Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Cosh






Mathematica Notation

Traditional Notation









Elementary Functions > Cosh[z] > Integration > Indefinite integration > Involving functions of the direct function > Involving rational functions of the direct function > Involving cosh(e z)cosh(d z)(a+b cosh(c z))-n





http://functions.wolfram.com/01.20.21.2292.01









  


  










Input Form





Integrate[(Cosh[e z] Cosh[d z])/(a + b Cosh[c z])^2, z] == (1/4) ((E^((c - d - e) z) (a (a + Sqrt[a^2 - b^2]) Hypergeometric2F1[ (c - d - e)/c, 1, 2 + (-d - e)/c, (b E^(c z))/ (-a + Sqrt[a^2 - b^2])] + a (-a + Sqrt[a^2 - b^2]) Hypergeometric2F1[(c - d - e)/c, 1, 2 + (-d - e)/c, -((b E^(c z))/(a + Sqrt[a^2 - b^2]))] + (-a^2 + b^2) (Hypergeometric2F1[(c - d - e)/c, 2, 2 + (-d - e)/c, (b E^(c z))/(-a + Sqrt[a^2 - b^2])] - Hypergeometric2F1[ (c - d - e)/c, 2, 2 + (-d - e)/c, -((b E^(c z))/(a + Sqrt[a^2 - b^2]))]) - a Sqrt[a^2 - b^2] (Hypergeometric2F1[(c - d - e)/c, 2, 2 + (-d - e)/c, (b E^(c z))/(-a + Sqrt[a^2 - b^2])] + Hypergeometric2F1[ (c - d - e)/c, 2, 2 + (-d - e)/c, -((b E^(c z))/(a + Sqrt[a^2 - b^2]))])))/ (b (a^2 - b^2)^(3/2) (c - d - e)) + (E^((c + d - e) z) (a (a + Sqrt[a^2 - b^2]) Hypergeometric2F1[ (c + d - e)/c, 1, 2 + (d - e)/c, (b E^(c z))/ (-a + Sqrt[a^2 - b^2])] + a (-a + Sqrt[a^2 - b^2]) Hypergeometric2F1[(c + d - e)/c, 1, 2 + (d - e)/c, -((b E^(c z))/(a + Sqrt[a^2 - b^2]))] + (-a^2 + b^2) (Hypergeometric2F1[(c + d - e)/c, 2, 2 + (d - e)/c, (b E^(c z))/(-a + Sqrt[a^2 - b^2])] - Hypergeometric2F1[ (c + d - e)/c, 2, 2 + (d - e)/c, -((b E^(c z))/(a + Sqrt[a^2 - b^2]))]) - a Sqrt[a^2 - b^2] (Hypergeometric2F1[(c + d - e)/c, 2, 2 + (d - e)/c, (b E^(c z))/(-a + Sqrt[a^2 - b^2])] + Hypergeometric2F1[ (c + d - e)/c, 2, 2 + (d - e)/c, -((b E^(c z))/(a + Sqrt[a^2 - b^2]))])))/ (b (a^2 - b^2)^(3/2) (c + d - e)) + (E^((c - d + e) z) (a (a + Sqrt[a^2 - b^2]) Hypergeometric2F1[ (c - d + e)/c, 1, 2 + (-d + e)/c, (b E^(c z))/ (-a + Sqrt[a^2 - b^2])] + a (-a + Sqrt[a^2 - b^2]) Hypergeometric2F1[(c - d + e)/c, 1, 2 + (-d + e)/c, -((b E^(c z))/(a + Sqrt[a^2 - b^2]))] + (-a^2 + b^2) (Hypergeometric2F1[(c - d + e)/c, 2, 2 + (-d + e)/c, (b E^(c z))/(-a + Sqrt[a^2 - b^2])] - Hypergeometric2F1[ (c - d + e)/c, 2, 2 + (-d + e)/c, -((b E^(c z))/(a + Sqrt[a^2 - b^2]))]) - a Sqrt[a^2 - b^2] (Hypergeometric2F1[(c - d + e)/c, 2, 2 + (-d + e)/c, (b E^(c z))/(-a + Sqrt[a^2 - b^2])] + Hypergeometric2F1[ (c - d + e)/c, 2, 2 + (-d + e)/c, -((b E^(c z))/(a + Sqrt[a^2 - b^2]))])))/ (b (a^2 - b^2)^(3/2) (c - d + e)) + (E^((c + d + e) z) (a (a + Sqrt[a^2 - b^2]) Hypergeometric2F1[ (c + d + e)/c, 1, 2 + (d + e)/c, (b E^(c z))/ (-a + Sqrt[a^2 - b^2])] + a (-a + Sqrt[a^2 - b^2]) Hypergeometric2F1[(c + d + e)/c, 1, 2 + (d + e)/c, -((b E^(c z))/(a + Sqrt[a^2 - b^2]))] + (-a^2 + b^2) (Hypergeometric2F1[(c + d + e)/c, 2, 2 + (d + e)/c, (b E^(c z))/(-a + Sqrt[a^2 - b^2])] - Hypergeometric2F1[ (c + d + e)/c, 2, 2 + (d + e)/c, -((b E^(c z))/(a + Sqrt[a^2 - b^2]))]) - a Sqrt[a^2 - b^2] (Hypergeometric2F1[(c + d + e)/c, 2, 2 + (d + e)/c, (b E^(c z))/(-a + Sqrt[a^2 - b^2])] + Hypergeometric2F1[ (c + d + e)/c, 2, 2 + (d + e)/c, -((b E^(c z))/(a + Sqrt[a^2 - b^2]))])))/ (b (a^2 - b^2)^(3/2) (c + d + e)))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List[RowBox[List["Cosh", "[", RowBox[List["e", " ", "z"]], "]"]], RowBox[List["Cosh", "[", RowBox[List["d", " ", "z"]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Cosh", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], ")"]], "2"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["c", "-", "d", "-", "e"]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["a", " ", RowBox[List["(", RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["c", "-", "d", "-", "e"]], "c"], ",", "1", ",", RowBox[List["2", "+", FractionBox[RowBox[List[RowBox[List["-", "d"]], "-", "e"]], "c"]]], ",", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]], RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]], "]"]]]], "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["c", "-", "d", "-", "e"]], "c"], ",", "1", ",", RowBox[List["2", "+", FractionBox[RowBox[List[RowBox[List["-", "d"]], "-", "e"]], "c"]]], ",", RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", SuperscriptBox["a", "2"]]], "+", SuperscriptBox["b", "2"]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["c", "-", "d", "-", "e"]], "c"], ",", "2", ",", RowBox[List["2", "+", FractionBox[RowBox[List[RowBox[List["-", "d"]], "-", "e"]], "c"]]], ",", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]], RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]], "]"]], "-", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["c", "-", "d", "-", "e"]], "c"], ",", "2", ",", RowBox[List["2", "+", FractionBox[RowBox[List[RowBox[List["-", "d"]], "-", "e"]], "c"]]], ",", RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]]]], "]"]]]], ")"]]]], "-", RowBox[List["a", " ", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["c", "-", "d", "-", "e"]], "c"], ",", "2", ",", RowBox[List["2", "+", FractionBox[RowBox[List[RowBox[List["-", "d"]], "-", "e"]], "c"]]], ",", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]], RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]], "]"]], "+", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["c", "-", "d", "-", "e"]], "c"], ",", "2", ",", RowBox[List["2", "+", FractionBox[RowBox[List[RowBox[List["-", "d"]], "-", "e"]], "c"]]], ",", RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]]]], "]"]]]], ")"]]]]]], ")"]]]], ")"]], "/", RowBox[List["(", RowBox[List["b", " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]], ")"]], RowBox[List["3", "/", "2"]]], " ", RowBox[List["(", RowBox[List["c", "-", "d", "-", "e"]], ")"]]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["c", "+", "d", "-", "e"]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["a", " ", RowBox[List["(", RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["c", "+", "d", "-", "e"]], "c"], ",", "1", ",", RowBox[List["2", "+", FractionBox[RowBox[List["d", "-", "e"]], "c"]]], ",", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]], RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]], "]"]]]], "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["c", "+", "d", "-", "e"]], "c"], ",", "1", ",", RowBox[List["2", "+", FractionBox[RowBox[List["d", "-", "e"]], "c"]]], ",", RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", SuperscriptBox["a", "2"]]], "+", SuperscriptBox["b", "2"]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["c", "+", "d", "-", "e"]], "c"], ",", "2", ",", RowBox[List["2", "+", FractionBox[RowBox[List["d", "-", "e"]], "c"]]], ",", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]], RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]], "]"]], "-", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["c", "+", "d", "-", "e"]], "c"], ",", "2", ",", RowBox[List["2", "+", FractionBox[RowBox[List["d", "-", "e"]], "c"]]], ",", RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]]]], "]"]]]], ")"]]]], "-", RowBox[List["a", " ", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["c", "+", "d", "-", "e"]], "c"], ",", "2", ",", RowBox[List["2", "+", FractionBox[RowBox[List["d", "-", "e"]], "c"]]], ",", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]], RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]], "]"]], "+", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["c", "+", "d", "-", "e"]], "c"], ",", "2", ",", RowBox[List["2", "+", FractionBox[RowBox[List["d", "-", "e"]], "c"]]], ",", RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]]]], "]"]]]], ")"]]]]]], ")"]]]], ")"]], "/", RowBox[List["(", RowBox[List["b", " