Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Cosh






Mathematica Notation

Traditional Notation









Elementary Functions > Cosh[z] > Integration > Indefinite integration > Involving functions of the direct function and a power function > Involving rational functions of the direct function and a power function > Involving z cosh(c z)/a+b cosh(2c z)





http://functions.wolfram.com/01.20.21.2683.01









  


  










Input Form





Integrate[(z Cosh[c z])/(a + b Cosh[2 c z]), z] == (1/(4 Sqrt[2] b Sqrt[-((a + b)/b)] c^2)) (-8 ArcSin[(1/2) Sqrt[2 - I Sqrt[2] Sqrt[-((a + b)/b)]]] ArcTan[((-2 I + Sqrt[2] Sqrt[-((a + b)/b)]) Tan[(1/4) (Pi - 2 I c z)])/ Sqrt[2 - (2 a)/b]] + 8 ArcSin[(1/2) Sqrt[2 + I Sqrt[2] Sqrt[-((a + b)/b)]]] ArcTan[((2 I + Sqrt[2] Sqrt[-((a + b)/b)]) Tan[(1/4) (Pi - 2 I c z)])/ Sqrt[2 - (2 a)/b]] - I Pi Log[(1/2) (2 + Sqrt[2] (Sqrt[1 - a/b] - Sqrt[-((a + b)/b)]) E^(c z))] - 2 c z Log[(1/2) (2 + Sqrt[2] (Sqrt[1 - a/b] - Sqrt[-((a + b)/b)]) E^(c z))] - 4 I ArcSin[(1/2) Sqrt[2 + I Sqrt[2] Sqrt[-((a + b)/b)]]] Log[(1/2) (2 + Sqrt[2] (Sqrt[1 - a/b] - Sqrt[-((a + b)/b)]) E^(c z))] + I Pi Log[(1/2) (2 + Sqrt[2] (-Sqrt[1 - a/b] + Sqrt[-((a + b)/b)]) E^(c z))] + 2 c z Log[(1/2) (2 + Sqrt[2] (-Sqrt[1 - a/b] + Sqrt[-((a + b)/b)]) E^(c z))] + 4 I ArcSin[(1/2) Sqrt[2 - I Sqrt[2] Sqrt[-((a + b)/b)]]] Log[(1/2) (2 + Sqrt[2] (-Sqrt[1 - a/b] + Sqrt[-((a + b)/b)]) E^(c z))] - I Pi Log[(1/2) (2 - Sqrt[2] (Sqrt[1 - a/b] + Sqrt[-((a + b)/b)]) E^(c z))] - 2 c z Log[(1/2) (2 - Sqrt[2] (Sqrt[1 - a/b] + Sqrt[-((a + b)/b)]) E^(c z))] + 4 I ArcSin[(1/2) Sqrt[2 + I Sqrt[2] Sqrt[-((a + b)/b)]]] Log[(1/2) (2 - Sqrt[2] (Sqrt[1 - a/b] + Sqrt[-((a + b)/b)]) E^(c z))] + I Pi Log[(1/2) (2 + Sqrt[2] (Sqrt[1 - a/b] + Sqrt[-((a + b)/b)]) E^(c z))] + 2 c z Log[(1/2) (2 + Sqrt[2] (Sqrt[1 - a/b] + Sqrt[-((a + b)/b)]) E^(c z))] - 4 I ArcSin[(1/2) Sqrt[2 - I Sqrt[2] Sqrt[-((a + b)/b)]]] Log[(1/2) (2 + Sqrt[2] (Sqrt[1 - a/b] + Sqrt[-((a + b)/b)]) E^(c z))] - I Pi Log[Sqrt[2] Sqrt[-((a + b)/b)] - 2 Sinh[c z]] + I Pi Log[Sqrt[2] Sqrt[-((a + b)/b)] + 2 Sinh[c z]] + 2 PolyLog[2, ((Sqrt[1 - a/b] - Sqrt[-((a + b)/b)]) E^(c z))/Sqrt[2]] - 2 PolyLog[2, ((-Sqrt[1 - a/b] + Sqrt[-((a + b)/b)]) E^(c z))/Sqrt[2]] + 2 PolyLog[2, -(((Sqrt[1 - a/b] + Sqrt[-((a + b)/b)]) E^(c z))/Sqrt[2])] - 2 PolyLog[2, ((Sqrt[1 - a/b] + Sqrt[-((a + b)/b)]) E^(c z))/Sqrt[2]])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List["z", " ", RowBox[List["Cosh", "[", RowBox[List["c", " ", "z"]], "]"]]]], RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Cosh", "[", RowBox[List["2", "c", " ", "z"]], "]"]]]]]]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["4", " ", SqrtBox["2"], " ", "b", " ", SqrtBox[RowBox[List["-", FractionBox[RowBox[List["a", "+", "b"]], "b"]]]], " ", SuperscriptBox["c", "2"]]]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "8"]], " ", RowBox[List["ArcSin", "[", RowBox[List[FractionBox["1", "2"], " ", SqrtBox[RowBox[List["2", "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox["2"], " ", SqrtBox[RowBox[List["-", FractionBox[RowBox[List["a", "+", "b"]], "b"]]]]]]]]]]], "]"]], " ", RowBox[List["ArcTan", "[", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "\[ImaginaryI]"]], "+", RowBox[List[SqrtBox["2"], " ", SqrtBox[RowBox[List["-", FractionBox[RowBox[List["a", "+", "b"]], "b"]]]]]]]], ")"]], " ", RowBox[List["Tan", "[", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["\[Pi]", "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "z"]]]], ")"]]]], "]"]]]], SqrtBox[RowBox[List["2", "-", FractionBox[RowBox[List["2", " ", "a"]], "b"]]]]], "]"]]]], "+", RowBox[List["8", " ", RowBox[List["ArcSin", "[", RowBox[List[FractionBox["1", "2"], " ", SqrtBox[RowBox[List["2", "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox["2"], " ", SqrtBox[RowBox[List["-", FractionBox[RowBox[List["a", "+", "b"]], "b"]]]]]]]]]]], "]"]], " ", RowBox[List["ArcTan", "[", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[ImaginaryI]"]], "+", RowBox[List[SqrtBox["2"], " ", SqrtBox[RowBox[List["-", FractionBox[RowBox[List["a", "+", "b"]], "b"]]]]]]]], ")"]], " ", RowBox[List["Tan", "[", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["\[Pi]", "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "z"]]]], ")"]]]], "]"]]]], SqrtBox[RowBox[List["2", "-", FractionBox[RowBox[List["2", " ", "a"]], "b"]]]]], "]"]]]], "-", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