Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Cosh






Mathematica Notation

Traditional Notation









Elementary Functions > Cosh[z] > Integration > Indefinite integration > Involving functions of the direct function and exponential function > Involving products of the direct function and exponential function > Involving products of two direct functions and exponential function > Involving eb zr+e cosh(a zr+q) cosh(c zr+g)





http://functions.wolfram.com/01.20.21.2793.01









  


  










Input Form





Integrate[E^(b Sqrt[z] + e) Cosh[a Sqrt[z] + q] Cosh[c Sqrt[z] + g], z] == ((1/2) (-(E^(e - g - q)/(a - b + c)^2) + (E^(e - g - q) Sqrt[z])/ (-a + b - c)))/E^((a - b + c) Sqrt[z]) + ((1/2) (-(E^(e + g - q)/(a - b - c)^2) + (E^(e + g - q) Sqrt[z])/ (-a + b + c)))/E^((a - b - c) Sqrt[z]) + (1/2) E^((a + b - c) Sqrt[z]) (-(E^(e - g + q)/(a + b - c)^2) + (E^(e - g + q) Sqrt[z])/(a + b - c)) + (1/2) E^((a + b + c) Sqrt[z]) (-(E^(e + g + q)/(a + b + c)^2) + (E^(e + g + q) Sqrt[z])/(a + b + c))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["b", " ", SqrtBox["z"]]], "+", "e"]]], RowBox[List["Cosh", "[", RowBox[List[RowBox[List["a", " ", SqrtBox["z"]]], "+", "q"]], "]"]], RowBox[List["Cosh", "[", RowBox[List[RowBox[List["c", " ", SqrtBox["z"]]], "+", "g"]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["a", "-", "b", "+", "c"]], ")"]]]], " ", SqrtBox["z"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox[SuperscriptBox["\[ExponentialE]", RowBox[List["e", "-", "g", "-", "q"]]], SuperscriptBox[RowBox[List["(", RowBox[List["a", "-", "b", "+", "c"]], ")"]], "2"]]]], "+", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["e", "-", "g", "-", "q"]]], " ", SqrtBox["z"]]], RowBox[List[RowBox[List["-", "a"]], "+", "b", "-", "c"]]]]], ")"]]]], "+", RowBox[List[FractionBox["1", "2"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["a", "-", "b", "-", "c"]], ")"]]]], " ", SqrtBox["z"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox[SuperscriptBox["\[ExponentialE]", RowBox[List["e", "+", "g", "-", "q"]]], SuperscriptBox[RowBox[List["(", RowBox[List["a", "-", "b", "-", "c"]], ")"]], "2"]]]], "+", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["e", "+", "g", "-", "q"]]], " ", SqrtBox["z"]]], RowBox[List[RowBox[List["-", "a"]], "+", "b", "+", "c"]]]]], ")"]]]], "+", RowBox[List[FractionBox["1", "2"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b", "-", "c"]], ")"]], " ", SqrtBox["z"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox[SuperscriptBox["\[ExponentialE]", RowBox[List["e", "-", "g", "+", "q"]]], SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", "b", "-", "c"]], ")"]], "2"]]]], "+", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["e", "-", "g", "+", "q"]]], " ", SqrtBox["z"]]], RowBox[List["a", "+", "b", "-", "c"]]]]], ")"]]]], "+", RowBox[List[FractionBox["1", "2"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b", "+", "c"]], ")"]], " ", SqrtBox["z"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox[SuperscriptBox["\[ExponentialE]", RowBox[List["e", "+", "g", "+", "q"]]], SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", "b", "+", "c"]], ")"]], "2"]]]], "+", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["e", "+", "g", "+", "q"]]], " ", SqrtBox["z"]]], RowBox[List["a", "+", "b", "+", "c"]]]]], ")"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> + </mo> <mi> e </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> + </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> &#8290; </mo> <mi> c </mi> </mrow> <mo> + </mo> <mi> g </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mi> e </mi> <mo> - </mo> <mi> g </mi> <mo> - </mo> <mi> q </mi> </mrow> </msup> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mi> c </mi> </mrow> </mfrac> <mo> - </mo> <mfrac> <msup> <mi> &#8519; </mi> <mrow> <mi> e </mi> <mo> - </mo> <mi> g </mi> <mo> - </mo> <mi> q </mi> </mrow> </msup> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mi> e </mi> <mo> + </mo> <mi> g </mi> <mo> - </mo> <mi> q </mi> </mrow> </msup> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mi> c </mi> </mrow> </mfrac> <mo> - </mo> <mfrac> <msup> <mi> &#8519; </mi> <mrow> <mi> e </mi> <mo> + </mo> <mi> g </mi> <mo> - </mo> <mi> q </mi> </mrow> </msup> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> <mo> - </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> <mo> - </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mi> e </mi> <mo> - </mo> <mi> g </mi> <mo> + </mo> <mi> q </mi> </mrow> </msup> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mi> c </mi> </mrow> </mfrac> <mo> - </mo> <mfrac> <msup> <mi> &#8519; </mi> <mrow> <mi> e </mi> <mo> - </mo> <mi> g </mi> <mo> + </mo> <mi> q </mi> </mrow> </msup> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mi> e </mi> <mo> + </mo> <mi> g </mi> <mo> + </mo> <mi> q </mi> </mrow> </msup> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mi> c </mi> </mrow> </mfrac> <mo> - </mo> <mfrac> <msup> <mi> &#8519; </mi> <mrow> <mi> e </mi> <mo> + </mo> <mi> g </mi> <mo> + </mo> <mi> q </mi> </mrow> </msup> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </msup> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> b </ci> </apply> <ci> e </ci> </apply> </apply> <apply> <cosh /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> a </ci> </apply> <ci> q </ci> </apply> </apply> <apply> <cosh /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> c </ci> </apply> <ci> g </ci> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <ci> c </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <plus /> <ci> e </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> g </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> q </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <plus /> <ci> e </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> g </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> q </ci> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <ci> c </ci> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <plus /> <ci> e </ci> <ci> g </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> q </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <ci> b </ci> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <plus /> <ci> e </ci> <ci> g </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> q </ci> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <plus /> <ci> e </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> g </ci> </apply> <ci> q </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <plus /> <ci> e </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> g </ci> </apply> <ci> q </ci> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <plus /> <ci> e </ci> <ci> g </ci> <ci> q </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <plus /> <ci> e </ci> <ci> g </ci> <ci> q </ci> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> <ci> c </ci> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> <ci> c </ci> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["b_", " ", SqrtBox["z_"]]], "+", "e_"]]], " ", RowBox[List["Cosh", "[", RowBox[List[RowBox[List["a_", " ", SqrtBox["z_"]]], "+", "q_"]], "]"]], " ", RowBox[List["Cosh", "[", RowBox[List[RowBox[List["c_", " ", SqrtBox["z_"]]], "+", "g_"]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["a", "-", "b", "+", "c"]], ")"]]]], " ", SqrtBox["z"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox[SuperscriptBox["\[ExponentialE]", RowBox[List["e", "-", "g", "-", "q"]]], SuperscriptBox[RowBox[List["(", RowBox[List["a", "-", "b", "+", "c"]], ")"]], "2"]]]], "+", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["e", "-", "g", "-", "q"]]], " ", SqrtBox["z"]]], RowBox[List[RowBox[List["-", "a"]], "+", "b", "-", "c"]]]]], ")"]]]], "+", RowBox[List[FractionBox["1", "2"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["a", "-", "b", "-", "c"]], ")"]]]], " ", SqrtBox["z"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox[SuperscriptBox["\[ExponentialE]", RowBox[List["e", "+", "g", "-", "q"]]], SuperscriptBox[RowBox[List["(", RowBox[List["a", "-", "b", "-", "c"]], ")"]], "2"]]]], "+", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["e", "+", "g", "-", "q"]]], " ", SqrtBox["z"]]], RowBox[List[RowBox[List["-", "a"]], "+", "b", "+", "c"]]]]], ")"]]]], "+", RowBox[List[FractionBox["1", "2"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b", "-", "c"]], ")"]], " ", SqrtBox["z"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox[SuperscriptBox["\[ExponentialE]", RowBox[List["e", "-", "g", "+", "q"]]], SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", "b", "-", "c"]], ")"]], "2"]]]], "+", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["e", "-", "g", "+", "q"]]], " ", SqrtBox["z"]]], RowBox[List["a", "+", "b", "-", "c"]]]]], ")"]]]], "+", RowBox[List[FractionBox["1", "2"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b", "+", "c"]], ")"]], " ", SqrtBox["z"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox[SuperscriptBox["\[ExponentialE]", RowBox[List["e", "+", "g", "+", "q"]]], SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", "b", "+", "c"]], ")"]], "2"]]]], "+", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["e", "+", "g", "+", "q"]]], " ", SqrtBox["z"]]], RowBox[List["a", "+", "b", "+", "c"]]]]], ")"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18