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]], ")"]], RowBox[List["3", "/", "2"]]], " ", RowBox[List["(", RowBox[List["c", "+", "d", "-", "e"]], ")"]]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["c", "-", "d", "+", "e"]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["a", " ", RowBox[List["(", RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["c", "-", "d", "+", "e"]], "c"], ",", "1", ",", RowBox[List["2", "+", FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "e"]], "c"]]], ",", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]], RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]], "]"]]]], "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["c", "-", "d", "+", "e"]], "c"], ",", "1", ",", RowBox[List["2", "+", FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "e"]], "c"]]], ",", RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", SuperscriptBox["a", "2"]]], "+", SuperscriptBox["b", "2"]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["c", "-", "d", "+", "e"]], "c"], ",", "2", ",", RowBox[List["2", "+", FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "e"]], "c"]]], ",", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]], RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]], "]"]], "-", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["c", "-", "d", "+", "e"]], "c"], ",", "2", ",", RowBox[List["2", "+", FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "e"]], "c"]]], ",", RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]]]], "]"]]]], ")"]]]], "-", RowBox[List["a", " ", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["c", "-", "d", "+", "e"]], "c"], ",", "2", ",", RowBox[List["2", "+", FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "e"]], "c"]]], ",", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]], RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]], "]"]], "+", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["c", "-", "d", "+", "e"]], "c"], ",", "2", ",", RowBox[List["2", "+", FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "e"]], "c"]]], ",", RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]]]], "]"]]]], ")"]]]]]], ")"]]]], ")"]], "/", RowBox[List["(", RowBox[List["b", " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]], ")"]], RowBox[List["3", "/", "2"]]], " ", RowBox[List["(", RowBox[List["c", "-", "d", "+", "e"]], ")"]]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["c", "+", "d", "+", "e"]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["a", " ", RowBox[List["(", RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["c", "+", "d", "+", "e"]], "c"], ",", "1", ",", RowBox[List["2", "+", FractionBox[RowBox[List["d", "+", "e"]], "c"]]], ",", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]], RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]], "]"]]]], "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["c", "+", "d", "+", "e"]], "c"], ",", "1", ",", RowBox[List["2", "+", FractionBox[RowBox[List["d", "+", "e"]], "c"]]], ",", RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", SuperscriptBox["a", "2"]]], "+", SuperscriptBox["b", "2"]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["c", "+", "d", "+", "e"]], "c"], ",", "2", ",", RowBox[List["2", "+", FractionBox[RowBox[List["d", "+", "e"]], "c"]]], ",", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]], RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]], "]"]], "-", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["c", "+", "d", "+", "e"]], "c"], ",", "2", ",", RowBox[List["2", "+", FractionBox[RowBox[List["d", "+", "e"]], "c"]]], ",", RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]]]], "]"]]]], ")"]]]], "-", RowBox[List["a", " ", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["c", "+", "d", "+", "e"]], "c"], ",", "2", ",", RowBox[List["2", "+", FractionBox[RowBox[List["d", "+", "e"]], "c"]]], ",", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]], RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]], "]"]], "+", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["c", "+", "d", "+", "e"]], "c"], ",", "2", ",", RowBox[List["2", "+", FractionBox[RowBox[List["d", "+", "e"]], "c"]]], ",", RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]]]], "]"]]]], ")"]]]]]], ")"]]]], ")"]], "/", RowBox[List["(", RowBox[List["b", " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]], ")"]], RowBox[List["3", "/", "2"]]], " ", RowBox[List["(", RowBox[List["c", "+", "d", "+", "e"]], ")"]]]], ")"]]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mfrac> <mrow> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> d </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mfrac> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> - </mo> <mi> d </mi> <mo> - </mo> <mi> e </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> - </mo> <mi> d </mi> <mo> - </mo> <mi> e </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mi> c </mi> <mo> - </mo> <mi> d </mi> <mo> - </mo> <mi> e </mi> </mrow> <mi> c </mi> </mfrac> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mrow> <mfrac> <mrow> <mrow> <mo> - </mo> <mi> d </mi> </mrow> <mo> - </mo> <mi> e </mi> </mrow> <mi> c </mi> </mfrac> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mfrac> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mrow> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> - </mo> <mi> a </mi> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List[&quot;c&quot;, &quot;-&quot;, &quot;d&quot;, &quot;-&quot;, &quot;e&quot;]], &quot;c&quot;], Hypergeometric2F1], &quot;,&quot;, TagBox[&quot;1&quot;, Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], &quot;;&quot;, TagBox[TagBox[TagBox[RowBox[List[FractionBox[RowBox[List[RowBox[List[&quot;-&quot;, &quot;d&quot;]], &quot;-&quot;, &quot;e&quot;]], &quot;c&quot;], &quot;+&quot;, &quot;2&quot;]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], &quot;;&quot;, TagBox[FractionBox[RowBox[List[&quot;b&quot;, &quot; &quot;, SuperscriptBox[&quot;\[ExponentialE]&quot;, RowBox[List[&quot;c&quot;, &quot; &quot;, &quot;z&quot;]]]]], RowBox[List[SqrtBox[RowBox[List[SuperscriptBox[&quot;a&quot;, &quot;2&quot;], &quot;-&quot;, SuperscriptBox[&quot;b&quot;, &quot;2&quot;]]]], &quot;-&quot;, &quot;a&quot;]]], Hypergeometric2F1]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mi> c </mi> <mo> - </mo> <mi> d </mi> <mo> - </mo> <mi> e </mi> </mrow> <mi> c </mi> </mfrac> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mrow> <mfrac> <mrow> <mrow> <mo> - </mo> <mi> d </mi> </mrow> <mo> - </mo> <mi> e </mi> </mrow> <mi> c </mi> </mfrac> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List[&quot;c&quot;, &quot;-&quot;, &quot;d&quot;, &quot;-&quot;, &quot;e&quot;]], &quot;c&quot;], Hypergeometric2F1], &quot;,&quot;, TagBox[&quot;1&quot;, Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], &quot;;&quot;, TagBox[TagBox[TagBox[RowBox[List[FractionBox[RowBox[List[RowBox[List[&quot;-&quot;, &quot;d&quot;]], &quot;-&quot;, &quot;e&quot;]], &quot;c&quot;], &quot;+&quot;, &quot;2&quot;]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, FractionBox[RowBox[List[&quot;b&quot;, &quot; &quot;, SuperscriptBox[&quot;\[ExponentialE]&quot;, RowBox[List[&quot;c&quot;, &quot; &quot;, &quot;z&quot;]]]]], RowBox[List[&quot;a&quot;, &quot;+&quot;, SqrtBox[RowBox[List[SuperscriptBox[&quot;a&quot;, &quot;2&quot;], &quot;-&quot;, SuperscriptBox[&quot;b&quot;, &quot;2&quot;]]]]]]]]], Hypergeometric2F1]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mi> c </mi> <mo> - </mo> <mi> d </mi> <mo> - </mo> <mi> e </mi> </mrow> <mi> c </mi> </mfrac> <mo> , </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mrow> <mfrac> <mrow> <mrow> <mo> - </mo> <mi> d </mi> </mrow> <mo> - </mo> <mi> e </mi> </mrow> <mi> c </mi> </mfrac> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mfrac> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mrow> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> - </mo> <mi> a </mi> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List[&quot;c&quot;, &quot;-&quot;, &quot;d&quot;, &quot;-&quot;, &quot;e&quot;]], &quot;c&quot;], Hypergeometric2F1], &quot;,&quot;, TagBox[&quot;2&quot;, Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], &quot;;&quot;, TagBox[TagBox[TagBox[RowBox[List[FractionBox[RowBox[List[RowBox[List[&quot;-&quot;, &quot;d&quot;]], &quot;-&quot;, &quot;e&quot;]], &quot;c&quot;], &quot;+&quot;, &quot;2&quot;]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], &quot;;&quot;, TagBox[FractionBox[RowBox[List[&quot;b&quot;, &quot; &quot;, SuperscriptBox[&quot;\[ExponentialE]&quot;, RowBox[List[&quot;c&quot;, &quot; &quot;, &quot;z&quot;]]]]], RowBox[List[SqrtBox[RowBox[List[SuperscriptBox[&quot;a&quot;, &quot;2&quot;], &quot;-&quot;, SuperscriptBox[&quot;b&quot;, &quot;2&quot;]]]], &quot;-&quot;, &quot;a&quot;]]], Hypergeometric2F1]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> <mo> - </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mi> c </mi> <mo> - </mo> <mi> d </mi> <mo> - </mo> <mi> e </mi> </mrow> <mi> c </mi> </mfrac> <mo> , </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mrow> <mfrac> <mrow> <mrow> <mo> - </mo> <mi> d </mi> </mrow> <mo> - </mo> <mi> e </mi> </mrow> <mi> c </mi> </mfrac> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List[&quot;c&quot;, &quot;-&quot;, &quot;d&quot;, &quot;-&quot;, &quot;e&quot;]], &quot;c&quot;], Hypergeometric2F1], &quot;,&quot;, TagBox[&quot;2&quot;, Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], &quot;;&quot;, TagBox[TagBox[TagBox[RowBox[List[FractionBox[RowBox[List[RowBox[List[&quot;-&quot;, &quot;d&quot;]], &quot;-&quot;, &quot;e&quot;]], &quot;c&quot;], &quot;+&quot;, &quot;2&quot;]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, FractionBox[RowBox[List[&quot;b&quot;, &quot; &quot;, SuperscriptBox[&quot;\[ExponentialE]&quot;, RowBox[List[&quot;c&quot;, &quot; &quot;, &quot;z&quot;]]]]], RowBox[List[&quot;a&quot;, &quot;+&quot;, SqrtBox[RowBox[List[SuperscriptBox[&quot;a&quot;, &quot;2&quot;], &quot;-&quot;, SuperscriptBox[&quot;b&quot;, &quot;2&quot;]]]]]]]]], Hypergeometric2F1]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mi> c </mi> <mo> - </mo> <mi> d </mi> <mo> - </mo> <mi> e </mi> </mrow> <mi> c </mi> </mfrac> <mo> , </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mrow> <mfrac> <mrow> <mrow> <mo> - </mo> <mi> d </mi> </mrow> <mo> - </mo> <mi> e </mi> </mrow> <mi> c </mi> </mfrac> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mfrac> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mrow> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> - </mo> <mi> a </mi> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List[&quot;c&quot;, &quot;-&quot;, &quot;d&quot;, &quot;-&quot;, &quot;e&quot;]], &quot;c&quot;], Hypergeometric2F1], &quot;,&quot;, TagBox[&quot;2&quot;, Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], &quot;;&quot;, TagBox[TagBox[TagBox[RowBox[List[FractionBox[RowBox[List[RowBox[List[&quot;-&quot;, &quot;d&quot;]], &quot;-&quot;, &quot;e&quot;]], &quot;c&quot;], &quot;+&quot;, &quot;2&quot;]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], &quot;;&quot;, TagBox[FractionBox[RowBox[List[&quot;b&quot;, &quot; &quot;, SuperscriptBox[&quot;\[ExponentialE]&quot;, RowBox[List[&quot;c&quot;, &quot; &quot;, &quot;z&quot;]]]]], RowBox[List[SqrtBox[RowBox[List[SuperscriptBox[&quot;a&quot;, &quot;2&quot;], &quot;-&quot;, SuperscriptBox[&quot;b&quot;, &quot;2&quot;]]]], &quot;-&quot;, &quot;a&quot;]]], Hypergeometric2F1]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> <mo> + </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mi> c </mi> <mo> - </mo> <mi> d </mi> <mo> - </mo> <mi> e </mi> </mrow> <mi> c </mi> </mfrac> <mo> , </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mrow> <mfrac> <mrow> <mrow> <mo> - </mo> <mi> d </mi> </mrow> <mo> - </mo> <mi> e </mi> </mrow> <mi> c </mi> </mfrac> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List[&quot;c&quot;, &quot;-&quot;, &quot;d&quot;, &quot;-&quot;, &quot;e&quot;]], &quot;c&quot;], Hypergeometric2F1], &quot;,&quot;, TagBox[&quot;2&quot;, Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], &quot;;&quot;, TagBox[TagBox[TagBox[RowBox[List[FractionBox[RowBox[List[RowBox[List[&quot;-&quot;, &quot;d&quot;]], &quot;-&quot;, &quot;e&quot;]], &quot;c&quot;], &quot;+&quot;, &quot;2&quot;]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, FractionBox[RowBox[List[&quot;b&quot;, &quot; &quot;, SuperscriptBox[&quot;\[ExponentialE]&quot;, RowBox[List[&quot;c&quot;, &quot; &quot;, &quot;z&quot;]]]]], RowBox[List[&quot;a&quot;, &quot;+&quot;, SqrtBox[RowBox[List[SuperscriptBox[&quot;a&quot;, &quot;2&quot;], &quot;-&quot;, SuperscriptBox[&quot;b&quot;, &quot;2&quot;]]]]]]]]], Hypergeometric2F1]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> + </mo> <mi> d </mi> <mo> - </mo> <mi> e </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> + </mo> <mi> d </mi> <mo> - </mo> <mi> e </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mi> c </mi> <mo> + </mo> <mi> d </mi> <mo> - </mo> <mi> e </mi> </mrow> <mi> c </mi> </mfrac> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mrow> <mfrac> <mrow> <mi> d </mi> <mo> - </mo> <mi> e </mi> </mrow> <mi> c </mi> </mfrac> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mfrac> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mrow> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> - </mo> <mi> a </mi> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List[&quot;c&quot;, &quot;+&quot;, &quot;d&quot;, &quot;-&quot;, &quot;e&quot;]], &quot;c&quot;], Hypergeometric2F1], &quot;,&quot;, TagBox[&quot;1&quot;, Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], &quot;;&quot;, TagBox[TagBox[TagBox[RowBox[List[FractionBox[RowBox[List[&quot;d&quot;, &quot;-&quot;, &quot;e&quot;]], &quot;c&quot;], &quot;+&quot;, &quot;2&quot;]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], &quot;;&quot;, TagBox[FractionBox[RowBox[List[&quot;b&quot;, &quot; &quot;, SuperscriptBox[&quot;\[ExponentialE]&quot;, RowBox[List[&quot;c&quot;, &quot; &quot;, &quot;z&quot;]]]]], RowBox[List[SqrtBox[RowBox[List[SuperscriptBox[&quot;a&quot;, &quot;2&quot;], &quot;-&quot;, SuperscriptBox[&quot;b&quot;, &quot;2&quot;]]]], &quot;-&quot;, &quot;a&quot;]]], Hypergeometric2F1]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mi> c </mi> <mo> + </mo> <mi> d </mi> <mo> - </mo> <mi> e </mi> </mrow> <mi> c </mi> </mfrac> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mrow> <mfrac> <mrow> <mi> d </mi> <mo> - </mo> <mi> e </mi> </mrow> <mi> c </mi> </mfrac> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List[&quot;c&quot;, &quot;+&quot;, &quot;d&quot;, &quot;-&quot;, &quot;e&quot;]], &quot;c&quot;], Hypergeometric2F1], &quot;,&quot;, TagBox[&quot;1&quot;, Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], &quot;;&quot;, TagBox[TagBox[TagBox[RowBox[List[FractionBox[RowBox[List[&quot;d&quot;, &quot;-&quot;, &quot;e&quot;]], &quot;c&quot;], &quot;+&quot;, &quot;2&quot;]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, FractionBox[RowBox[List[&quot;b&quot;, &quot; &quot;, SuperscriptBox[&quot;\[ExponentialE]&quot;, RowBox[List[&quot;c&quot;, &quot; &quot;, &quot;z&quot;]]]]], RowBox[List[&quot;a&quot;, &quot;+&quot;, SqrtBox[RowBox[List[SuperscriptBox[&quot;a&quot;, &quot;2&quot;], &quot;-&quot;, SuperscriptBox[&quot;b&quot;, &quot;2&quot;]]]]]]]]], Hypergeometric2F1]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mi> c </mi> <mo> + </mo> <mi> d </mi> <mo> - </mo> <mi> e </mi> </mrow> <mi> c </mi> </mfrac> <mo> , </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mrow> <mfrac> <mrow> <mi> d </mi> <mo> - </mo> <mi> e </mi> </mrow> <mi> c </mi> </mfrac> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mfrac> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mrow> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> - </mo> <mi> a </mi> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List[&quot;c&quot;, &quot;+&quot;, &quot;d&quot;, &quot;-&quot;, &quot;e&quot;]], &quot;c&quot;], Hypergeometric2F1], &quot;,&quot;, TagBox[&quot;2&quot;, Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], &quot;;&quot;, TagBox[TagBox[TagBox[RowBox[List[FractionBox[RowBox[List[&quot;d&quot;, &quot;-&quot;, &quot;e&quot;]], &quot;c&quot;], &quot;+&quot;, &quot;2&quot;]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], &quot;;&quot;, TagBox[FractionBox[RowBox[List[&quot;b&quot;, &quot; &quot;, SuperscriptBox[&quot;\[ExponentialE]&quot;, RowBox[List[&quot;c&quot;, &quot; &quot;, &quot;z&quot;]]]]], RowBox[List[SqrtBox[RowBox[List[SuperscriptBox[&quot;a&quot;, &quot;2&quot;], &quot;-&quot;, SuperscriptBox[&quot;b&quot;, &quot;2&quot;]]]], &quot;-&quot;, &quot;a&quot;]]], Hypergeometric2F1]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> <mo> - </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mi> c </mi> <mo> + </mo> <mi> d </mi> <mo> - </mo> <mi> e </mi> </mrow> <mi> c </mi> </mfrac> <mo> , </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mrow> <mfrac> <mrow> <mi> d </mi> <mo> - </mo> <mi> e </mi> </mrow> <mi> c </mi> </mfrac> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List[&quot;c&quot;, &quot;+&quot;, &quot;d&quot;, &quot;-&quot;, &quot;e&quot;]], &quot;c&quot;], Hypergeometric2F1], &quot;,&quot;, TagBox[&quot;2&quot;, Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], &quot;;&quot;, TagBox[TagBox[TagBox[RowBox[List[FractionBox[RowBox[List[&quot;d&quot;, &quot;-&quot;, &quot;e&quot;]], &quot;c&quot;], &quot;+&quot;, &quot;2&quot;]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, FractionBox[RowBox[List[&quot;b&quot;, &quot; &quot;, SuperscriptBox[&quot;\[ExponentialE]&quot;, RowBox[List[&quot;c&quot;, &quot; &quot;, &quot;z&quot;]]]]], RowBox[List[&quot;a&quot;, &quot;+&quot;, SqrtBox[RowBox[List[SuperscriptBox[&quot;a&quot;, &quot;2&quot;], &quot;-&quot;, SuperscriptBox[&quot;b&quot;, &quot;2&quot;]]]]]]]]], Hypergeometric2F1]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mi> c </mi> <mo> + </mo> <mi> d </mi> <mo> - </mo> <mi> e </mi> </mrow> <mi> c </mi> </mfrac> <mo> , </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mrow> <mfrac> <mrow> <mi> d </mi> <mo> - </mo> <mi> e </mi> </mrow> <mi> c </mi> </mfrac> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mfrac> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mrow> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> - </mo> <mi> a </mi> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List[&quot;c&quot;, &quot;+&quot;, &quot;d&quot;, &quot;-&quot;, &quot;e&quot;]], &quot;c&quot;], Hypergeometric2F1], &quot;,&quot;, TagBox[&quot;2&quot;, Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], &quot;;&quot;, TagBox[TagBox[TagBox[RowBox[List[FractionBox[RowBox[List[&quot;d&quot;, &quot;-&quot;, &quot;e&quot;]], &quot;c&quot;], &quot;+&quot;, &quot;2&quot;]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], &quot;;&quot;, TagBox[FractionBox[RowBox[List[&quot;b&quot;, &quot; &quot;, SuperscriptBox[&quot;\[ExponentialE]&quot;, RowBox[List[&quot;c&quot;, &quot; &quot;, &quot;z&quot;]]]]], RowBox[List[SqrtBox[RowBox[List[SuperscriptBox[&quot;a&quot;, &quot;2&quot;], &quot;-&quot;, SuperscriptBox[&quot;b&quot;, &quot;2&quot;]]]], &quot;-&quot;, &quot;a&quot;]]], Hypergeometric2F1]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> <mo> + </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mi> c </mi> <mo> + </mo> <mi> d </mi> <mo> - </mo> <mi> e </mi> </mrow> <mi> c </mi> </mfrac> <mo> , </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mrow> <mfrac> <mrow> <mi> d </mi> <mo> - </mo> <mi> e </mi> </mrow> <mi> c </mi> </mfrac> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List[&quot;c&quot;, &quot;+&quot;, &quot;d&quot;, &quot;-&quot;, &quot;e&quot;]], &quot;c&quot;], Hypergeometric2F1], &quot;,&quot;, TagBox[&quot;2&quot;, Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], &quot;;&quot;, TagBox[TagBox[TagBox[RowBox[List[FractionBox[RowBox[List[&quot;d&quot;, &quot;-&quot;, &quot;e&quot;]], &quot;c&quot;], &quot;+&quot;, &quot;2&quot;]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, FractionBox[RowBox[List[&quot;b&quot;, &quot; &quot;, SuperscriptBox[&quot;\[ExponentialE]&quot;, RowBox[List[&quot;c&quot;, &quot; &quot;, &quot;z&quot;]]]]], RowBox[List[&quot;a&quot;, &quot;+&quot;, SqrtBox[RowBox[List[SuperscriptBox[&quot;a&quot;, &quot;2&quot;], &quot;-&quot;, SuperscriptBox[&quot;b&quot;, &quot;2&quot;]]]]]]]]], Hypergeometric2F1]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> - </mo> <mi> d </mi> <mo> + </mo> <mi> e </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> - </mo> <mi> d </mi> <mo> + </mo> <mi> e </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mi> c </mi> <mo> - </mo> <mi> d </mi> <mo> + </mo> <mi> e </mi> </mrow> <mi> c </mi> </mfrac> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mrow> <mfrac> <mrow> <mi> e </mi> <mo> - </mo> <mi> d </mi> </mrow> <mi> c </mi> </mfrac> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mfrac> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mrow> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> - </mo> <mi> a </mi> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List[&quot;c&quot;, &quot;-&quot;, &quot;d&quot;, &quot;+&quot;, &quot;e&quot;]], &quot;c&quot;], Hypergeometric2F1], &quot;,&quot;, TagBox[&quot;1&quot;, Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], &quot;;&quot;, TagBox[TagBox[TagBox[RowBox[List[FractionBox[RowBox[List[&quot;e&quot;, &quot;-&quot;, &quot;d&quot;]], &quot;c&quot;], &quot;+&quot;, &quot;2&quot;]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], &quot;;&quot;, TagBox[FractionBox[RowBox[List[&quot;b&quot;, &quot; &quot;, SuperscriptBox[&quot;\[ExponentialE]&quot;, RowBox[List[&quot;c&quot;, &quot; &quot;, &quot;z&quot;]]]]], RowBox[List[SqrtBox[RowBox[List[SuperscriptBox[&quot;a&quot;, &quot;2&quot;], &quot;-&quot;, SuperscriptBox[&quot;b&quot;, &quot;2&quot;]]]], &quot;-&quot;, &quot;a&quot;]]], Hypergeometric2F1]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mi> c </mi> <mo> - </mo> <mi> d </mi> <mo> + </mo> <mi> e </mi> </mrow> <mi> c </mi> </mfrac> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mrow> <mfrac> <mrow> <mi> e </mi> <mo> - </mo> <mi> d </mi> </mrow> <mi> c </mi> </mfrac> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List[&quot;c&quot;, &quot;-&quot;, &quot;d&quot;, &quot;+&quot;, &quot;e&quot;]], &quot;c&quot;], Hypergeometric2F1], &quot;,&quot;, TagBox[&quot;1&quot;, Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], &quot;;&quot;, TagBox[TagBox[TagBox[RowBox[List[FractionBox[RowBox[List[&quot;e&quot;, &quot;-&quot;, &quot;d&quot;]], &quot;c&quot;], &quot;+&quot;, &quot;2&quot;]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, FractionBox[RowBox[List[&quot;b&quot;, &quot; &quot;, SuperscriptBox[&quot;\[ExponentialE]&quot;, RowBox[List[&quot;c&quot;, &quot; &quot;, &quot;z&quot;]]]]], RowBox[List[&quot;a&quot;, &quot;+&quot;, SqrtBox[RowBox[List[SuperscriptBox[&quot;a&quot;, &quot;2&quot;], &quot;-&quot;, SuperscriptBox[&quot;b&quot;, &quot;2&quot;]]]]]]]]], Hypergeometric2F1]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mi> c </mi> <mo> - </mo> <mi> d </mi> <mo> + </mo> <mi> e </mi> </mrow> <mi> c </mi> </mfrac> <mo> , </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mrow> <mfrac> <mrow> <mi> e </mi> <mo> - </mo> <mi> d </mi> </mrow> <mi> c </mi> </mfrac> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mfrac> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mrow> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> - </mo> <mi> a </mi> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List[&quot;c&quot;, &quot;-&quot;, &quot;d&quot;, &quot;+&quot;, &quot;e&quot;]], &quot;c&quot;], Hypergeometric2F1], &quot;,&quot;, TagBox[&quot;2&quot;, Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], &quot;;&quot;, TagBox[TagBox[TagBox[RowBox[List[FractionBox[RowBox[List[&quot;e&quot;, &quot;-&quot;, &quot;d&quot;]], &quot;c&quot;], &quot;+&quot;, &quot;2&quot;]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], &quot;;&quot;, TagBox[FractionBox[RowBox[List[&quot;b&quot;, &quot; &quot;, SuperscriptBox[&quot;\[ExponentialE]&quot;, RowBox[List[&quot;c&quot;, &quot; &quot;, &quot;z&quot;]]]]], RowBox[List[SqrtBox[RowBox[List[SuperscriptBox[&quot;a&quot;, &quot;2&quot;], &quot;-&quot;, SuperscriptBox[&quot;b&quot;, &quot;2&quot;]]]], &quot;-&quot;, &quot;a&quot;]]], Hypergeometric2F1]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> <mo> - </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mi> c </mi> <mo> - </mo> <mi> d </mi> <mo> + </mo> <mi> e </mi> </mrow> <mi> c </mi> </mfrac> <mo> , </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mrow> <mfrac> <mrow> <mi> e </mi> <mo> - </mo> <mi> d </mi> </mrow> <mi> c </mi> </mfrac> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List[&quot;c&quot;, &quot;-&quot;, &quot;d&quot;, &quot;+&quot;, &quot;e&quot;]], &quot;c&quot;], Hypergeometric2F1], &quot;,&quot;, TagBox[&quot;2&quot;, Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], &quot;;&quot;, TagBox[TagBox[TagBox[RowBox[List[FractionBox[RowBox[List[&quot;e&quot;, &quot;-&quot;, &quot;d&quot;]], &quot;c&quot;], &quot;+&quot;, &quot;2&quot;]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, FractionBox[RowBox[List[&quot;b&quot;, &quot; &quot;, SuperscriptBox[&quot;\[ExponentialE]&quot;, RowBox[List[&quot;c&quot;, &quot; &quot;, &quot;z&quot;]]]]], RowBox[List[&quot;a&quot;, &quot;+&quot;, SqrtBox[RowBox[List[SuperscriptBox[&quot;a&quot;, &quot;2&quot;], &quot;-&quot;, SuperscriptBox[&quot;b&quot;, &quot;2&quot;]]]]]]]]], Hypergeometric2F1]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mi> c </mi> <mo> - </mo> <mi> d </mi> <mo> + </mo> <mi> e </mi> </mrow> <mi> c </mi> </mfrac> <mo> , </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mrow> <mfrac> <mrow> <mi> e </mi> <mo> - </mo> <mi> d </mi> </mrow> <mi> c </mi> </mfrac> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mfrac> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mrow> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> - </mo> <mi> a </mi> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List[&quot;c&quot;, &quot;-&quot;, &quot;d&quot;, &quot;+&quot;, &quot;e&quot;]], &quot;c&quot;], Hypergeometric2F1], &quot;,&quot;, TagBox[&quot;2&quot;, Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], &quot;;&quot;, TagBox[TagBox[TagBox[RowBox[List[FractionBox[RowBox[List[&quot;e&quot;, &quot;-&quot;, &quot;d&quot;]], &quot;c&quot;], &quot;+&quot;, &quot;2&quot;]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], &quot;;&quot;, TagBox[FractionBox[RowBox[List[&quot;b&quot;, &quot; &quot;, SuperscriptBox[&quot;\[ExponentialE]&quot;, RowBox[List[&quot;c&quot;, &quot; &quot;, &quot;z&quot;]]]]], RowBox[List[SqrtBox[RowBox[List[SuperscriptBox[&quot;a&quot;, &quot;2&quot;], &quot;-&quot;, SuperscriptBox[&quot;b&quot;, &quot;2&quot;]]]], &quot;-&quot;, &quot;a&quot;]]], Hypergeometric2F1]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> <mo> + </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mi> c </mi> <mo> - </mo> <mi> d </mi> <mo> + </mo> <mi> e </mi> </mrow> <mi> c </mi> </mfrac> <mo> , </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mrow> <mfrac> <mrow> <mi> e </mi> <mo> - </mo> <mi> d </mi> </mrow> <mi> c </mi> </mfrac> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List[&quot;c&quot;, &quot;-&quot;, &quot;d&quot;, &quot;+&quot;, &quot;e&quot;]], &quot;c&quot;], Hypergeometric2F1], &quot;,&quot;, TagBox[&quot;2&quot;, Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], &quot;;&quot;, TagBox[TagBox[TagBox[RowBox[List[FractionBox[RowBox[List[&quot;e&quot;, &quot;-&quot;, &quot;d&quot;]], &quot;c&quot;], &quot;+&quot;, &quot;2&quot;]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, FractionBox[RowBox[List[&quot;b&quot;, &quot; &quot;, SuperscriptBox[&quot;\[ExponentialE]&quot;, RowBox[List[&quot;c&quot;, &quot; &quot;, &quot;z&quot;]]]]], RowBox[List[&quot;a&quot;, &quot;+&quot;, SqrtBox[RowBox[List[SuperscriptBox[&quot;a&quot;, &quot;2&quot;], &quot;-&quot;, SuperscriptBox[&quot;b&quot;, &quot;2&quot;]]]]]]]]], Hypergeometric2F1]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> + </mo> <mi> d </mi> <mo> + </mo> <mi> e </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> + </mo> <mi> d </mi> <mo> + </mo> <mi> e </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mi> c </mi> <mo> + </mo> <mi> d </mi> <mo> + </mo> <mi> e </mi> </mrow> <mi> c </mi> </mfrac> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mrow> <mfrac> <mrow> <mi> d </mi> <mo> + </mo> <mi> e </mi> </mrow> <mi> c </mi> </mfrac> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mfrac> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mrow> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> - </mo> <mi> a </mi> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List[&quot;c&quot;, &quot;+&quot;, &quot;d&quot;, &quot;+&quot;, &quot;e&quot;]], &quot;c&quot;], Hypergeometric2F1], &quot;,&quot;, TagBox[&quot;1&quot;, Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], &quot;;&quot;, TagBox[TagBox[TagBox[RowBox[List[FractionBox[RowBox[List[&quot;d&quot;, &quot;+&quot;, &quot;e&quot;]], &quot;c&quot;], &quot;+&quot;, &quot;2&quot;]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], &quot;;&quot;, TagBox[FractionBox[RowBox[List[&quot;b&quot;, &quot; &quot;, SuperscriptBox[&quot;\[ExponentialE]&quot;, RowBox[List[&quot;c&quot;, &quot; &quot;, &quot;z&quot;]]]]], RowBox[List[SqrtBox[RowBox[List[SuperscriptBox[&quot;a&quot;, &quot;2&quot;], &quot;-&quot;, SuperscriptBox[&quot;b&quot;, &quot;2&quot;]]]], &quot;-&quot;, &quot;a&quot;]]], Hypergeometric2F1]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mi> c </mi> <mo> + </mo> <mi> d </mi> <mo> + </mo> <mi> e </mi> </mrow> <mi> c </mi> </mfrac> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mrow> <mfrac> <mrow> <mi> d </mi> <mo> + </mo> <mi> e </mi> </mrow> <mi> c </mi> </mfrac> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List[&quot;c&quot;, &quot;+&quot;, &quot;d&quot;, &quot;+&quot;, &quot;e&quot;]], &quot;c&quot;], Hypergeometric2F1], &quot;,&quot;, TagBox[&quot;1&quot;, Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], &quot;;&quot;, TagBox[TagBox[TagBox[RowBox[List[FractionBox[RowBox[List[&quot;d&quot;, &quot;+&quot;, &quot;e&quot;]], &quot;c&quot;], &quot;+&quot;, &quot;2&quot;]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, FractionBox[RowBox[List[&quot;b&quot;, &quot; &quot;, SuperscriptBox[&quot;\[ExponentialE]&quot;, RowBox[List[&quot;c&quot;, &quot; &quot;, &quot;z&quot;]]]]], RowBox[List[&quot;a&quot;, &quot;+&quot;, SqrtBox[RowBox[List[SuperscriptBox[&quot;a&quot;, &quot;2&quot;], &quot;-&quot;, SuperscriptBox[&quot;b&quot;, &quot;2&quot;]]]]]]]]], Hypergeometric2F1]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mi> c </mi> <mo> + </mo> <mi> d </mi> <mo> + </mo> <mi> e </mi> </mrow> <mi> c </mi> </mfrac> <mo> , </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mrow> <mfrac> <mrow> <mi> d </mi> <mo> + </mo> <mi> e </mi> </mrow> <mi> c </mi> </mfrac> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mfrac> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mrow> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> - </mo> <mi> a </mi> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List[&quot;c&quot;, &quot;+&quot;, &quot;d&quot;, &quot;+&quot;, &quot;e&quot;]], &quot;c&quot;], Hypergeometric2F1], &quot;,&quot;, TagBox[&quot;2&quot;, Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], &quot;;&quot;, TagBox[TagBox[TagBox[RowBox[List[FractionBox[RowBox[List[&quot;d&quot;, &quot;+&quot;, &quot;e&quot;]], &quot;c&quot;], &quot;+&quot;, &quot;2&quot;]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], &quot;;&quot;, TagBox[FractionBox[RowBox[List[&quot;b&quot;, &quot; &quot;, SuperscriptBox[&quot;\[ExponentialE]&quot;, RowBox[List[&quot;c&quot;, &quot; &quot;, &quot;z&quot;]]]]], RowBox[List[SqrtBox[RowBox[List[SuperscriptBox[&quot;a&quot;, &quot;2&quot;], &quot;-&quot;, SuperscriptBox[&quot;b&quot;, &quot;2&quot;]]]], &quot;-&quot;, &quot;a&quot;]]], Hypergeometric2F1]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> <mo> - </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mi> c </mi> <mo> + </mo> <mi> d </mi> <mo> + </mo> <mi> e </mi> </mrow> <mi> c </mi> </mfrac> <mo> , </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mrow> <mfrac> <mrow> <mi> d </mi> <mo> + </mo> <mi> e </mi> </mrow> <mi> c </mi> </mfrac> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List[&quot;c&quot;, &quot;+&quot;, &quot;d&quot;, &quot;+&quot;, &quot;e&quot;]], &quot;c&quot;], Hypergeometric2F1], &quot;,&quot;, TagBox[&quot;2&quot;, Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], &quot;;&quot;, TagBox[TagBox[TagBox[RowBox[List[FractionBox[RowBox[List[&quot;d&quot;, &quot;+&quot;, &quot;e&quot;]], &quot;c&quot;], &quot;+&quot;, &quot;2&quot;]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, FractionBox[RowBox[List[&quot;b&quot;, &quot; &quot;, SuperscriptBox[&quot;\[ExponentialE]&quot;, RowBox[List[&quot;c&quot;, &quot; &quot;, &quot;z&quot;]]]]], RowBox[List[&quot;a&quot;, &quot;+&quot;, SqrtBox[RowBox[List[SuperscriptBox[&quot;a&quot;, &quot;2&quot;], &quot;-&quot;, SuperscriptBox[&quot;b&quot;, &quot;2&quot;]]]]]]]]], Hypergeometric2F1]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mi> c </mi> <mo> + </mo> <mi> d </mi> <mo> + </mo> <mi> e </mi> </mrow> <mi> c </mi> </mfrac> <mo> , </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mrow> <mfrac> <mrow> <mi> d </mi> <mo> + </mo> <mi> e </mi> </mrow> <mi> c </mi> </mfrac> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mfrac> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mrow> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> - </mo> <mi> a </mi> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List[&quot;c&quot;, &quot;+&quot;, &quot;d&quot;, &quot;+&quot;, &quot;e&quot;]], &quot;c&quot;], Hypergeometric2F1], &quot;,&quot;, TagBox[&quot;2&quot;, Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], &quot;;&quot;, TagBox[TagBox[TagBox[RowBox[List[FractionBox[RowBox[List[&quot;d&quot;, &quot;+&quot;, &quot;e&quot;]], &quot;c&quot;], &quot;+&quot;, &quot;2&quot;]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], &quot;;&quot;, TagBox[FractionBox[RowBox[List[&quot;b&quot;, &quot; &quot;, SuperscriptBox[&quot;\[ExponentialE]&quot;, RowBox[List[&quot;c&quot;, &quot; &quot;, &quot;z&quot;]]]]], RowBox[List[SqrtBox[RowBox[List[SuperscriptBox[&quot;a&quot;, &quot;2&quot;], &quot;-&quot;, SuperscriptBox[&quot;b&quot;, &quot;2&quot;]]]], &quot;-&quot;, &quot;a&quot;]]], Hypergeometric2F1]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> <mo> + </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mi> c </mi> <mo> + </mo> <mi> d </mi> <mo> + </mo> <mi> e </mi> </mrow> <mi> c </mi> </mfrac> <mo> , </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mrow> <mfrac> <mrow> <mi> d </mi> <mo> + </mo> <mi> e </mi> </mrow> <mi> c </mi> </mfrac> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List[&quot;c&quot;, &quot;+&quot;, &quot;d&quot;, &quot;+&quot;, &quot;e&quot;]], &quot;c&quot;], Hypergeometric2F1], &quot;,&quot;, TagBox[&quot;2&quot;, Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], &quot;;&quot;, TagBox[TagBox[TagBox[RowBox[List[FractionBox[RowBox[List[&quot;d&quot;, &quot;+&quot;, &quot;e&quot;]], &quot;c&quot;], &quot;+&quot;, &quot;2&quot;]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, FractionBox[RowBox[List[&quot;b&quot;, &quot; &quot;, SuperscriptBox[&quot;\[ExponentialE]&quot;, RowBox[List[&quot;c&quot;, &quot; &quot;, &quot;z&quot;]]]]], RowBox[List[&quot;a&quot;, &quot;+&quot;, SqrtBox[RowBox[List[SuperscriptBox[&quot;a&quot;, &quot;2&quot;], &quot;-&quot;, SuperscriptBox[&quot;b&quot;, &quot;2&quot;]]]]]]]]], Hypergeometric2F1]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <cosh /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> <apply> <cosh /> <apply> <times /> <ci> d </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <cosh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 4 </cn> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> d </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> e </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> d </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> e </ci> </apply> </apply> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <ci> a </ci> <apply> <plus /> <ci> a </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <ci> Hypergeometric2F1 </ci> <apply> <times /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> d </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> e </ci> </apply> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> d </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> e </ci> </apply> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <ci> a </ci> <apply> <plus /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <apply> <ci> Hypergeometric2F1 </ci> <apply> <times /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> d </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> e </ci> </apply> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> d </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> e </ci> </apply> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <ci> Hypergeometric2F1 </ci> <apply> <times /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> d </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> e </ci> </apply> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> d </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> e </ci> </apply> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Hypergeometric2F1 </ci> <apply> <times /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> d </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> e </ci> </apply> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> d </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> e </ci> </apply> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> a </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <ci> Hypergeometric2F1 </ci> <apply> <times /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> d </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> e </ci> </apply> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> d </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> e </ci> </apply> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> Hypergeometric2F1 </ci> <apply> <times /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> d </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> e </ci> </apply> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> d </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> e </ci> </apply> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> c </ci> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> e </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <plus /> <ci> c </ci> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> e </ci> </apply> </apply> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <ci> a </ci> <apply> <plus /> <ci> a </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <ci> Hypergeometric2F1 </ci> <apply> <times /> <apply> <plus /> <ci> c </ci> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> e </ci> </apply> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> e </ci> </apply> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <ci> a </ci> <apply> <plus /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <apply> <ci> Hypergeometric2F1 </ci> <apply> <times /> <apply> <plus /> <ci> c </ci> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> e </ci> </apply> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> e </ci> </apply> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <ci> Hypergeometric2F1 </ci> <apply> <times /> <apply> <plus /> <ci> c </ci> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> e </ci> </apply> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> e </ci> </apply> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Hypergeometric2F1 </ci> <apply> <times /> <apply> <plus /> <ci> c </ci> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> e </ci> </apply> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> e </ci> </apply> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> a </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <ci> Hypergeometric2F1 </ci> <apply> <times /> <apply> <plus /> <ci> c </ci> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> e </ci> </apply> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> e </ci> </apply> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> Hypergeometric2F1 </ci> <apply> <times /> <apply> <plus /> <ci> c </ci> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> e </ci> </apply> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> e </ci> </apply> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> d </ci> </apply> <ci> e </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> d </ci> </apply> <ci> e </ci> </apply> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <ci> a </ci> <apply> <plus /> <ci> a </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <ci> Hypergeometric2F1 </ci> <apply> <times /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> d </ci> </apply> <ci> e </ci> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> e </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> d </ci> </apply> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <ci> a </ci> <apply> <plus /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <apply> <ci> Hypergeometric2F1 </ci> <apply> <times /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> d </ci> </apply> <ci> e </ci> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> e </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> d </ci> </apply> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <ci> Hypergeometric2F1 </ci> <apply> <times /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> d </ci> </apply> <ci> e </ci> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> e </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> d </ci> </apply> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Hypergeometric2F1 </ci> <apply> <times /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> d </ci> </apply> <ci> e </ci> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> e </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> d </ci> </apply> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> a </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <ci> Hypergeometric2F1 </ci> <apply> <times /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> d </ci> </apply> <ci> e </ci> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> e </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> d </ci> </apply> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> Hypergeometric2F1 </ci> <apply> <times /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> d </ci> </apply> <ci> e </ci> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> e </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> d </ci> </apply> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> c </ci> <ci> d </ci> <ci> e </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <plus /> <ci> c </ci> <ci> d </ci> <ci> e </ci> </apply> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <ci> a </ci> <apply> <plus /> <ci> a </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <ci> Hypergeometric2F1 </ci> <apply> <times /> <apply> <plus /> <ci> c </ci> <ci> d </ci> <ci> e </ci> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> d </ci> <ci> e </ci> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <ci> a </ci> <apply> <plus /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <apply> <ci> Hypergeometric2F1 </ci> <apply> <times /> <apply> <plus /> <ci> c </ci> <ci> d </ci> <ci> e </ci> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> d </ci> <ci> e </ci> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <ci> Hypergeometric2F1 </ci> <apply> <times /> <apply> <plus /> <ci> c </ci> <ci> d </ci> <ci> e </ci> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> d </ci> <ci> e </ci> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Hypergeometric2F1 </ci> <apply> <times /> <apply> <plus /> <ci> c </ci> <ci> d </ci> <ci> e </ci> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> d </ci> <ci> e </ci> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> a </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <ci> Hypergeometric2F1 </ci> <apply> <times /> <apply> <plus /> <ci> c </ci> <ci> d </ci> <ci> e </ci> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> d </ci> <ci> e </ci> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> Hypergeometric2F1 </ci> <apply> <times /> <apply> <plus /> <ci> c </ci> <ci> d </ci> <ci> e </ci> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> d </ci> <ci> e </ci> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List[RowBox[List["Cosh", "[", RowBox[List["e_", " ", "z_"]], "]"]], " ", RowBox[List["Cosh", "[", RowBox[List["d_", " ", "z_"]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["a_", "+", RowBox[List["b_", " ", RowBox[List["Cosh", "[", RowBox[List["c_", " ", "z_"]], "]"]]]]]], ")"]], "2"]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["c", "-", "d", "-", "e"]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["a", " ", RowBox[List["(", RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["c", "-", "d", "-", "e"]], "c"], ",", "1", ",", RowBox[List["2", "+", FractionBox[RowBox[List[RowBox[List["-", "d"]], "-", "e"]], "c"]]], ",", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]], RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]], "]"]]]], "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["c", "-", "d", "-", "e"]], "c"], ",", "1", ",", RowBox[List["2", "+", FractionBox[RowBox[List[RowBox[List["-", "d"]], "-", "e"]], "c"]]], ",", RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", SuperscriptBox["a", "2"]]], "+", SuperscriptBox["b", "2"]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["c", "-", "d", "-", "e"]], "c"], ",", "2", ",", RowBox[List["2", "+", FractionBox[RowBox[List[RowBox[List["-", "d"]], "-", "e"]], "c"]]], ",", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]], RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]], "]"]], "-", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["c", "-", "d", "-", "e"]], "c"], ",", "2", ",", RowBox[List["2", "+", FractionBox[RowBox[List[RowBox[List["-", "d"]], "-", "e"]], "c"]]], ",", RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]]]], "]"]]]], ")"]]]], "-", RowBox[List["a", " ", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["c", "-", "d", "-", "e"]], "c"], ",", "2", ",", RowBox[List["2", "+", FractionBox[RowBox[List[RowBox[List["-", "d"]], "-", "e"]], "c"]]], ",", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]], RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]], "]"]], "+", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["c", "-", "d", "-", "e"]], "c"], ",", "2", ",", RowBox[List["2", "+", FractionBox[RowBox[List[RowBox[List["-", "d"]], "-", "e"]], "c"]]], ",", RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]]]], "]"]]]], ")"]]]]]], ")"]]]], RowBox[List["b", " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]], ")"]], RowBox[List["3", "/", "2"]]], " ", RowBox[List["(", RowBox[List["c", "-", "d", "-", "e"]], ")"]]]]], "+", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["c", "+", "d", "-", "e"]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["a", " ", RowBox[List["(", RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["c", "+", "d", "-", "e"]], "c"], ",", "1", ",", RowBox[List["2", "+", FractionBox[RowBox[List["d", "-", "e"]], "c"]]], ",", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]], RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]], "]"]]]], "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["c", "+", "d", "-", "e"]], "c"], ",", "1", ",", RowBox[List["2", "+", FractionBox[RowBox[List["d", "-", "e"]], "c"]]], ",", RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", SuperscriptBox["a", "2"]]], "+", SuperscriptBox["b", "2"]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["c", "+", "d", "-", "e"]], "c"], ",", "2", ",", RowBox[List["2", "+", FractionBox[RowBox[List["d", "-", "e"]], "c"]]], ",", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]], RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]], "]"]], "-", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["c", "+", "d", "-", "e"]], "c"], ",", "2", ",", RowBox[List["2", "+", FractionBox[RowBox[List["d", "-", "e"]], "c"]]], ",", RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]]]], "]"]]]], ")"]]]], "-", RowBox[List["a", " ", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["c", "+", "d", "-", "e"]], "c"], ",", "2", ",", RowBox[List["2", "+", FractionBox[RowBox[List["d", "-", "e"]], "c"]]], ",", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]], RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]], "]"]], "+", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["c", "+", "d", "-", "e"]], "c"], ",", "2", ",", RowBox[List["2", "+", FractionBox[RowBox[List["d", "-", "e"]], "c"]]], ",", RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]]]], "]"]]]], ")"]]]]]], ")"]]]], RowBox[List["b", " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]], ")"]], RowBox[List["3", "/", "2"]]], " ", RowBox[List["(", RowBox[List["c", "+", "d", "-", "e"]], ")"]]]]], "+", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["c", "-", "d", "+", "e"]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["a", " ", RowBox[List["(", RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["c", "-", "d", "+", "e"]], "c"], ",", "1", ",", RowBox[List["2", "+", FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "e"]], "c"]]], ",", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]], RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]], "]"]]]], "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["c", "-", "d", "+", "e"]], "c"], ",", "1", ",", RowBox[List["2", "+", FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "e"]], "c"]]], ",", RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", SuperscriptBox["a", "2"]]], "+", SuperscriptBox["b", "2"]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["c", "-", "d", "+", "e"]], "c"], ",", "2", ",", RowBox[List["2", "+", FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "e"]], "c"]]], ",", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]], RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]], "]"]], "-", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["c", "-", "d", "+", "e"]], "c"], ",", "2", ",", RowBox[List["2", "+", FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "e"]], "c"]]], ",", RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]]]], "]"]]]], ")"]]]], "-", RowBox[List["a", " ", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["c", "-", "d", "+", "e"]], "c"], ",", "2", ",", RowBox[List["2", "+", FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "e"]], "c"]]], ",", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]], RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]], "]"]], "+", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["c", "-", "d", "+", "e"]], "c"], ",", "2", ",", RowBox[List["2", "+", FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "e"]], "c"]]], ",", RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]]]], "]"]]]], ")"]]]]]], ")"]]]], RowBox[List["b", " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]], ")"]], RowBox[List["3", "/", "2"]]], " ", RowBox[List["(", RowBox[List["c", "-", "d", "+", "e"]], ")"]]]]], "+", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["c", "+", "d", "+", "e"]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["a", " ", RowBox[List["(", RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["c", "+", "d", "+", "e"]], "c"], ",", "1", ",", RowBox[List["2", "+", FractionBox[RowBox[List["d", "+", "e"]], "c"]]], ",", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]], RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]], "]"]]]], "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["c", "+", "d", "+", "e"]], "c"], ",", "1", ",", RowBox[List["2", "+", FractionBox[RowBox[List["d", "+", "e"]], "c"]]], ",", RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", SuperscriptBox["a", "2"]]], "+", SuperscriptBox["b", "2"]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["c", "+", "d", "+", "e"]], "c"], ",", "2", ",", RowBox[List["2", "+", FractionBox[RowBox[List["d", "+", "e"]], "c"]]], ",", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]], RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]], "]"]], "-", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["c", "+", "d", "+", "e"]], "c"], ",", "2", ",", RowBox[List["2", "+", FractionBox[RowBox[List["d", "+", "e"]], "c"]]], ",", RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]]]], "]"]]]], ")"]]]], "-", RowBox[List["a", " ", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["c", "+", "d", "+", "e"]], "c"], ",", "2", ",", RowBox[List["2", "+", FractionBox[RowBox[List["d", "+", "e"]], "c"]]], ",", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]], RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]], "]"]], "+", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["c", "+", "d", "+", "e"]], "c"], ",", "2", ",", RowBox[List["2", "+", FractionBox[RowBox[List["d", "+", "e"]], "c"]]], ",", RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]]]], "]"]]]], ")"]]]]]], ")"]]]], RowBox[List["b", " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]], ")"]], RowBox[List["3", "/", "2"]]], " ", RowBox[List["(", RowBox[List["c", "+", "d", "+", "e"]], ")"]]]]]]], ")"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18