["Log", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "+", RowBox[List[SqrtBox["2"], " ", RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox["a", "b"]]]], "-", SqrtBox[RowBox[List["-", FractionBox[RowBox[List["a", "+", "b"]], "b"]]]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]]]], ")"]]]], "]"]]]], "-", RowBox[List["2", " ", "c", " ", "z", " ", RowBox[List["Log", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "+", RowBox[List[SqrtBox["2"], " ", RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox["a", "b"]]]], "-", SqrtBox[RowBox[List["-", FractionBox[RowBox[List["a", "+", "b"]], "b"]]]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]]]], ")"]]]], "]"]]]], "-", RowBox[List["4", " ", "\[ImaginaryI]", " ", RowBox[List["ArcSin", "[", RowBox[List[FractionBox["1", "2"], " ", SqrtBox[RowBox[List["2", "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox["2"], " ", SqrtBox[RowBox[List["-", FractionBox[RowBox[List["a", "+", "b"]], "b"]]]]]]]]]]], "]"]], " ", RowBox[List["Log", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "+", RowBox[List[SqrtBox["2"], " ", RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox["a", "b"]]]], "-", SqrtBox[RowBox[List["-", FractionBox[RowBox[List["a", "+", "b"]], "b"]]]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]]]], ")"]]]], "]"]]]], "+", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["Log", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "+", RowBox[List[SqrtBox["2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", SqrtBox[RowBox[List["1", "-", FractionBox["a", "b"]]]]]], "+", SqrtBox[RowBox[List["-", FractionBox[RowBox[List["a", "+", "b"]], "b"]]]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]]]], ")"]]]], "]"]]]], "+", RowBox[List["2", " ", "c", " ", "z", " ", RowBox[List["Log", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "+", RowBox[List[SqrtBox["2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", SqrtBox[RowBox[List["1", "-", FractionBox["a", "b"]]]]]], "+", SqrtBox[RowBox[List["-", FractionBox[RowBox[List["a", "+", "b"]], "b"]]]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]]]], ")"]]]], "]"]]]], "+", RowBox[List["4", " ", "\[ImaginaryI]", " ", RowBox[List["ArcSin", "[", RowBox[List[FractionBox["1", "2"], " ", SqrtBox[RowBox[List["2", "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox["2"], " ", SqrtBox[RowBox[List["-", FractionBox[RowBox[List["a", "+", "b"]], "b"]]]]]]]]]]], "]"]], " ", RowBox[List["Log", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "+", RowBox[List[SqrtBox["2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", SqrtBox[RowBox[List["1", "-", FractionBox["a", "b"]]]]]], "+", SqrtBox[RowBox[List["-", FractionBox[RowBox[List["a", "+", "b"]], "b"]]]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]]]], ")"]]]], "]"]]]], "-", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["Log", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "-", RowBox[List[SqrtBox["2"], " ", RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox["a", "b"]]]], "+", SqrtBox[RowBox[List["-", FractionBox[RowBox[List["a", "+", "b"]], "b"]]]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]]]], ")"]]]], "]"]]]], "-", RowBox[List["2", " ", "c", " ", "z", " ", RowBox[List["Log", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "-", RowBox[List[SqrtBox["2"], " ", RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox["a", "b"]]]], "+", SqrtBox[RowBox[List["-", FractionBox[RowBox[List["a", "+", "b"]], "b"]]]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]]]], ")"]]]], "]"]]]], "+", RowBox[List["4", " ", "\[ImaginaryI]", " ", RowBox[List["ArcSin", "[", RowBox[List[FractionBox["1", "2"], " ", SqrtBox[RowBox[List["2", "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox["2"], " ", SqrtBox[RowBox[List["-", FractionBox[RowBox[List["a", "+", "b"]], "b"]]]]]]]]]]], "]"]], " ", RowBox[List["Log", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "-", RowBox[List[SqrtBox["2"], " ", RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox["a", "b"]]]], "+", SqrtBox[RowBox[List["-", FractionBox[RowBox[List["a", "+", "b"]], "b"]]]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]]]], ")"]]]], "]"]]]], "+", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["Log", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "+", RowBox[List[SqrtBox["2"], " ", RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox["a", "b"]]]], "+", SqrtBox[RowBox[List["-", FractionBox[RowBox[List["a", "+", "b"]], "b"]]]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]]]], ")"]]]], "]"]]]], "+", RowBox[List["2", " ", "c", " ", "z", " ", RowBox[List["Log", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "+", RowBox[List[SqrtBox["2"], " ", RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox["a", "b"]]]], "+", SqrtBox[RowBox[List["-", FractionBox[RowBox[List["a", "+", "b"]], "b"]]]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]]]], ")"]]]], "]"]]]], "-", RowBox[List["4", " ", "\[ImaginaryI]", " ", RowBox[List["ArcSin", "[", RowBox[List[FractionBox["1", "2"], " ", SqrtBox[RowBox[List["2", "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox["2"], " ", SqrtBox[RowBox[List["-", FractionBox[RowBox[List["a", "+", "b"]], "b"]]]]]]]]]]], "]"]], " ", RowBox[List["Log", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "+", RowBox[List[SqrtBox["2"], " ", RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox["a", "b"]]]], "+", SqrtBox[RowBox[List["-", FractionBox[RowBox[List["a", "+", "b"]], "b"]]]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]]]], ")"]]]], "]"]]]], "-", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["Log", "[", RowBox[List[RowBox[List[SqrtBox["2"], " ", SqrtBox[RowBox[List["-", FractionBox[RowBox[List["a", "+", "b"]], "b"]]]]]], "-", RowBox[List["2", " ", RowBox[List["Sinh", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], "]"]]]], "+", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["Log", "[", RowBox[List[RowBox[List[SqrtBox["2"], " ", SqrtBox[RowBox[List["-", FractionBox[RowBox[List["a", "+", "b"]], "b"]]]]]], "+", RowBox[List["2", " ", RowBox[List["Sinh", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], "]"]]]], "+", RowBox[List["2", " ", RowBox[List["PolyLog", "[", RowBox[List["2", ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox["a", "b"]]]], "-", SqrtBox[RowBox[List["-", FractionBox[RowBox[List["a", "+", "b"]], "b"]]]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]], SqrtBox["2"]]]], "]"]]]], "-", RowBox[List["2", " ", RowBox[List["PolyLog", "[", RowBox[List["2", ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", SqrtBox[RowBox[List["1", "-", FractionBox["a", "b"]]]]]], "+", SqrtBox[RowBox[List["-", FractionBox[RowBox[List["a", "+", "b"]], "b"]]]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]], SqrtBox["2"]]]], "]"]]]], "+", RowBox[List["2", " ", RowBox[List["PolyLog", "[", RowBox[List["2", ",", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox["a", "b"]]]], "+", SqrtBox[RowBox[List["-", FractionBox[RowBox[List["a", "+", "b"]], "b"]]]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]], SqrtBox["2"]]]]]], "]"]]]], "-", RowBox[List["2", " ", RowBox[List["PolyLog", "[", RowBox[List["2", ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox["a", "b"]]]], "+", SqrtBox[RowBox[List["-", FractionBox[RowBox[List["a", "+", "b"]], "b"]]]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]], SqrtBox["2"]]]], "]"]]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mfrac> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mi> b </mi> </mfrac> </mrow> </msqrt> <mo> &#8290; </mo> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 8 </mn> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> sin </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 2 </mn> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mi> b </mi> </mfrac> </mrow> </msqrt> </mrow> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> &#8520; </mi> </mrow> <mo> + </mo> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mi> b </mi> </mfrac> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> tan </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#960; </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <msqrt> <mrow> <mn> 2 </mn> <mo> - </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mi> b </mi> </mfrac> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> sin </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 2 </mn> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mi> b </mi> </mfrac> </mrow> </msqrt> </mrow> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> </mrow> <mtext> </mtext> <mo> + </mo> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mi> b </mi> </mfrac> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> tan </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#960; </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <msqrt> <mrow> <mn> 2 </mn> <mo> - </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mi> b </mi> </mfrac> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mi> a </mi> <mi> b </mi> </mfrac> </mrow> </msqrt> <mo> - </mo> <msqrt> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mi> b </mi> </mfrac> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> sin </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 2 </mn> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mi> b </mi> </mfrac> </mrow> </msqrt> </mrow> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mi> a </mi> <mi> b </mi> </mfrac> </mrow> </msqrt> <mo> - </mo> <msqrt> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mi> b </mi> </mfrac> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mi> a </mi> <mi> b </mi> </mfrac> </mrow> </msqrt> <mo> - </mo> <msqrt> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mi> b </mi> </mfrac> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mi> b </mi> </mfrac> </mrow> </msqrt> <mo> - </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mi> a </mi> <mi> b </mi> </mfrac> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> sin </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 2 </mn> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mi> b </mi> </mfrac> </mrow> </msqrt> </mrow> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mi> b </mi> </mfrac> </mrow> </msqrt> <mo> - </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mi> a </mi> <mi> b </mi> </mfrac> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mi> b </mi> </mfrac> </mrow> </msqrt> <mo> - </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mi> a </mi> <mi> b </mi> </mfrac> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mi> a </mi> <mi> b </mi> </mfrac> </mrow> </msqrt> <mo> + </mo> <msqrt> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mi> b </mi> </mfrac> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> sin </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 2 </mn> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mi> b </mi> </mfrac> </mrow> </msqrt> </mrow> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mi> a </mi> <mi> b </mi> </mfrac> </mrow> </msqrt> <mo> + </mo> <msqrt> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mi> b </mi> </mfrac> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mi> a </mi> <mi> b </mi> </mfrac> </mrow> </msqrt> <mo> + </mo> <msqrt> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mi> b </mi> </mfrac> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> - </mo> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mi> a </mi> <mi> b </mi> </mfrac> </mrow> </msqrt> <mo> + </mo> <msqrt> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mi> b </mi> </mfrac> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> sin </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 2 </mn> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mi> b </mi> </mfrac> </mrow> </msqrt> </mrow> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> - </mo> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mi> a </mi> <mi> b </mi> </mfrac> </mrow> </msqrt> <mo> + </mo> <msqrt> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mi> b </mi> </mfrac> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> - </mo> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mi> a </mi> <mi> b </mi> </mfrac> </mrow> </msqrt> <mo> + </mo> <msqrt> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mi> b </mi> </mfrac> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mi> b </mi> </mfrac> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mi> b </mi> </mfrac> </mrow> </msqrt> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mn> 2 </mn> </msub> <mo> ( </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mi> a </mi> <mi> b </mi> </mfrac> </mrow> </msqrt> <mo> - </mo> <msqrt> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mi> b </mi> </mfrac> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <msqrt> <mn> 2 </mn> </msqrt> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mn> 2 </mn> </msub> <mo> ( </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mi> b </mi> </mfrac> </mrow> </msqrt> <mo> - </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mi> a </mi> <mi> b </mi> </mfrac> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <msqrt> <mn> 2 </mn> </msqrt> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mn> 2 </mn> </msub> <mo> ( </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mi> a </mi> <mi> b </mi> </mfrac> </mrow> </msqrt> <mo> + </mo> <msqrt> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mi> b </mi> </mfrac> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <msqrt> <mn> 2 </mn> </msqrt> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mn> 2 </mn> </msub> <mo> ( </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mi> a </mi> <mi> b </mi> </mfrac> </mrow> </msqrt> <mo> + </mo> <msqrt> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mi> b </mi> </mfrac> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <msqrt> <mn> 2 </mn> </msqrt> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <ci> z </ci> <apply> <cosh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <cosh /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> b </ci> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -8 </cn> <apply> <arcsin /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <arctan /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <imaginaryi /> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <tan /> <apply> <times /> <cn type='rational'> 1 <sep /> 4 </cn> <apply> <plus /> <pi /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> <apply> <power /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <arcsin /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <arctan /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <tan /> <apply> <times /> <cn type='rational'> 1 <sep /> 4 </cn> <apply> <plus /> <pi /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> <apply> <power /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> <apply> <ln /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <imaginaryi /> <apply> <arcsin /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <ln /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <pi /> <apply> <ln /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> <apply> <ln /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <imaginaryi /> <apply> <arcsin /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <ln /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <imaginaryi /> <pi /> <apply> <ln /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> <apply> <ln /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <imaginaryi /> <apply> <arcsin /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <ln /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <imaginaryi /> <pi /> <apply> <ln /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> <apply> <ln /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <imaginaryi /> <apply> <arcsin /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <ln /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <pi /> <apply> <ln /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <imaginaryi /> <pi /> <apply> <ln /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <sinh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <pi /> <apply> <ln /> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <sinh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> PolyLog </ci> <cn type='integer'> 2 </cn> <apply> <times /> <apply> <plus /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> PolyLog </ci> <cn type='integer'> 2 </cn> <apply> <times /> <apply> <plus /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> PolyLog </ci> <cn type='integer'> 2 </cn> <apply> <times /> <apply> <plus /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> PolyLog </ci> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List["z_", " ", RowBox[List["Cosh", "[", RowBox[List["c_", " ", "z_"]], "]"]]]], RowBox[List["a_", "+", RowBox[List["b_", " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "c_", " ", "z_"]], "]"]]]]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "8"]], " ", RowBox[List["ArcSin", "[", RowBox[List[FractionBox["1", "2"], " ", SqrtBox[RowBox[List["2", "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox["2"], " ", SqrtBox[RowBox[List["-", FractionBox[RowBox[List["a", "+", "b"]], "b"]]]]]]]]]]], "]"]], " ", RowBox[List["ArcTan", "[", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "\[ImaginaryI]"]], "+", RowBox[List[SqrtBox["2"], " ", SqrtBox[RowBox[List["-", FractionBox[RowBox[List["a", "+", "b"]], "b"]]]]]]]], ")"]], " ", RowBox[List["Tan", "[", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["\[Pi]", "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "z"]]]], ")"]]]], "]"]]]], SqrtBox[RowBox[List["2", "-", FractionBox[RowBox[List["2", " ", "a"]], "b"]]]]], "]"]]]], "+", RowBox[List["8", " ", RowBox[List["ArcSin", "[", RowBox[List[FractionBox["1", "2"], " ", SqrtBox[RowBox[List["2", "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox["2"], " ", SqrtBox[RowBox[List["-", FractionBox[RowBox[List["a", "+", "b"]], "b"]]]]]]]]]]], "]"]], " ", RowBox[List["ArcTan", "[", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[ImaginaryI]"]], "+", RowBox[List[SqrtBox["2"], " ", SqrtBox[RowBox[List["-", FractionBox[RowBox[List["a", "+", "b"]], "b"]]]]]]]], ")"]], " ", RowBox[List["Tan", "[", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["\[Pi]", "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "z"]]]], ")"]]]], "]"]]]], SqrtBox[RowBox[List["2", "-", FractionBox[RowBox[List["2", " ", "a"]], "b"]]]]], "]"]]]], "-", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["Log", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "+", RowBox[List[SqrtBox["2"], " ", RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox["a", "b"]]]], "-", SqrtBox[RowBox[List["-", FractionBox[RowBox[List["a", "+", "b"]], "b"]]]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]]]], ")"]]]], "]"]]]], "-", RowBox[List["2", " ", "c", " ", "z", " ", RowBox[List["Log", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "+", RowBox[List[SqrtBox["2"], " ", RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox["a", "b"]]]], "-", SqrtBox[RowBox[List["-", FractionBox[RowBox[List["a", "+", "b"]], "b"]]]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]]]], ")"]]]], "]"]]]], "-", RowBox[List["4", " ", "\[ImaginaryI]", " ", RowBox[List["ArcSin", "[", RowBox[List[FractionBox["1", "2"], " ", SqrtBox[RowBox[List["2", "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox["2"], " ", SqrtBox[RowBox[List["-", FractionBox[RowBox[List["a", "+", "b"]], "b"]]]]]]]]]]], "]"]], " ", RowBox[List["Log", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "+", RowBox[List[SqrtBox["2"], " ", RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox["a", "b"]]]], "-", SqrtBox[RowBox[List["-", FractionBox[RowBox[List["a", "+", "b"]], "b"]]]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]]]], ")"]]]], "]"]]]], "+", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["Log", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "+", RowBox[List[SqrtBox["2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", SqrtBox[RowBox[List["1", "-", FractionBox["a", "b"]]]]]], "+", SqrtBox[RowBox[List["-", FractionBox[RowBox[List["a", "+", "b"]], "b"]]]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]]]], ")"]]]], "]"]]]], "+", RowBox[List["2", " ", "c", " ", "z", " ", RowBox[List["Log", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "+", RowBox[List[SqrtBox["2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", SqrtBox[RowBox[List["1", "-", FractionBox["a", "b"]]]]]], "+", SqrtBox[RowBox[List["-", FractionBox[RowBox[List["a", "+", "b"]], "b"]]]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]]]], ")"]]]], "]"]]]], "+", RowBox[List["4", " ", "\[ImaginaryI]", " ", RowBox[List["ArcSin", "[", RowBox[List[FractionBox["1", "2"], " ", SqrtBox[RowBox[List["2", "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox["2"], " ", SqrtBox[RowBox[List["-", FractionBox[RowBox[List["a", "+", "b"]], "b"]]]]]]]]]]], "]"]], " ", RowBox[List["Log", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "+", RowBox[List[SqrtBox["2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", SqrtBox[RowBox[List["1", "-", FractionBox["a", "b"]]]]]], "+", SqrtBox[RowBox[List["-", FractionBox[RowBox[List["a", "+", "b"]], "b"]]]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]]]], ")"]]]], "]"]]]], "-", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["Log", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "-", RowBox[List[SqrtBox["2"], " ", RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox["a", "b"]]]], "+", SqrtBox[RowBox[List["-", FractionBox[RowBox[List["a", "+", "b"]], "b"]]]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]]]], ")"]]]], "]"]]]], "-", RowBox[List["2", " ", "c", " ", "z", " ", RowBox[List["Log", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "-", RowBox[List[SqrtBox["2"], " ", RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox["a", "b"]]]], "+", SqrtBox[RowBox[List["-", FractionBox[RowBox[List["a", "+", "b"]], "b"]]]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]]]], ")"]]]], "]"]]]], "+", RowBox[List["4", " ", "\[ImaginaryI]", " ", RowBox[List["ArcSin", "[", RowBox[List[FractionBox["1", "2"], " ", SqrtBox[RowBox[List["2", "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox["2"], " ", SqrtBox[RowBox[List["-", FractionBox[RowBox[List["a", "+", "b"]], "b"]]]]]]]]]]], "]"]], " ", RowBox[List["Log", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "-", RowBox[List[SqrtBox["2"], " ", RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox["a", "b"]]]], "+", SqrtBox[RowBox[List["-", FractionBox[RowBox[List["a", "+", "b"]], "b"]]]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]]]], ")"]]]], "]"]]]], "+", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["Log", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "+", RowBox[List[SqrtBox["2"], " ", RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox["a", "b"]]]], "+", SqrtBox[RowBox[List["-", FractionBox[RowBox[List["a", "+", "b"]], "b"]]]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]]]], ")"]]]], "]"]]]], "+", RowBox[List["2", " ", "c", " ", "z", " ", RowBox[List["Log", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "+", RowBox[List[SqrtBox["2"], " ", RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox["a", "b"]]]], "+", SqrtBox[RowBox[List["-", FractionBox[RowBox[List["a", "+", "b"]], "b"]]]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]]]], ")"]]]], "]"]]]], "-", RowBox[List["4", " ", "\[ImaginaryI]", " ", RowBox[List["ArcSin", "[", RowBox[List[FractionBox["1", "2"], " ", SqrtBox[RowBox[List["2", "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox["2"], " ", SqrtBox[RowBox[List["-", FractionBox[RowBox[List["a", "+", "b"]], "b"]]]]]]]]]]], "]"]], " ", RowBox[List["Log", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "+", RowBox[List[SqrtBox["2"], " ", RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox["a", "b"]]]], "+", SqrtBox[RowBox[List["-", FractionBox[RowBox[List["a", "+", "b"]], "b"]]]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]]]], ")"]]]], "]"]]]], "-", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["Log", "[", RowBox[List[RowBox[List[SqrtBox["2"], " ", SqrtBox[RowBox[List["-", FractionBox[RowBox[List["a", "+", "b"]], "b"]]]]]], "-", RowBox[List["2", " ", RowBox[List["Sinh", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], "]"]]]], "+", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["Log", "[", RowBox[List[RowBox[List[SqrtBox["2"], " ", SqrtBox[RowBox[List["-", FractionBox[RowBox[List["a", "+", "b"]], "b"]]]]]], "+", RowBox[List["2", " ", RowBox[List["Sinh", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], "]"]]]], "+", RowBox[List["2", " ", RowBox[List["PolyLog", "[", RowBox[List["2", ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox["a", "b"]]]], "-", SqrtBox[RowBox[List["-", FractionBox[RowBox[List["a", "+", "b"]], "b"]]]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]], SqrtBox["2"]]]], "]"]]]], "-", RowBox[List["2", " ", RowBox[List["PolyLog", "[", RowBox[List["2", ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", SqrtBox[RowBox[List["1", "-", FractionBox["a", "b"]]]]]], "+", SqrtBox[RowBox[List["-", FractionBox[RowBox[List["a", "+", "b"]], "b"]]]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]], SqrtBox["2"]]]], "]"]]]], "+", RowBox[List["2", " ", RowBox[List["PolyLog", "[", RowBox[List["2", ",", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox["a", "b"]]]], "+", SqrtBox[RowBox[List["-", FractionBox[RowBox[List["a", "+", "b"]], "b"]]]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]], SqrtBox["2"]]]]]], "]"]]]], "-", RowBox[List["2", " ", RowBox[List["PolyLog", "[", RowBox[List["2", ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox["a", "b"]]]], "+", SqrtBox[RowBox[List["-", FractionBox[RowBox[List["a", "+", "b"]], "b"]]]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]], SqrtBox["2"]]]], "]"]]]]]], RowBox[List["4", " ", SqrtBox["2"], " ", "b", " ", SqrtBox[RowBox[List["-", FractionBox[RowBox[List["a", "+", "b"]], "b"]]]], " ", SuperscriptBox["c", "2"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18