Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Cosh






Mathematica Notation

Traditional Notation









Elementary Functions > Cosh[z] > Integration > Indefinite integration > Involving one direct function and elementary functions > Involving hyperbolic and exponential functions > Involving sinh and algebraic functions of exp > Involving ep z(a+b ed z)beta sinh(e z)cosh(c z)





http://functions.wolfram.com/01.20.21.1838.01









  


  










Input Form





Integrate[E^(p z) (a + b E^(d z))^\[Beta] Sinh[e z] Cosh[c z], z] == ((-(1/4)) (a + b E^(d z))^\[Beta] ((E^((c - e + p) z) (c - e - p) Hypergeometric2F1[(c - e + p)/d, -\[Beta], (c + d - e + p)/d, -((b E^(d z))/a)] + E^((-c + e + p) z) (c - e + p) Hypergeometric2F1[(-c + e + p)/d, -\[Beta], (-c + d + e + p)/d, -((b E^(d z))/a)])/((c - e - p) (c - e + p)) + (E^((-c - e + p) z) (-c - e - p) Hypergeometric2F1[(-c - e + p)/d, -\[Beta], (-c + d - e + p)/d, -((b E^(d z))/a)] + E^((c + e + p) z) (-c - e + p) Hypergeometric2F1[(c + e + p)/d, -\[Beta], (c + d + e + p)/d, -((b E^(d z))/a)])/ ((-c - e - p) (-c - e + p))))/(1 + (b E^(d z))/a)^\[Beta]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["p", " ", "z"]]], SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["d", " ", "z"]]]]]]], ")"]], "\[Beta]"], RowBox[List["Sinh", "[", RowBox[List["e", " ", "z"]], "]"]], RowBox[List["Cosh", "[", RowBox[List["c", " ", "z"]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox["1", "4"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["d", " ", "z"]]]]]]], ")"]], "\[Beta]"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["d", " ", "z"]]]]], "a"]]], ")"]], RowBox[List["-", "\[Beta]"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["c", "-", "e", "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List["c", "-", "e", "-", "p"]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["c", "-", "e", "+", "p"]], "d"], ",", RowBox[List["-", "\[Beta]"]], ",", FractionBox[RowBox[List["c", "+", "d", "-", "e", "+", "p"]], "d"], ",", RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["d", " ", "z"]]]]], "a"]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "c"]], "+", "e", "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List["c", "-", "e", "+", "p"]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["-", "c"]], "+", "e", "+", "p"]], "d"], ",", RowBox[List["-", "\[Beta]"]], ",", FractionBox[RowBox[List[RowBox[List["-", "c"]], "+", "d", "+", "e", "+", "p"]], "d"], ",", RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["d", " ", "z"]]]]], "a"]]]]], "]"]]]]]], ")"]], "/", RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["c", "-", "e", "-", "p"]], ")"]], " ", RowBox[List["(", RowBox[List["c", "-", "e", "+", "p"]], ")"]]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "c"]], "-", "e", "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "c"]], "-", "e", "-", "p"]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["-", "c"]], "-", "e", "+", "p"]], "d"], ",", RowBox[List["-", "\[Beta]"]], ",", FractionBox[RowBox[List[RowBox[List["-", "c"]], "+", "d", "-", "e", "+", "p"]], "d"], ",", RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["d", " ", "z"]]]]], "a"]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["c", "+", "e", "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "c"]], "-", "e", "+", "p"]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["c", "+", "e", "+", "p"]], "d"], ",", RowBox[List["-", "\[Beta]"]], ",", FractionBox[RowBox[List["c", "+", "d", "+", "e", "+", "p"]], "d"], ",", RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["d", " ", "z"]]]]], "a"]]]]], "]"]]]]]], ")"]], "/", RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "c"]], "-", "e", "-", "p"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "c"]], "-", "e", "+", "p"]], ")"]]]], ")"]]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mi> p </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> d </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mi> &#946; </mi> </msup> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> d </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mi> &#946; </mi> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mi> d </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mi> a </mi> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> &#946; </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> - </mo> <mi> e </mi> <mo> - </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> - </mo> <mi> e </mi> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> - </mo> <mi> e </mi> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> - </mo> <mi> e </mi> <mo> - </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mi> c </mi> <mo> - </mo> <mi> e </mi> <mo> + </mo> <mi> p </mi> </mrow> <mi> d </mi> </mfrac> <mo> , </mo> <mrow> <mo> - </mo> <mi> &#946; </mi> </mrow> </mrow> <mo> ; </mo> <mfrac> <mrow> <mi> c </mi> <mo> + </mo> <mi> d </mi> <mo> - </mo> <mi> e </mi> <mo> + </mo> <mi> p </mi> </mrow> <mi> d </mi> </mfrac> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> d </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mi> a </mi> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List[&quot;c&quot;, &quot;-&quot;, &quot;e&quot;, &quot;+&quot;, &quot;p&quot;]], &quot;d&quot;], Hypergeometric2F1], &quot;,&quot;, TagBox[RowBox[List[&quot;-&quot;, &quot;\[Beta]&quot;]], Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], &quot;;&quot;, TagBox[TagBox[TagBox[FractionBox[RowBox[List[&quot;c&quot;, &quot;+&quot;, &quot;d&quot;, &quot;-&quot;, &quot;e&quot;, &quot;+&quot;, &quot;p&quot;]], &quot;d&quot;], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, FractionBox[RowBox[List[&quot;b&quot;, &quot; &quot;, SuperscriptBox[&quot;\[ExponentialE]&quot;, RowBox[List[&quot;d&quot;, &quot; &quot;, &quot;z&quot;]]]]], &quot;a&quot;]]], Hypergeometric2F1]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> c </mi> </mrow> <mo> + </mo> <mi> e </mi> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> - </mo> <mi> e </mi> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mrow> <mo> - </mo> <mi> c </mi> </mrow> <mo> + </mo> <mi> e </mi> <mo> + </mo> <mi> p </mi> </mrow> <mi> d </mi> </mfrac> <mo> , </mo> <mrow> <mo> - </mo> <mi> &#946; </mi> </mrow> </mrow> <mo> ; </mo> <mfrac> <mrow> <mrow> <mo> - </mo> <mi> c </mi> </mrow> <mo> + </mo> <mi> d </mi> <mo> + </mo> <mi> e </mi> <mo> + </mo> <mi> p </mi> </mrow> <mi> d </mi> </mfrac> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> d </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mi> a </mi> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List[RowBox[List[&quot;-&quot;, &quot;c&quot;]], &quot;+&quot;, &quot;e&quot;, &quot;+&quot;, &quot;p&quot;]], &quot;d&quot;], Hypergeometric2F1], &quot;,&quot;, TagBox[RowBox[List[&quot;-&quot;, &quot;\[Beta]&quot;]], Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], &quot;;&quot;, TagBox[TagBox[TagBox[FractionBox[RowBox[List[RowBox[List[&quot;-&quot;, &quot;c&quot;]], &quot;+&quot;, &quot;d&quot;, &quot;+&quot;, &quot;e&quot;, &quot;+&quot;, &quot;p&quot;]], &quot;d&quot;], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, FractionBox[RowBox[List[&quot;b&quot;, &quot; &quot;, SuperscriptBox[&quot;\[ExponentialE]&quot;, RowBox[List[&quot;d&quot;, &quot; &quot;, &quot;z&quot;]]]]], &quot;a&quot;]]], Hypergeometric2F1]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> c </mi> </mrow> <mo> - </mo> <mi> e </mi> <mo> - </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> c </mi> </mrow> <mo> - </mo> <mi> e </mi> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> c </mi> </mrow> <mo> - </mo> <mi> e </mi> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> c </mi> </mrow> <mo> - </mo> <mi> e </mi> <mo> - </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mrow> <mo> - </mo> <mi> c </mi> </mrow> <mo> - </mo> <mi> e </mi> <mo> + </mo> <mi> p </mi> </mrow> <mi> d </mi> </mfrac> <mo> , </mo> <mrow> <mo> - </mo> <mi> &#946; </mi> </mrow> </mrow> <mo> ; </mo> <mfrac> <mrow> <mrow> <mo> - </mo> <mi> c </mi> </mrow> <mo> + </mo> <mi> d </mi> <mo> - </mo> <mi> e </mi> <mo> + </mo> <mi> p </mi> </mrow> <mi> d </mi> </mfrac> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> d </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mi> a </mi> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List[RowBox[List[&quot;-&quot;, &quot;c&quot;]], &quot;-&quot;, &quot;e&quot;, &quot;+&quot;, &quot;p&quot;]], &quot;d&quot;], Hypergeometric2F1], &quot;,&quot;, TagBox[RowBox[List[&quot;-&quot;, &quot;\[Beta]&quot;]], Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], &quot;;&quot;, TagBox[TagBox[TagBox[FractionBox[RowBox[List[RowBox[List[&quot;-&quot;, &quot;c&quot;]], &quot;+&quot;, &quot;d&quot;, &quot;-&quot;, &quot;e&quot;, &quot;+&quot;, &quot;p&quot;]], &quot;d&quot;], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, FractionBox[RowBox[List[&quot;b&quot;, &quot; &quot;, SuperscriptBox[&quot;\[ExponentialE]&quot;, RowBox[List[&quot;d&quot;, &quot; &quot;, &quot;z&quot;]]]]], &quot;a&quot;]]], Hypergeometric2F1]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> + </mo> <mi> e </mi> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> c </mi> </mrow> <mo> - </mo> <mi> e </mi> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mi> c </mi> <mo> + </mo> <mi> e </mi> <mo> + </mo> <mi> p </mi> </mrow> <mi> d </mi> </mfrac> <mo> , </mo> <mrow> <mo> - </mo> <mi> &#946; </mi> </mrow> </mrow> <mo> ; </mo> <mfrac> <mrow> <mi> c </mi> <mo> + </mo> <mi> d </mi> <mo> + </mo> <mi> e </mi> <mo> + </mo> <mi> p </mi> </mrow> <mi> d </mi> </mfrac> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> d </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mi> a </mi> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List[&quot;c&quot;, &quot;+&quot;, &quot;e&quot;, &quot;+&quot;, &quot;p&quot;]], &quot;d&quot;], Hypergeometric2F1], &quot;,&quot;, TagBox[RowBox[List[&quot;-&quot;, &quot;\[Beta]&quot;]], Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], &quot;;&quot;, TagBox[TagBox[TagBox[FractionBox[RowBox[List[&quot;c&quot;, &quot;+&quot;, &quot;d&quot;, &quot;+&quot;, &quot;e&quot;, &quot;+&quot;, &quot;p&quot;]], &quot;d&quot;], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, FractionBox[RowBox[List[&quot;b&quot;, &quot; &quot;, SuperscriptBox[&quot;\[ExponentialE]&quot;, RowBox[List[&quot;d&quot;, &quot; &quot;, &quot;z&quot;]]]]], &quot;a&quot;]]], Hypergeometric2F1]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <ci> p </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <ci> d </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <ci> &#946; </ci> </apply> <apply> <sinh /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> <apply> <cosh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <ci> d </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <ci> &#946; </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <ci> d </ci> <ci> z </ci> </apply> </apply> <ci> b </ci> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#946; </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> e </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> </apply> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> e </ci> </apply> <ci> p </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> e </ci> </apply> <ci> p </ci> </apply> <ci> z </ci> </apply> </apply> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> e </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> </apply> <apply> <ci> Hypergeometric2F1 </ci> <apply> <times /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> e </ci> </apply> <ci> p </ci> </apply> <apply> <power /> <ci> d </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#946; </ci> </apply> <apply> <times /> <apply> <plus /> <ci> c </ci> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> e </ci> </apply> <ci> p </ci> </apply> <apply> <power /> <ci> d </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <ci> d </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <ci> e </ci> <ci> p </ci> </apply> <ci> z </ci> </apply> </apply> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> e </ci> </apply> <ci> p </ci> </apply> <apply> <ci> Hypergeometric2F1 </ci> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <ci> e </ci> <ci> p </ci> </apply> <apply> <power /> <ci> d </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#946; </ci> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <ci> d </ci> <ci> e </ci> <ci> p </ci> </apply> <apply> <power /> <ci> d </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <ci> d </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> e </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> e </ci> </apply> <ci> p </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> e </ci> </apply> <ci> p </ci> </apply> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> e </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> </apply> <apply> <ci> Hypergeometric2F1 </ci> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> e </ci> </apply> <ci> p </ci> </apply> <apply> <power /> <ci> d </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#946; </ci> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> e </ci> </apply> <ci> p </ci> </apply> <apply> <power /> <ci> d </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <ci> d </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <plus /> <ci> c </ci> <ci> e </ci> <ci> p </ci> </apply> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> e </ci> </apply> <ci> p </ci> </apply> <apply> <ci> Hypergeometric2F1 </ci> <apply> <times /> <apply> <plus /> <ci> c </ci> <ci> e </ci> <ci> p </ci> </apply> <apply> <power /> <ci> d </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#946; </ci> </apply> <apply> <times /> <apply> <plus /> <ci> c </ci> <ci> d </ci> <ci> e </ci> <ci> p </ci> </apply> <apply> <power /> <ci> d </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <ci> d </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["p_", " ", "z_"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a_", "+", RowBox[List["b_", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["d_", " ", "z_"]]]]]]], ")"]], "\[Beta]_"], " ", RowBox[List["Sinh", "[", RowBox[List["e_", " ", "z_"]], "]"]], " ", RowBox[List["Cosh", "[", RowBox[List["c_", " ", "z_"]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["-", FractionBox["1", "4"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["d", " ", "z"]]]]]]], ")"]], "\[Beta]"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["d", " ", "z"]]]]], "a"]]], ")"]], RowBox[List["-", "\[Beta]"]]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["c", "-", "e", "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List["c", "-", "e", "-", "p"]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["c", "-", "e", "+", "p"]], "d"], ",", RowBox[List["-", "\[Beta]"]], ",", FractionBox[RowBox[List["c", "+", "d", "-", "e", "+", "p"]], "d"], ",", RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["d", " ", "z"]]]]], "a"]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "c"]], "+", "e", "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List["c", "-", "e", "+", "p"]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["-", "c"]], "+", "e", "+", "p"]], "d"], ",", RowBox[List["-", "\[Beta]"]], ",", FractionBox[RowBox[List[RowBox[List["-", "c"]], "+", "d", "+", "e", "+", "p"]], "d"], ",", RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["d", " ", "z"]]]]], "a"]]]]], "]"]]]]]], RowBox[List[RowBox[List["(", RowBox[List["c", "-", "e", "-", "p"]], ")"]], " ", RowBox[List["(", RowBox[List["c", "-", "e", "+", "p"]], ")"]]]]], "+", FractionBox[RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "c"]], "-", "e", "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "c"]], "-", "e", "-", "p"]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["-", "c"]], "-", "e", "+", "p"]], "d"], ",", RowBox[List["-", "\[Beta]"]], ",", FractionBox[RowBox[List[RowBox[List["-", "c"]], "+", "d", "-", "e", "+", "p"]], "d"], ",", RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["d", " ", "z"]]]]], "a"]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["c", "+", "e", "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "c"]], "-", "e", "+", "p"]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["c", "+", "e", "+", "p"]], "d"], ",", RowBox[List["-", "\[Beta]"]], ",", FractionBox[RowBox[List["c", "+", "d", "+", "e", "+", "p"]], "d"], ",", RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["d", " ", "z"]]]]], "a"]]]]], "]"]]]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "c"]], "-", "e", "-", "p"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "c"]], "-", "e", "+", "p"]], ")"]]]]]]], ")"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18