|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/01.20.21.1871.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Integrate[E^(p z) (a + b E^(d z))^\[Beta] Sinh[e z]^m Cosh[c z], z] ==
(1/((c - p) (c + p))) ((I^m 2^(-1 - m) (a + b E^(d z))^\[Beta]
Binomial[m, m/2] ((-E^((-c + p) z)) (c + p) Hypergeometric2F1[
(-c + p)/d, -\[Beta], (-c + d + p)/d, -((b E^(d z))/a)] +
E^((c + p) z) (c - p) Hypergeometric2F1[(c + p)/d, -\[Beta],
(c + d + p)/d, -((b E^(d z))/a)]) (1 - Mod[m, 2]))/
(1 + (b E^(d z))/a)^\[Beta]) + (I^m 2^(-1 - m) (a + b E^(d z))^\[Beta]
Sum[(-1)^k Binomial[m, k] (Cos[(m Pi)/2]
((E^((c + 2 e k - e m + p) z) (c + 2 e k - e m - p)
Hypergeometric2F1[(c + 2 e k - e m + p)/d, -\[Beta],
(c + d + 2 e k - e m + p)/d, -((b E^(d z))/a)] -
E^((-c - 2 e k + e m + p) z) (c + 2 e k - e m + p)
Hypergeometric2F1[(-c - 2 e k + e m + p)/d, -\[Beta],
(-c + d - 2 e k + e m + p)/d, -((b E^(d z))/a)])/
((c + 2 e k - e m - p) (c + 2 e k - e m + p)) +
(E^((-c + 2 e k - e m + p) z) (-c + 2 e k - e m - p)
Hypergeometric2F1[(-c + 2 e k - e m + p)/d, -\[Beta],
(-c + d + 2 e k - e m + p)/d, -((b E^(d z))/a)] -
E^((c - 2 e k + e m + p) z) (-c + 2 e k - e m + p)
Hypergeometric2F1[(c - 2 e k + e m + p)/d, -\[Beta],
(c + d - 2 e k + e m + p)/d, -((b E^(d z))/a)])/
((-c + 2 e k - e m - p) (-c + 2 e k - e m + p))) +
I ((E^((c + 2 e k - e m + p) z) (c + 2 e k - e m - p)
Hypergeometric2F1[(c + 2 e k - e m + p)/d, -\[Beta],
(c + d + 2 e k - e m + p)/d, -((b E^(d z))/a)] +
E^((-c - 2 e k + e m + p) z) (c + 2 e k - e m + p)
Hypergeometric2F1[(-c - 2 e k + e m + p)/d, -\[Beta],
(-c + d - 2 e k + e m + p)/d, -((b E^(d z))/a)])/
((c + 2 e k - e m - p) (c + 2 e k - e m + p)) +
(E^((-c + 2 e k - e m + p) z) (-c + 2 e k - e m - p)
Hypergeometric2F1[(-c + 2 e k - e m + p)/d, -\[Beta],
(-c + d + 2 e k - e m + p)/d, -((b E^(d z))/a)] +
E^((c - 2 e k + e m + p) z) (-c + 2 e k - e m + p)
Hypergeometric2F1[(c - 2 e k + e m + p)/d, -\[Beta],
(c + d - 2 e k + e m + p)/d, -((b E^(d z))/a)])/
((-c + 2 e k - e m - p) (-c + 2 e k - e m + p))) Sin[(m Pi)/2]),
{k, 0, Floor[(1/2) (-1 + m)]}])/(1 + (b E^(d z))/a)^\[Beta] /;
Element[m, Integers] && m > 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["p", " ", "z"]]], SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["d", " ", "z"]]]]]]], ")"]], "\[Beta]"], SuperscriptBox[RowBox[List["Sinh", "[", RowBox[List["e", " ", "z"]], "]"]], "m"], RowBox[List["Cosh", "[", RowBox[List["c", " ", "z"]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List[FractionBox["1", RowBox[List[RowBox[List["(", RowBox[List["c", "-", "p"]], ")"]], " ", RowBox[List["(", RowBox[List["c", "+", "p"]], ")"]]]]], RowBox[List["(", RowBox[List[SuperscriptBox["\[ImaginaryI]", "m"], " ", SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", "m"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["d", " ", "z"]]]]]]], ")"]], "\[Beta]"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["d", " ", "z"]]]]], "a"]]], ")"]], RowBox[List["-", "\[Beta]"]]], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", FractionBox["m", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "c"]], "+", "p"]], ")"]], " ", "z"]]]]], " ", RowBox[List["(", RowBox[List["c", "+", "p"]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["-", "c"]], "+", "p"]], "d"], ",", RowBox[List["-", "\[Beta]"]], ",", FractionBox[RowBox[List[RowBox[List["-", "c"]], "+", "d", "+", "p"]], "d"], ",", RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["d", " ", "z"]]]]], "a"]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["c", "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List["c", "-", "p"]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["c", "+", "p"]], "d"], ",", RowBox[List["-", "\[Beta]"]], ",", FractionBox[RowBox[List["c", "+", "d", "+", "p"]], "d"], ",", RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["d", " ", "z"]]]]], "a"]]]]], "]"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["m", ",", "2"]], "]"]]]], ")"]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["\[ImaginaryI]", "m"], " ", SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", "m"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["d", " ", "z"]]]]]]], ")"]], "\[Beta]"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["d", " ", "z"]]]]], "a"]]], ")"]], RowBox[List["-", "\[Beta]"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Cos", "[", FractionBox[RowBox[List["m", " ", "\[Pi]"]], "2"], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["c", "+", RowBox[List["2", " ", "e", " ", "k"]], "-", RowBox[List["e", " ", "m"]], "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List["c", "+", RowBox[List["2", " ", "e", " ", "k"]], "-", RowBox[List["e", " ", "m"]], "-", "p"]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["c", "+", RowBox[List["2", " ", "e", " ", "k"]], "-", RowBox[List["e", " ", "m"]], "+", "p"]], "d"], ",", RowBox[List["-", "\[Beta]"]], ",", FractionBox[RowBox[List["c", "+", "d", "+", RowBox[List["2", " ", "e", " ", "k"]], "-", RowBox[List["e", " ", "m"]], "+", "p"]], "d"], ",", RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["d", " ", "z"]]]]], "a"]]]]], "]"]]]], "-", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "c"]], "-", RowBox[List["2", " ", "e", " ", "k"]], "+", RowBox[List["e", " ", "m"]], "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List["c", "+", RowBox[List["2", " ", "e", " ", "k"]], "-", RowBox[List["e", " ", "m"]], "+", "p"]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["-", "c"]], "-", RowBox[List["2