt[-b] Erfi[(f - 2 b z)/(2 Sqrt[-b])] +
Sqrt[b] E^(2 (e - f^2/(4 b) - g)) Erfi[(-f + 2 b z)/(2 Sqrt[b])]))/b +
(E^(e - f^2/(4 b) + g) Erfi[(f + 2 b z)/(2 Sqrt[b])])/Sqrt[b])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[RowBox[List["Sinh", "[", RowBox[List[RowBox[List["b", " ", SuperscriptBox["z", "2"]]], "+", "e"]], "]"]], RowBox[List["Cosh", "[", RowBox[List[RowBox[List["f", " ", "z"]], "+", "g"]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox["1", "8"], " ", SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List[SqrtBox[RowBox[List["-", "b"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "e"]], "+", FractionBox[SuperscriptBox["f", "2"], RowBox[List["4", " ", "b"]]], "-", "g"]]], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List[RowBox[List["-", "f"]], "-", RowBox[List["2", " ", "b", " ", "z"]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["-", "b"]]]]]], "]"]]]], "b"], "+", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "e"]], "+", FractionBox[SuperscriptBox["f", "2"], RowBox[List["4", " ", "b"]]], "+", "g"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[RowBox[List["-", "b"]]], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List["f", "-", RowBox[List["2", " ", "b", " ", "z"]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["-", "b"]]]]]], "]"]]]], "+", RowBox[List[SqrtBox["b"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", RowBox[List["(", RowBox[List["e", "-", FractionBox[SuperscriptBox["f", "2"], RowBox[List["4", " ", "b"]]], "-", "g"]], ")"]]]]], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List[RowBox[List["-", "f"]], "+", RowBox[List["2", " ", "b", " ", "z"]]]], RowBox[List["2", " ", SqrtBox["b"]]]], "]"]]]]]], ")"]]]], "b"], "+", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["e", "-", FractionBox[SuperscriptBox["f", "2"], RowBox[List["4", " ", "b"]]], "+", "g"]]], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List["f", "+", RowBox[List["2", " ", "b", " ", "z"]]]], RowBox[List["2", " ", SqrtBox["b"]]]], "]"]]]], SqrtBox["b"]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> ∫ </mo> <mrow> <mrow> <mrow> <mi> sinh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mi> e </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> cosh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> g </mi> <mo> + </mo> <mrow> <mi> f </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> <mo> ⁢ </mo> <msqrt> <mi> π </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <msqrt> <mrow> <mo> - </mo> <mi> b </mi> </mrow> </msqrt> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mfrac> <msup> <mi> f </mi> <mn> 2 </mn> </msup> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> b </mi> </mrow> </mfrac> <mo> - </mo> <mi> e </mi> <mo> - </mo> <mi> g </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> erfi </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mrow> <mo> - </mo> <mi> f </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mo> - </mo> <mi> b </mi> </mrow> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <mi> b </mi> </mfrac> <mo> + </mo> <mfrac> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mfrac> <msup> <mi> f </mi> <mn> 2 </mn> </msup> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> b </mi> </mrow> </mfrac> <mo> - </mo> <mi> e </mi> <mo> + </mo> <mi> g </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mrow> <mo> - </mo> <mi> b </mi> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <mi> erfi </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mi> f </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mo> - </mo> <mi> b </mi> </mrow> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msqrt> <mi> b </mi> </msqrt> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <msup> <mi> f </mi> <mn> 2 </mn> </msup> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> b </mi> </mrow> </mfrac> </mrow> <mo> + </mo> <mi> e </mi> <mo> - </mo> <mi> g </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> erfi </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mi> f </mi> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mi> b </mi> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mi> b </mi> </mfrac> <mo> + </mo> <mfrac> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mo> - </mo> <mfrac> <msup> <mi> f </mi> <mn> 2 </mn> </msup> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> b </mi> </mrow> </mfrac> </mrow> <mo> + </mo> <mi> e </mi> <mo> + </mo> <mi> g </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> erfi </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mi> f </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mi> b </mi> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <msqrt> <mi> b </mi> </msqrt> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <sinh /> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <ci> e </ci> </apply> </apply> <apply> <cosh /> <apply> <plus /> <ci> g </ci> <apply> <times /> <ci> f </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 8 </cn> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> f </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> e </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> g </ci> </apply> </apply> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> f </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> f </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> e </ci> </apply> <ci> g </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <apply> <plus /> <ci> f </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> f </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <ci> e </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> g </ci> </apply> </apply> </apply> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> f </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> b </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> f </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <ci> e </ci> <ci> g </ci> </apply> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <apply> <plus /> <ci> f </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> b </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <ci> b </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[RowBox[List["Sinh", "[", RowBox[List[RowBox[List["b_", " ", SuperscriptBox["z_", "2"]]], "+", "e_"]], "]"]], " ", RowBox[List["Cosh", "[", RowBox[List[RowBox[List["f_", " ", "z_"]], "+", "g_"]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox["1", "8"], " ", SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List[SqrtBox[RowBox[List["-", "b"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "e"]], "+", FractionBox[SuperscriptBox["f", "2"], RowBox[List["4", " ", "b"]]], "-", "g"]]], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List[RowBox[List["-", "f"]], "-", RowBox[List["2", " ", "b", " ", "z"]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["-", "b"]]]]]], "]"]]]], "b"], "+", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "e"]], "+", FractionBox[SuperscriptBox["f", "2"], RowBox[List["4", " ", "b"]]], "+", "g"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[RowBox[List["-", "b"]]], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List["f", "-", RowBox[List["2", " ", "b", " ", "z"]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["-", "b"]]]]]], "]"]]]], "+", RowBox[List[SqrtBox["b"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", RowBox[List["(", RowBox[List["e", "-", FractionBox[SuperscriptBox["f", "2"], RowBox[List["4", " ", "b"]]], "-", "g"]], ")"]]]]], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List[RowBox[List["-", "f"]], "+", RowBox[List["2", " ", "b", " ", "z"]]]], RowBox[List["2", " ", SqrtBox["b"]]]], "]"]]]]]], ")"]]]], "b"], "+", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["e", "-", FractionBox[SuperscriptBox["f", "2"], RowBox[List["4", " ", "b"]]], "+", "g"]]], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List["f", "+", RowBox[List["2", " ", "b", " ", "z"]]]], RowBox[List["2", " ", SqrtBox["b"]]]], "]"]]]], SqrtBox["b"]]]], ")"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|