Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Cosh






Mathematica Notation

Traditional Notation









Elementary Functions > Cosh[z] > Integration > Indefinite integration > Involving one direct function and elementary functions > Involving hyperbolic and exponential functions > Involving powers of sinh and exp > Involving ep zrsinhm(b zr)cosh(c z)





http://functions.wolfram.com/01.20.21.1848.01









  


  










Input Form





Integrate[E^(p z^2) Sinh[b z^2]^m Cosh[c z], z] == (1/Sqrt[p]) (I^m 2^(-2 - m) Sqrt[Pi] Binomial[m, m/2] (Erfi[(-c + 2 p z)/(2 Sqrt[p])]/E^(c^2/(4 p)) + Erfi[(c + 2 p z)/(2 Sqrt[p])]/E^(c^2/(4 p))) (1 - Mod[m, 2])) + I^m 2^(-2 - m) Sqrt[Pi] Sum[(-1)^k Binomial[m, k] (((Sqrt[(-b) (2 k - m) + p] (b (2 k - m) + p) Erfi[(-c - 2 b (2 k - m) z + 2 p z)/(2 Sqrt[(-b) (2 k - m) + p])])/ E^((c^2 + 2 I m ((-b) (2 k - m) + p) Pi)/(4 ((-b) (2 k - m) + p))) + (((-b) (2 k - m) + p) Sqrt[b (2 k - m) + p] Erfi[(c + 2 (b (2 k - m) + p) z)/(2 Sqrt[b (2 k - m) + p])])/ E^((c^2 - 2 I m (b (2 k - m) + p) Pi)/(4 (b (2 k - m) + p))))/ (((-b) (2 k - m) + p) (b (2 k - m) + p)) + ((Sqrt[(-b) (-2 k + m) + p] (b (-2 k + m) + p) Erfi[(-c - 2 b (-2 k + m) z + 2 p z)/(2 Sqrt[(-b) (-2 k + m) + p])])/E^((c^2 - 2 I m ((-b) (-2 k + m) + p) Pi)/ (4 ((-b) (-2 k + m) + p))) + (((-b) (-2 k + m) + p) Sqrt[b (-2 k + m) + p] Erfi[(c + 2 (b (-2 k + m) + p) z)/ (2 Sqrt[b (-2 k + m) + p])])/ E^((c^2 + 2 I m (b (-2 k + m) + p) Pi)/(4 (b (-2 k + m) + p))))/ (((-b) (-2 k + m) + p) (b (-2 k + m) + p))), {k, 0, Floor[(1/2) (-1 + m)]}] /; Element[m, Integers] && m > 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["p", " ", SuperscriptBox["z", "2"]]]], " ", SuperscriptBox[RowBox[List["Sinh", "[", RowBox[List["b", " ", SuperscriptBox["z", "2"]]], "]"]], "m"], " ", RowBox[List["Cosh", "[", RowBox[List["c", " ", "z"]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List[FractionBox["1", SqrtBox["p"]], RowBox[List["(", RowBox[List[SuperscriptBox["\[ImaginaryI]", "m"], " ", SuperscriptBox["2", RowBox[List[RowBox[List["-", "2"]], "-", "m"]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", FractionBox["m", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[SuperscriptBox["c", "2"], RowBox[List["4", " ", "p"]]]]]], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List[RowBox[List["-", "c"]], "+", RowBox[List["2", " ", "p", " ", "z"]]]], RowBox[List["2", " ", SqrtBox["p"]]]], "]"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[SuperscriptBox["c", "2"], RowBox[List["4", " ", "p"]]]]]], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List["c", "+", RowBox[List["2", " ", "p", " ", "z"]]]], RowBox[List["2", " ", SqrtBox["p"]]]], "]"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["m", ",", "2"]], "]"]]]], ")"]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["\[ImaginaryI]", "m"], " ", SuperscriptBox["2", RowBox[List[RowBox[List["-", "2"]], "-", "m"]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox["c", "2"], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "m", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]], "+", "p"]], ")"]], " ", "\[Pi]"]]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]], "+", "p"]], ")"]]]]]]]], " ", SqrtBox[RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]], "+", "p"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]], "+", "p"]], ")"]], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List[RowBox[List["-", "c"]], "-", RowBox[List["2", " ", "b", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]], " ", "z"]], "+", RowBox[List["2", " ", "p", " ", "z"]]]], RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]], "+", "p"]]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox["c", "2"], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "m", " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]], "+", "p"]], ")"]], " ", "\[Pi]"]]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]], "+", "p"]], ")"]]]]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]], "+", "p"]], ")"]], " ", SqrtBox[RowBox[List[RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]], "+", "p"]]], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List["c", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]], "+", "p"]], ")"]], " ", "z"]]]], RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]], "+", "p"]]]]]], "]"]]]]]], ")"]], "/", RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]], "+", "p"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]], "+", "p"]], ")"]]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox["c", "2"], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "m", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", "p"]], ")"]], " ", "\[Pi]"]]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", "p"]], ")"]]]]]]]], " ", SqrtBox[RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", "p"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", "p"]], ")"]], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List[RowBox[List["-", "c"]], "-", RowBox[List["2", " ", "b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]], " ", "z"]], "+", RowBox[List["2", " ", "p", " ", "z"]]]], RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", "p"]]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox["c", "2"], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "m", " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", "p"]], ")"]], " ", "\[Pi]"]]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", "p"]], ")"]]]]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", "p"]], ")"]], " ", SqrtBox[RowBox[List[RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", "p"]]], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List["c", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", "p"]], ")"]], " ", "z"]]]], RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", "p"]]]]]], "]"]]]]]], ")"]], "/", RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", "p"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", "p"]], ")"]]]], ")"]]]]]], ")"]]]]]]]]]]]], "/;", RowBox[List[RowBox[List["m", "\[Element]", "Integers"]], "\[And]", RowBox[List["m", ">", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mi> p </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msup> <mo> &#8290; </mo> <mrow> <msup> <mi> sinh </mi> <mi> m </mi> </msup> <mo> ( </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mrow> <msup> <mi> &#8520; </mi> <mi> m </mi> </msup> <mo> &#8290; </mo> <msup> <mn> 2 </mn> <mrow> <mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> - </mo> <mn> 2 </mn> </mrow> </msup> <mo> &#8290; </mo> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> m </mi> </mtd> </mtr> <mtr> <mtd> <mfrac> <mi> m </mi> <mn> 2 </mn> </mfrac> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;m&quot;, Identity]], List[TagBox[FractionBox[&quot;m&quot;, &quot;2&quot;], Identity]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mo> - </mo> <mfrac> <msup> <mi> c </mi> <mn> 2 </mn> </msup> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> p </mi> </mrow> </mfrac> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> erfi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> p </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mi> c </mi> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mi> p </mi> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mo> - </mo> <mfrac> <msup> <mi> c </mi> <mn> 2 </mn> </msup> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> p </mi> </mrow> </mfrac> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> erfi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> c </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> p </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mi> p </mi> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <semantics> <mrow> <mi> m </mi> <mo> &#8290; </mo> <mi> mod </mi> <mo> &#8290; </mo> <mn> 2 </mn> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <rem /> <ci> $CellContext`m </ci> <cn type='integer'> 2 </cn> </apply> </annotation-xml> </semantics> </mrow> <mo> ) </mo> </mrow> </mrow> <msqrt> <mi> p </mi> </msqrt> </mfrac> <mo> + </mo> <mrow> <msup> <mi> &#8520; </mi> <mi> m </mi> </msup> <mo> &#8290; </mo> <msup> <mn> 2 </mn> <mrow> <mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> - </mo> <mn> 2 </mn> </mrow> </msup> <mo> &#8290; </mo> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> &#8971; </mo> </mrow> </munderover> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> m </mi> </mtd> </mtr> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;m&quot;, Identity]], List[TagBox[&quot;k&quot;, Identity]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mo> - </mo> <mfrac> <mrow> <msup> <mi> c </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> m </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> - </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> - </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> </msup> <mo> &#8290; </mo> <msqrt> <mrow> <mi> p </mi> <mo> - </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> erfi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mrow> <mo> - </mo> <mi> c </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> p </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mi> p </mi> <mo> - </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mo> - </mo> <mfrac> <mrow> <msup> <mi> c </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> m </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> - </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> p </mi> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mi> erfi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> c </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> p </mi> </mrow> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> - </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mo> - </mo> <mfrac> <mrow> <msup> <mi> c </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> m </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> - </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> - </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> </msup> <mo> &#8290; </mo> <msqrt> <mrow> <mi> p </mi> <mo> - </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> erfi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mrow> <mo> - </mo> <mi> c </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> p </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mi> p </mi> <mo> - </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mo> - </mo> <mfrac> <mrow> <msup> <mi> c </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> m </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> - </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> p </mi> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mi> erfi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> c </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> p </mi> </mrow> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> - </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> m </mi> <mo> &#8712; </mo> <msup> <mi> &#8469; </mi> <mo> + </mo> </msup> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <ci> p </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <sinh /> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <ci> m </ci> </apply> <apply> <cosh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <imaginaryi /> <ci> m </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <cn type='integer'> -2 </cn> </apply> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> Binomial </ci> <ci> m </ci> <apply> <times /> <ci> m </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> p </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> p </ci> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> p </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> p </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> p </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> p </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <rem /> <ci> $CellContext`m </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <ci> p </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <imaginaryi /> <ci> m </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <cn type='integer'> -2 </cn> </apply> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <floor /> <apply> <times /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <ci> Binomial </ci> <ci> m </ci> <ci> k </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> m </ci> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> </apply> </apply> </apply> <pi /> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> </apply> <ci> p </ci> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> p </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> m </ci> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> </apply> <ci> p </ci> </apply> <pi /> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> </apply> <ci> p </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> </apply> <ci> p </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> </apply> <ci> p </ci> </apply> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> </apply> <ci> p </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> </apply> <ci> p </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> m </ci> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> </apply> <pi /> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> <ci> p </ci> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> p </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> m </ci> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> <ci> p </ci> </apply> <pi /> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> <ci> p </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> <ci> p </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> <ci> p </ci> </apply> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> <ci> p </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> <ci> p </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <ci> m </ci> <apply> <ci> SuperPlus </ci> <ci> &#8469; </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["p_", " ", SuperscriptBox["z_", "2"]]]], " ", SuperscriptBox[RowBox[List["Sinh", "[", RowBox[List["b_", " ", SuperscriptBox["z_", "2"]]], "]"]], "m_"], " ", RowBox[List["Cosh", "[", RowBox[List["c_", " ", "z_"]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[ImaginaryI]", "m"], " ", SuperscriptBox["2", RowBox[List[RowBox[List["-", "2"]], "-", "m"]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", FractionBox["m", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[SuperscriptBox["c", "2"], RowBox[List["4", " ", "p"]]]]]], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List[RowBox[List["-", "c"]], "+", RowBox[List["2", " ", "p", " ", "z"]]]], RowBox[List["2", " ", SqrtBox["p"]]]], "]"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[SuperscriptBox["c", "2"], RowBox[List["4", " ", "p"]]]]]], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List["c", "+", RowBox[List["2", " ", "p", " ", "z"]]]], RowBox[List["2", " ", SqrtBox["p"]]]], "]"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["m", ",", "2"]], "]"]]]], ")"]]]], SqrtBox["p"]], "+", RowBox[List[SuperscriptBox["\[ImaginaryI]", "m"], " ", SuperscriptBox["2", RowBox[List[RowBox[List["-", "2"]], "-", "m"]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox["c", "2"], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "m", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]], "+", "p"]], ")"]], " ", "\[Pi]"]]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]], "+", "p"]], ")"]]]]]]]], " ", SqrtBox[RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]], "+", "p"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]], "+", "p"]], ")"]], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List[RowBox[List["-", "c"]], "-", RowBox[List["2", " ", "b", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]], " ", "z"]], "+", RowBox[List["2", " ", "p", " ", "z"]]]], RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]], "+", "p"]]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox["c", "2"], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "m", " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]], "+", "p"]], ")"]], " ", "\[Pi]"]]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]], "+", "p"]], ")"]]]]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]], "+", "p"]], ")"]], " ", SqrtBox[RowBox[List[RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]], "+", "p"]]], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List["c", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]], "+", "p"]], ")"]], " ", "z"]]]], RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]], "+", "p"]]]]]], "]"]]]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]], "+", "p"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]], "+", "p"]], ")"]]]]], "+", FractionBox[RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox["c", "2"], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "m", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", "p"]], ")"]], " ", "\[Pi]"]]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", "p"]], ")"]]]]]]]], " ", SqrtBox[RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", "p"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", "p"]], ")"]], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List[RowBox[List["-", "c"]], "-", RowBox[List["2", " ", "b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]], " ", "z"]], "+", RowBox[List["2", " ", "p", " ", "z"]]]], RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", "p"]]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox["c", "2"], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "m", " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", "p"]], ")"]], " ", "\[Pi]"]]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", "p"]], ")"]]]]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", "p"]], ")"]], " ", SqrtBox[RowBox[List[RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", "p"]]], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List["c", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", "p"]], ")"]], " ", "z"]]]], RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", "p"]]]]]], "]"]]]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", "p"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", "p"]], ")"]]]]]]], ")"]]]]]]]]]], "/;", RowBox[List[RowBox[List["m", "\[Element]", "Integers"]], "&&", RowBox[List["m", ">", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18