", " ", "e", " ", "k"]], "+", RowBox[List["e", " ", "m"]], "+", "p"]], "d"], ",", RowBox[List["-", "\[Beta]"]], ",", FractionBox[RowBox[List[RowBox[List["-", "c"]], "+", "d", "-", RowBox[List["2", " ", "e", " ", "k"]], "+", RowBox[List["e", " ", "m"]], "+", "p"]], "d"], ",", RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["d", " ", "z"]]]]], "a"]]]]], "]"]]]]]], ")"]], "/", RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["c", "+", RowBox[List["2", " ", "e", " ", "k"]], "-", RowBox[List["e", " ", "m"]], "-", "p"]], ")"]], " ", RowBox[List["(", RowBox[List["c", "+", RowBox[List["2", " ", "e", " ", "k"]], "-", RowBox[List["e", " ", "m"]], "+", "p"]], ")"]]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "c"]], "+", RowBox[List["2", " ", "e", " ", "k"]], "-", RowBox[List["e", " ", "m"]], "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "c"]], "+", RowBox[List["2", " ", "e", " ", "k"]], "-", RowBox[List["e", " ", "m"]], "-", "p"]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["-", "c"]], "+", RowBox[List["2", " ", "e", " ", "k"]], "-", RowBox[List["e", " ", "m"]], "+", "p"]], "d"], ",", RowBox[List["-", "\[Beta]"]], ",", FractionBox[RowBox[List[RowBox[List["-", "c"]], "+", "d", "+", RowBox[List["2", " ", "e", " ", "k"]], "-", RowBox[List["e", " ", "m"]], "+", "p"]], "d"], ",", RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["d", " ", "z"]]]]], "a"]]]]], "]"]]]], "-", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["c", "-", RowBox[List["2", " ", "e", " ", "k"]], "+", RowBox[List["e", " ", "m"]], "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "c"]], "+", RowBox[List["2", " ", "e", " ", "k"]], "-", RowBox[List["e", " ", "m"]], "+", "p"]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["c", "-", RowBox[List["2", " ", "e", " ", "k"]], "+", RowBox[List["e", " ", "m"]], "+", "p"]], "d"], ",", RowBox[List["-", "\[Beta]"]], ",", FractionBox[RowBox[List["c", "+", "d", "-", RowBox[List["2", " ", "e", " ", "k"]], "+", RowBox[List["e", " ", "m"]], "+", "p"]], "d"], ",", RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["d", " ", "z"]]]]], "a"]]]]], "]"]]]]]], ")"]], "/", RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "c"]], "+", RowBox[List["2", " ", "e", " ", "k"]], "-", RowBox[List["e", " ", "m"]], "-", "p"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "c"]], "+", RowBox[List["2", " ", "e", " ", "k"]], "-", RowBox[List["e", " ", "m"]], "+", "p"]], ")"]]]], ")"]]]]]], ")"]]]], "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["c", "+", RowBox[List["2", " ", "e", " ", "k"]], "-", RowBox[List["e", " ", "m"]], "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List["c", "+", RowBox[List["2", " ", "e", " ", "k"]], "-", RowBox[List["e", " ", "m"]], "-", "p"]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["c", "+", RowBox[List["2", " ", "e", " ", "k"]], "-", RowBox[List["e", " ", "m"]], "+", "p"]], "d"], ",", RowBox[List["-", "\[Beta]"]], ",", FractionBox[RowBox[List["c", "+", "d", "+", RowBox[List["2", " ", "e", " ", "k"]], "-", RowBox[List["e", " ", "m"]], "+", "p"]], "d"], ",", RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["d", " ", "z"]]]]], "a"]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "c"]], "-", RowBox[List["2", " ", "e", " ", "k"]], "+", RowBox[List["e", " ", "m"]], "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List["c", "+", RowBox[List["2", " ", "e", " ", "k"]], "-", RowBox[List["e", " ", "m"]], "+", "p"]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["-", "c"]], "-", RowBox[List["2", " ", "e", " ", "k"]], "+", RowBox[List["e", " ", "m"]], "+", "p"]], "d"], ",", RowBox[List["-", "\[Beta]"]], ",", FractionBox[RowBox[List[RowBox[List["-", "c"]], "+", "d", "-", RowBox[List["2", " ", "e", " ", "k"]], "+", RowBox[List["e", " ", "m"]], "+", "p"]], "d"], ",", RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["d", " ", "z"]]]]], "a"]]]]], "]"]]]]]], ")"]], "/", RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["c", "+", RowBox[List["2", " ", "e", " ", "k"]], "-", RowBox[List["e", " ", "m"]], "-", "p"]], ")"]], " ", RowBox[List["(", RowBox[List["c", "+", RowBox[List["2", " ", "e", " ", "k"]], "-", RowBox[List["e", " ", "m"]], "+", "p"]], ")"]]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "c"]], "+", RowBox[List["2", " ", "e", " ", "k"]], "-", RowBox[List["e", " ", "m"]], "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "c"]], "+", RowBox[List["2", " ", "e", " ", "k"]], "-", RowBox[List["e", " ", "m"]], "-", "p"]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["-", "c"]], "+", RowBox[List["2", " ", "e", " ", "k"]], "-", RowBox[List["e", " ", "m"]], "+", "p"]], "d"], ",", RowBox[List["-", "\[Beta]"]], ",", FractionBox[RowBox[List[RowBox[List["-", "c"]], "+", "d", "+", RowBox[List["2", " ", "e", " ", "k"]], "-", RowBox[List["e", " ", "m"]], "+", "p"]], "d"], ",", RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["d", " ", "z"]]]]], "a"]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["c", "-", RowBox[List["2", " ", "e", " ", "k"]], "+", RowBox[List["e", " ", "m"]], "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "c"]], "+", RowBox[List["2", " ", "e", " ", "k"]], "-", RowBox[List["e", " ", "m"]], "+", "p"]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["c", "-", RowBox[List["2", " ", "e", " ", "k"]], "+", RowBox[List["e", " ", "m"]], "+", "p"]], "d"], ",", RowBox[List["-", "\[Beta]"]], ",", FractionBox[RowBox[List["c", "+", "d", "-", RowBox[List["2", " ", "e", " ", "k"]], "+", RowBox[List["e", " ", "m"]], "+", "p"]], "d"], ",", RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["d", " ", "z"]]]]], "a"]]]]], "]"]]]]]], ")"]], "/", RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "c"]], "+", RowBox[List["2", " ", "e", " ", "k"]], "-", RowBox[List["e", " ", "m"]], "-", "p"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "c"]], "+", RowBox[List["2", " ", "e", " ", "k"]], "-", RowBox[List["e", " ", "m"]], "+", "p"]], ")"]]]], ")"]]]]]], ")"]], " ", RowBox[List["Sin", "[", FractionBox[RowBox[List["m", " ", "\[Pi]"]], "2"], "]"]]]]]], ")"]]]]]]]]]]]], "/;", RowBox[List[RowBox[List["m", "\[Element]", "Integers"]], "\[And]", RowBox[List["m", ">", "0"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mo> ∫ </mo> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mi> p </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mi> β </mi> </msup> <mo> ⁢ </mo> <mrow> <msup> <mi> sinh </mi> <mi> m </mi> </msup> <mo> ( </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> cosh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> - </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> ⅈ </mi> <mi> m </mi> </msup> <mo> ⁢ </mo> <msup> <mn> 2 </mn> <mrow> <mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mi> β </mi> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mi> a </mi> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> β </mi> </mrow> </msup> <mo> ⁢ </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> m </mi> </mtd> </mtr> <mtr> <mtd> <mfrac> <mi> m </mi> <mn> 2 </mn> </mfrac> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["m", Identity]], List[TagBox[FractionBox["m", "2"], Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> - </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mi> c </mi> <mo> + </mo> <mi> p </mi> </mrow> <mi> d </mi> </mfrac> <mo> , </mo> <mrow> <mo> - </mo> <mi> β </mi> </mrow> </mrow> <mo> ; </mo> <mfrac> <mrow> <mi> c </mi> <mo> + </mo> <mi> d </mi> <mo> + </mo> <mi> p </mi> </mrow> <mi> d </mi> </mfrac> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> </mrow> <mi> a </mi> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List["c", "+", "p"]], "d"], Hypergeometric2F1], ",", TagBox[RowBox[List["-", "\[Beta]"]], Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[FractionBox[RowBox[List["c", "+", "d", "+", "p"]], "d"], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["d", " ", "z"]]]]], "a"]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> </mrow> <mo> - </mo> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> - </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mi> p </mi> <mo> - </mo> <mi> c </mi> </mrow> <mi> d </mi> </mfrac> <mo> , </mo> <mrow> <mo> - </mo> <mi> β </mi> </mrow> </mrow> <mo> ; </mo> <mfrac> <mrow> <mrow> <mo> - </mo> <mi> c </mi> </mrow> <mo> + </mo> <mi> d </mi> <mo> + </mo> <mi> p </mi> </mrow> <mi> d </mi> </mfrac> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> </mrow> <mi> a </mi> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List["p", "-", "c"]], "d"], Hypergeometric2F1], ",", TagBox[RowBox[List["-", "\[Beta]"]], Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[FractionBox[RowBox[List[RowBox[List["-", "c"]], "+", "d", "+", "p"]], "d"], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["d", " ", "z"]]]]], "a"]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <semantics> <mrow> <mi> m </mi> <mo> ⁢ </mo> <mi> mod </mi> <mo> ⁢ </mo> <mn> 2 </mn> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <rem /> <ci> $CellContext`m </ci> <cn type='integer'> 2 </cn> </apply> </annotation-xml> </semantics> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mi> ⅈ </mi> <mi> m </mi> </msup> <mo> ⁢ </mo> <msup> <mn> 2 </mn> <mrow> <mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mi> β </mi> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mi> a </mi> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> β </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mo> ⌊ </mo> <mfrac> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> ⌋ </mo> </mrow> </munderover> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> ⁢ </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> m </mi> </mtd> </mtr> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["m", Identity]], List[TagBox["k", Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> - </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mi> c </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mi> d </mi> </mfrac> <mo> , </mo> <mrow> <mo> - </mo> <mi> β </mi> </mrow> </mrow> <mo> ; </mo> <mfrac> <mrow> <mi> c </mi> <mo> + </mo> <mi> d </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mi> d </mi> </mfrac> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> </mrow> <mi> a </mi> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List["c", "+", RowBox[List["2", " ", "e", " ", "k"]], "-", RowBox[List["e", " ", "m"]], "+", "p"]], "d"], Hypergeometric2F1], ",", TagBox[RowBox[List["-", "\[Beta]"]], Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[FractionBox[RowBox[List["c", "+", "d", "+", RowBox[List["2", " ", "e", " ", "k"]], "-", RowBox[List["e", " ", "m"]], "+", "p"]], "d"], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["d", " ", "z"]]]]], "a"]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> </mrow> <mo> - </mo> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> c </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mrow> <mo> - </mo> <mi> c </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mi> d </mi> </mfrac> <mo> , </mo> <mrow> <mo> - </mo> <mi> β </mi> </mrow> </mrow> <mo> ; </mo> <mfrac> <mrow> <mrow> <mo> - </mo> <mi> c </mi> </mrow> <mo> + </mo> <mi> d </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mi> d </mi> </mfrac> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> </mrow> <mi> a </mi> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List[RowBox[List["-", "c"]], "-", RowBox[List["2", " ", "e", " ", "k"]], "+", RowBox[List["e", " ", "m"]], "+", "p"]], "d"], Hypergeometric2F1], ",", TagBox[RowBox[List["-", "\[Beta]"]], Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[FractionBox[RowBox[List[RowBox[List["-", "c"]], "+", "d", "-", RowBox[List["2", " ", "e", " ", "k"]], "+", RowBox[List["e", " ", "m"]], "+", "p"]], "d"], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["d", " ", "z"]]]]], "a"]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> - </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> c </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> c </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> - </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mrow> <mo> - </mo> <mi> c </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mi> d </mi> </mfrac> <mo> , </mo> <mrow> <mo> - </mo> <mi> β </mi> </mrow> </mrow> <mo> ; </mo> <mfrac> <mrow> <mrow> <mo> - </mo> <mi> c </mi> </mrow> <mo> + </mo> <mi> d </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mi> d </mi> </mfrac> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> </mrow> <mi> a </mi> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List[RowBox[List["-", "c"]], "+", RowBox[List["2", " ", "e", " ", "k"]], "-", RowBox[List["e", " ", "m"]], "+", "p"]], "d"], Hypergeometric2F1], ",", TagBox[RowBox[List["-", "\[Beta]"]], Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[FractionBox[RowBox[List[RowBox[List["-", "c"]], "+", "d", "+", RowBox[List["2", " ", "e", " ", "k"]], "-", RowBox[List["e", " ", "m"]], "+", "p"]], "d"], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["d", " ", "z"]]]]], "a"]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> </mrow> <mo> - </mo> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> c </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mi> c </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mi> d </mi> </mfrac> <mo> , </mo> <mrow> <mo> - </mo> <mi> β </mi> </mrow> </mrow> <mo> ; </mo> <mfrac> <mrow> <mi> c </mi> <mo> + </mo> <mi> d </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mi> d </mi> </mfrac> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> </mrow> <mi> a </mi> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List["c", "-", RowBox[List["2", " ", "e", " ", "k"]], "+", RowBox[List["e", " ", "m"]], "+", "p"]], "d"], Hypergeometric2F1], ",", TagBox[RowBox[List["-", "\[Beta]"]], Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[FractionBox[RowBox[List["c", "+", "d", "-", RowBox[List["2", " ", "e", " ", "k"]], "+", RowBox[List["e", " ", "m"]], "+", "p"]], "d"], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["d", " ", "z"]]]]], "a"]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> c </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> - </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> c </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mi> m </mi> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> c </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mrow> <mo> - </mo> <mi> c </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mi> d </mi> </mfrac> <mo> , </mo> <mrow> <mo> - </mo> <mi> β </mi> </mrow> </mrow> <mo> ; </mo> <mfrac> <mrow> <mrow> <mo> - </mo> <mi> c </mi> </mrow> <mo> + </mo> <mi> d </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mi> d </mi> </mfrac> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> </mrow> <mi> a </mi> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List[RowBox[List["-", "c"]], "-", RowBox[List["2", " ", "e", " ", "k"]], "+", RowBox[List["e", " ", "m"]], "+", "p"]], "d"], Hypergeometric2F1], ",", TagBox[RowBox[List["-", "\[Beta]"]], Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[FractionBox[RowBox[List[RowBox[List["-", "c"]], "+", "d", "-", RowBox[List["2", " ", "e", " ", "k"]], "+", RowBox[List["e", " ", "m"]], "+", "p"]], "d"], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["d", " ", "z"]]]]], "a"]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> - </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mi> c </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mi> d </mi> </mfrac> <mo> , </mo> <mrow> <mo> - </mo> <mi> β </mi> </mrow> </mrow> <mo> ; </mo> <mfrac> <mrow> <mi> c </mi> <mo> + </mo> <mi> d </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mi> d </mi> </mfrac> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> </mrow> <mi> a </mi> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List["c", "+", RowBox[List["2", " ", "e", " ", "k"]], "-", RowBox[List["e", " ", "m"]], "+", "p"]], "d"], Hypergeometric2F1], ",", TagBox[RowBox[List["-", "\[Beta]"]], Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[FractionBox[RowBox[List["c", "+", "d", "+", RowBox[List["2", " ", "e", " ", "k"]], "-", RowBox[List["e", " ", "m"]], "+", "p"]], "d"], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["d", " ", "z"]]]]], "a"]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> - </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> c </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mi> c </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mi> d </mi> </mfrac> <mo> , </mo> <mrow> <mo> - </mo> <mi> β </mi> </mrow> </mrow> <mo> ; </mo> <mfrac> <mrow> <mi> c </mi> <mo> + </mo> <mi> d </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mi> d </mi> </mfrac> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> </mrow> <mi> a </mi> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List["c", "-", RowBox[List["2", " ", "e", " ", "k"]], "+", RowBox[List["e", " ", "m"]], "+", "p"]], "d"], Hypergeometric2F1], ",", TagBox[RowBox[List["-", "\[Beta]"]], Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[FractionBox[RowBox[List["c", "+", "d", "-", RowBox[List["2", " ", "e", " ", "k"]], "+", RowBox[List["e", " ", "m"]], "+", "p"]], "d"], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["d", " ", "z"]]]]], "a"]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> c </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> c </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> - </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mrow> <mo> - </mo> <mi> c </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mi> d </mi> </mfrac> <mo> , </mo> <mrow> <mo> - </mo> <mi> β </mi> </mrow> </mrow> <mo> ; </mo> <mfrac> <mrow> <mrow> <mo> - </mo> <mi> c </mi> </mrow> <mo> + </mo> <mi> d </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mi> d </mi> </mfrac> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> </mrow> <mi> a </mi> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List[RowBox[List["-", "c"]], "+", RowBox[List["2", " ", "e", " ", "k"]], "-", RowBox[List["e", " ", "m"]], "+", "p"]], "d"], Hypergeometric2F1], ",", TagBox[RowBox[List["-", "\[Beta]"]], Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[FractionBox[RowBox[List[RowBox[List["-", "c"]], "+", "d", "+", RowBox[List["2", " ", "e", " ", "k"]], "-", RowBox[List["e", " ", "m"]], "+", "p"]], "d"], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["d", " ", "z"]]]]], "a"]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> c </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> - </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> c </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mi> m </mi> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> m </mi> <mo> ∈ </mo> <msup> <mi> ℕ </mi> <mo> + </mo> </msup> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <ci> p </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <ci> d </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <ci> β </ci> </apply> <apply> <power /> <apply> <sinh /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> <ci> m </ci> </apply> <apply> <cosh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> </apply> <apply> <plus /> <ci> c </ci> <ci> p </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <imaginaryi /> <ci> m </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <ci> d </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <ci> β </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <ci> d </ci> <ci> z </ci> </apply> </apply> <ci> b </ci> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> β </ci> </apply> </apply> <apply> <ci> Binomial </ci> <ci> m </ci> <apply> <times /> <ci> m </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <plus /> <ci> c </ci> <ci> p </ci> </apply> <ci> z </ci> </apply> </apply> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> </apply> <apply> <ci> Hypergeometric2F1 </ci> <apply> <times /> <apply> <plus /> <ci> c </ci> <ci> p </ci> </apply> <apply> <power /> <ci> d </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> β </ci> </apply> <apply> <times /> <apply> <plus /> <ci> c </ci> <ci> d </ci> <ci> p </ci> </apply> <apply> <power /> <ci> d </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <ci> d </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> <ci> z </ci> </apply> </apply> <apply> <plus /> <ci> c </ci> <ci> p </ci> </apply> <apply> <ci> Hypergeometric2F1 </ci> <apply> <times /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> <apply> <power /> <ci> d </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> β </ci> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <ci> d </ci> <ci> p </ci> </apply> <apply> <power /> <ci> d </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <ci> d </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <rem /> <ci> $CellContext`m </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <imaginaryi /> <ci> m </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <ci> d </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <ci> β </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <ci> d </ci> <ci> z </ci> </apply> </apply> <ci> b </ci> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> β </ci> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <floor /> <apply> <times /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <ci> Binomial </ci> <ci> m </ci> <ci> k </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> e </ci> <ci> m </ci> </apply> </apply> <ci> p </ci> </apply> <ci> z </ci> </apply> </apply> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> e </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> </apply> <apply> <ci> Hypergeometric2F1 </ci> <apply> <times /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> e </ci> <ci> m </ci> </apply> </apply> <ci> p </ci> </apply> <apply> <power /> <ci> d </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> β </ci> </apply> <apply> <times /> <apply> <plus /> <ci> c </ci> <ci> d </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> e </ci> <ci> m </ci> </apply> </apply> <ci> p </ci> </apply> <apply> <power /> <ci> d </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <ci> d </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> k </ci> </apply> </apply> <apply> <times /> <ci> e </ci> <ci> m </ci> </apply> <ci> p </ci> </apply> <ci> z </ci> </apply> </apply> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> e </ci> <ci> m </ci> </apply> </apply> <ci> p </ci> </apply> <apply> <ci> Hypergeometric2F1 </ci> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> k </ci> </apply> </apply> <apply> <times /> <ci> e </ci> <ci> m </ci> </apply> <ci> p </ci> </apply> <apply> <power /> <ci> d </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> β </ci> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> k </ci> </apply> </apply> <apply> <times /> <ci> e </ci> <ci> m </ci> </apply> <ci> p </ci> </apply> <apply> <power /> <ci> d </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <ci> d </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> e </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> </apply> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> e </ci> <ci> m </ci> </apply> </apply> <ci> p </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> e </ci> <ci> m </ci> </apply> </apply> <ci> p </ci> </apply> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> e </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> </apply> <apply> <ci> Hypergeometric2F1 </ci> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> e </ci> <ci> m </ci> </apply> </apply> <ci> p </ci> </apply> <apply> <power /> <ci> d </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> β </ci> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <ci> d </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> e </ci> <ci> m </ci> </apply> </apply> <ci> p </ci> </apply> <apply> <power /> <ci> d </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <ci> d </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> k </ci> </apply> </apply> <apply> <times /> <ci> e </ci> <ci> m </ci> </apply> <ci> p </ci> </apply> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> e </ci> <ci> m </ci> </apply> </apply> <ci> p </ci> </apply> <apply> <ci> Hypergeometric2F1 </ci> <apply> <times /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> k </ci> </apply> </apply> <apply> <times /> <ci> e </ci> <ci> m </ci> </apply> <ci> p </ci> </apply> <apply> <power /> <ci> d </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> β </ci> </apply> <apply> <times /> <apply> <plus /> <ci> c </ci> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> k </ci> </apply> </apply> <apply> <times /> <ci> e </ci> <ci> m </ci> </apply> <ci> p </ci> </apply> <apply> <power /> <ci> d </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <ci> d </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> e </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> e </ci> <ci> m </ci> </apply> </apply> <ci> p </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <cos /> <apply> <times /> <ci> m </ci> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <imaginaryi /> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> k </ci> </apply> </apply> <apply> <times /> <ci> e </ci> <ci> m </ci> </apply> <ci> p </ci> </apply> <ci> z </ci> </apply> </apply> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> e </ci> <ci> m </ci> </apply> </apply> <ci> p </ci> </apply> <apply> <ci> Hypergeometric2F1 </ci> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> k </ci> </apply> </apply> <apply> <times /> <ci> e </ci> <ci> m </ci> </apply> <ci> p </ci> </apply> <apply> <power /> <ci> d </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> β </ci> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> k </ci> </apply> </apply> <apply> <times /> <ci> e </ci> <ci> m </ci> </apply> <ci> p </ci> </apply> <apply> <power /> <ci> d </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <ci> d </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> e </ci> <ci> m </ci> </apply> </apply> <ci> p </ci> </apply> <ci> z </ci> </apply> </apply> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> e </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> </apply> <apply> <ci> Hypergeometric2F1 </ci> <apply> <times /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> e </ci> <ci> m </ci> </apply> </apply> <ci> p </ci> </apply> <apply> <power /> <ci> d </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> β </ci> </apply> <apply> <times /> <apply> <plus /> <ci> c </ci> <ci> d </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> e </ci> <ci> m </ci> </apply> </apply> <ci> p </ci> </apply> <apply> <power /> <ci> d </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <ci> d </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> e </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> </apply> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> e </ci> <ci> m </ci> </apply> </apply> <ci> p </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> k </ci> </apply> </apply> <apply> <times /> <ci> e </ci> <ci> m </ci> </apply> <ci> p </ci> </apply> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> e </ci> <ci> m </ci> </apply> </apply> <ci> p </ci> </apply> <apply> <ci> Hypergeometric2F1 </ci> <apply> <times /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> k </ci> </apply> </apply> <apply> <times /> <ci> e </ci> <ci> m </ci> </apply> <ci> p </ci> </apply> <apply> <power /> <ci> d </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> β </ci> </apply> <apply> <times /> <apply> <plus /> <ci> c </ci> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> k </ci> </apply> </apply> <apply> <times /> <ci> e </ci> <ci> m </ci> </apply> <ci> p </ci> </apply> <apply> <power /> <ci> d </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <ci> d </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> e </ci> <ci> m </ci> </apply> </apply> <ci> p </ci> </apply> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> e </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> </apply> <apply> <ci> Hypergeometric2F1 </ci> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> e </ci> <ci> m </ci> </apply> </apply> <ci> p </ci> </apply> <apply> <power /> <ci> d </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> β </ci> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <ci> d </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> e </ci> <ci> m </ci> </apply> </apply> <ci> p </ci> </apply> <apply> <power /> <ci> d </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <ci> d </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> e </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> e </ci> <ci> m </ci> </apply> </apply> <ci> p </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <sin /> <apply> <times /> <ci> m </ci> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <ci> m </ci> <apply> <ci> SuperPlus </ci> <ci> ℕ </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["p_", " ", "z_"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a_", "+", RowBox[List["b_", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["d_", " ", "z_"]]]]]]], ")"]], "\[Beta]_"], " ", SuperscriptBox[RowBox[List["Sinh", "[", RowBox[List["e_", " ", "z_"]], "]"]], "m_"], " ", RowBox[List["Cosh", "[", RowBox[List["c_", " ", "z_"]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[ImaginaryI]", "m"], " ", SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", "m"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["d", " ", "z"]]]]]]], ")"]], "\[Beta]"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["d", " ", "z"]]]]], "a"]]], ")"]], RowBox[List["-", "\[Beta]"]]], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", FractionBox["m", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "c"]], "+", "p"]], ")"]], " ", "z"]]]]], " ", RowBox[List["(", RowBox[List["c", "+", "p"]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["-", "c"]], "+", "p"]], "d"], ",", RowBox[List["-", "\[Beta]"]], ",", FractionBox[RowBox[List[RowBox[List["-", "c"]], "+", "d", "+", "p"]], "d"], ",", RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["d", " ", "z"]]]]], "a"]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["c", "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List["c", "-", "p"]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["c", "+", "p"]], "d"], ",", RowBox[List["-", "\[Beta]"]], ",", FractionBox[RowBox[List["c", "+", "d", "+", "p"]], "d"], ",", RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["d", " ", "z"]]]]], "a"]]]]], "]"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["m", ",", "2"]], "]"]]]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List["c", "-", "p"]], ")"]], " ", RowBox[List["(", RowBox[List["c", "+", "p"]], ")"]]]]], "+", RowBox[List[SuperscriptBox["\[ImaginaryI]", "m"], " ", SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", "m"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["d", " ", "z"]]]]]]], ")"]], "\[Beta]"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["d", " ", "z"]]]]], "a"]]], ")"]], RowBox[List["-", "\[Beta]"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Cos", "[", FractionBox[RowBox[List["m", " ", "\[Pi]"]], "2"], "]"]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["c", "+", RowBox[List["2", " ", "e", " ", "k"]], "-", RowBox[List["e", " ", "m"]], "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List["c", "+", RowBox[List["2", " ", "e", " ", "k"]], "-", RowBox[List["e", " ", "m"]], "-", "p"]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["c", "+", RowBox[List["2", " ", "e", " ", "k"]], "-", RowBox[List["e", " ", "m"]], "+", "p"]], "d"], ",", RowBox[List["-", "\[Beta]"]], ",", FractionBox[RowBox[List["c", "+", "d", "+", RowBox[List["2", " ", "e", " ", "k"]], "-", RowBox[List["e", " ", "m"]], "+", "p"]], "d"], ",", RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["d", " ", "z"]]]]], "a"]]]]], "]"]]]], "-", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "c"]], "-", RowBox[List["2", " ", "e", " ", "k"]], "+", RowBox[List["e", " ", "m"]], "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List["c", "+", RowBox[List["2", " ", "e", " ", "k"]], "-", RowBox[List["e", " ", "m"]], "+", "p"]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["-", "c"]], "-", RowBox[List["2", " ", "e", " ", "k"]], "+", RowBox[List["e", " ", "m"]], "+", "p"]], "d"], ",", RowBox[List["-", "\[Beta]"]], ",", FractionBox[RowBox[List[RowBox[List["-", "c"]], "+", "d", "-", RowBox[List["2", " ", "e", " ", "k"]], "+", RowBox[List["e", " ", "m"]], "+", "p"]], "d"], ",", RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["d", " ", "z"]]]]], "a"]]]]], "]"]]]]]], RowBox[List[RowBox[List["(", RowBox[List["c", "+", RowBox[List["2", " ", "e", " ", "k"]], "-", RowBox[List["e", " ", "m"]], "-", "p"]], ")"]], " ", RowBox[List["(", RowBox[List["c", "+", RowBox[List["2", " ", "e", " ", "k"]], "-", RowBox[List["e", " ", "m"]], "+", "p"]], ")"]]]]], "+", FractionBox[RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "c"]], "+", RowBox[List["2", " ", "e", " ", "k"]], "-", RowBox[List["e", " ", "m"]], "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "c"]], "+", RowBox[List["2", " ", "e", " ", "k"]], "-", RowBox[List["e", " ", "m"]], "-", "p"]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["-", "c"]], "+", RowBox[List["2", " ", "e", " ", "k"]], "-", RowBox[List["e", " ", "m"]], "+", "p"]], "d"], ",", RowBox[List["-", "\[Beta]"]], ",", FractionBox[RowBox[List[RowBox[List["-", "c"]], "+", "d", "+", RowBox[List["2", " ", "e", " ", "k"]], "-", RowBox[List["e", " ", "m"]], "+", "p"]], "d"], ",", RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["d", " ", "z"]]]]], "a"]]]]], "]"]]]], "-", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["c", "-", RowBox[List["2", " ", "e", " ", "k"]], "+", RowBox[List["e", " ", "m"]], "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "c"]], "+", RowBox[List["2", " ", "e", " ", "k"]], "-", RowBox[List["e", " ", "m"]], "+", "p"]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["c", "-", RowBox[List["2", " ", "e", " ", "k"]], "+", RowBox[List["e", " ", "m"]], "+", "p"]], "d"], ",", RowBox[List["-", "\[Beta]"]], ",", FractionBox[RowBox[List["c", "+", "d", "-", RowBox[List["2", " ", "e", " ", "k"]], "+", RowBox[List["e", " ", "m"]], "+", "p"]], "d"], ",", RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["d", " ", "z"]]]]], "a"]]]]], "]"]]]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "c"]], "+", RowBox[List["2", " ", "e", " ", "k"]], "-", RowBox[List["e", " ", "m"]], "-", "p"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "c"]], "+", RowBox[List["2", " ", "e", " ", "k"]], "-", RowBox[List["e", " ", "m"]], "+", "p"]], ")"]]]]]]], ")"]]]], "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["c", "+", RowBox[List["2", " ", "e", " ", "k"]], "-", RowBox[List["e", " ", "m"]], "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List["c", "+", RowBox[List["2", " ", "e", " ", "k"]], "-", RowBox[List["e", " ", "m"]], "-", "p"]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["c", "+", RowBox[List["2", " ", "e", " ", "k"]], "-", RowBox[List["e", " ", "m"]], "+", "p"]], "d"], ",", RowBox[List["-", "\[Beta]"]], ",", FractionBox[RowBox[List["c", "+", "d", "+", RowBox[List["2", " ", "e", " ", "k"]], "-", RowBox[List["e", " ", "m"]], "+", "p"]], "d"], ",", RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["d", " ", "z"]]]]], "a"]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "c"]], "-", RowBox[List["2", " ", "e", " ", "k"]], "+", RowBox[List["e", " ", "m"]], "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List["c", "+", RowBox[List["2", " ", "e", " ", "k"]], "-", RowBox[List["e", " ", "m"]], "+", "p"]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["-", "c"]], "-", RowBox[List["2", " ", "e", " ", "k"]], "+", RowBox[List["e", " ", "m"]], "+", "p"]], "d"], ",", RowBox[List["-", "\[Beta]"]], ",", FractionBox[RowBox[List[RowBox[List["-", "c"]], "+", "d", "-", RowBox[List["2", " ", "e", " ", "k"]], "+", RowBox[List["e", " ", "m"]], "+", "p"]], "d"], ",", RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["d", " ", "z"]]]]], "a"]]]]], "]"]]]]]], RowBox[List[RowBox[List["(", RowBox[List["c", "+", RowBox[List["2", " ", "e", " ", "k"]], "-", RowBox[List["e", " ", "m"]], "-", "p"]], ")"]], " ", RowBox[List["(", RowBox[List["c", "+", RowBox[List["2", " ", "e", " ", "k"]], "-", RowBox[List["e", " ", "m"]], "+", "p"]], ")"]]]]], "+", FractionBox[RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "c"]], "+", RowBox[List["2", " ", "e", " ", "k"]], "-", RowBox[List["e", " ", "m"]], "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "c"]], "+", RowBox[List["2", " ", "e", " ", "k"]], "-", RowBox[List["e", " ", "m"]], "-", "p"]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["-", "c"]], "+", RowBox[List["2", " ", "e", " ", "k"]], "-", RowBox[List["e", " ", "m"]], "+", "p"]], "d"], ",", RowBox[List["-", "\[Beta]"]], ",", FractionBox[RowBox[List[RowBox[List["-", "c"]], "+", "d", "+", RowBox[List["2", " ", "e", " ", "k"]], "-", RowBox[List["e", " ", "m"]], "+", "p"]], "d"], ",", RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["d", " ", "z"]]]]], "a"]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["c", "-", RowBox[List["2", " ", "e", " ", "k"]], "+", RowBox[List["e", " ", "m"]], "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "c"]], "+", RowBox[List["2", " ", "e", " ", "k"]], "-", RowBox[List["e", " ", "m"]], "+", "p"]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["c", "-", RowBox[List["2", " ", "e", " ", "k"]], "+", RowBox[List["e", " ", "m"]], "+", "p"]], "d"], ",", RowBox[List["-", "\[Beta]"]], ",", FractionBox[RowBox[List["c", "+", "d", "-", RowBox[List["2", " ", "e", " ", "k"]], "+", RowBox[List["e", " ", "m"]], "+", "p"]], "d"], ",", RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["d", " ", "z"]]]]], "a"]]]]], "]"]]]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "c"]], "+", RowBox[List["2", " ", "e", " ", "k"]], "-", RowBox[List["e", " ", "m"]], "-", "p"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "c"]], "+", RowBox[List["2", " ", "e", " ", "k"]], "-", RowBox[List["e", " ", "m"]], "+", "p"]], ")"]]]]]]], ")"]], " ", RowBox[List["Sin", "[", FractionBox[RowBox[List["m", " ", "\[Pi]"]], "2"], "]"]]]]]], ")"]]]]]]]]]], "/;", RowBox[List[RowBox[List["m", "\[Element]", "Integers"]], "&&", RowBox[List["m", ">", "0"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|