Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Cosh






Mathematica Notation

Traditional Notation









Elementary Functions > Cosh[z] > Integration > Indefinite integration > Involving functions of the direct function and exponential function > Involving products of powers of two direct functions and exponential function > Involving product of power of the direct function, the direct function and exponential function > Involving eb zr+d z+e cosh(a zr+p z+q) coshv(c zr+f z+g)





http://functions.wolfram.com/01.20.21.2829.01









  


  










Input Form





Integrate[E^(b Sqrt[z] + d z + e) Cosh[a Sqrt[z] + p z + q] Cosh[c Sqrt[z] + f z + g]^v, z] == 2^(-2 - v) E^(e - q) Binomial[v, v/2] ((2 E^((-a + b) Sqrt[z] + (d - p) z))/ (d - p) + (2 E^(2 q + (a + b) Sqrt[z] + (d + p) z))/(d + p) + ((a - b) Sqrt[Pi] Erfi[(-a + b + 2 (d - p) Sqrt[z])/(2 Sqrt[d - p])])/ (E^((-a + b)^2/(4 (d - p))) (d - p)^(3/2)) - ((a + b) E^(-((a + b)^2/(4 (d + p))) + 2 q) Sqrt[Pi] Erfi[(a + b + 2 (d + p) Sqrt[z])/(2 Sqrt[d + p])])/(d + p)^(3/2)) (1 - Mod[v, 2]) + 2^(-2 - v) Sum[Binomial[v, k] (2 E^(e - 2 g k - q - g v) (E^(4 g k + (-a + b + 2 c k - c v) Sqrt[z] + (d + 2 f k - p - f v) z)/ (d + 2 f k - p - f v) + E^(4 g k + 2 q + (a + b + 2 c k - c v) Sqrt[z] + (d + 2 f k + p - f v) z)/(d + 2 f k + p - f v) + E^(2 g v + (-a + b - 2 c k + c v) Sqrt[z] + (d - 2 f k - p + f v) z)/ (d - 2 f k - p + f v) + E^(2 q + 2 g v + (a + b - 2 c k + c v) Sqrt[z] + (d - 2 f k + p + f v) z)/(d - 2 f k + p + f v)) - (E^(e + 2 g k - q - g v - (-a + b + 2 c k - c v)^2/ (4 (d + 2 f k - p - f v))) Sqrt[Pi] (-a + b + 2 c k - c v) Erfi[(-a + b + 2 c k - c v + 2 (d + 2 f k - p - f v) Sqrt[z])/ (2 Sqrt[d + 2 f k - p - f v])])/(d + 2 f k - p - f v)^(3/2) - (E^(e + 2 g k + q - g v - (a + b + 2 c k - c v)^2/ (4 (d + 2 f k + p - f v))) Sqrt[Pi] (a + b + 2 c k - c v) Erfi[(a + b + 2 c k - c v + 2 (d + 2 f k + p - f v) Sqrt[z])/ (2 Sqrt[d + 2 f k + p - f v])])/(d + 2 f k + p - f v)^(3/2) - (E^(e - 2 g k - q + g v - (-a + b - 2 c k + c v)^2/ (4 (d - 2 f k - p + f v))) Sqrt[Pi] (-a + b - 2 c k + c v) Erfi[(-a + b - 2 c k + c v + 2 (d - 2 f k - p + f v) Sqrt[z])/ (2 Sqrt[d - 2 f k - p + f v])])/(d - 2 f k - p + f v)^(3/2) - (E^(e - 2 g k + q + g v - (a + b + c (-2 k + v))^2/ (4 (d + p + f (-2 k + v)))) Sqrt[Pi] (a + b + c (-2 k + v)) Erfi[(a + b - 2 c k + c v + 2 (d + p + f (-2 k + v)) Sqrt[z])/ (2 Sqrt[d + p + f (-2 k + v)])])/(d + p + f (-2 k + v))^(3/2)), {k, 0, Floor[(1/2) (-1 + v)]}] /; Element[v, Integers] && v > 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["b", " ", SqrtBox["z"]]], "+", RowBox[List["d", " ", "z"]], "+", "e"]]], RowBox[List["Cosh", "[", RowBox[List[RowBox[List["a", " ", SqrtBox["z"]]], "+", RowBox[List["p", " ", "z"]], "+", "q"]], "]"]], SuperscriptBox[RowBox[List["Cosh", "[", RowBox[List[RowBox[List["c", " ", SqrtBox["z"]]], "+", RowBox[List["f", " ", "z"]], "+", "g"]], "]"]], "v"], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "2"]], "-", "v"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["e", "-", "q"]]], " ", RowBox[List["Binomial", "[", RowBox[List["v", ",", FractionBox["v", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List["2", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b"]], ")"]], " ", SqrtBox["z"]]], "+", RowBox[List[RowBox[List["(", RowBox[List["d", "-", "p"]], ")"]], " ", "z"]]]]]]], RowBox[List["d", "-", "p"]]], "+", FractionBox[RowBox[List["2", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["2", " ", "q"]], "+", RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", SqrtBox["z"]]], "+", RowBox[List[RowBox[List["(", RowBox[List["d", "+", "p"]], ")"]], " ", "z"]]]]]]], RowBox[List["d", "+", "p"]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b"]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List["d", "-", "p"]], ")"]]]]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List[RowBox[List["-", "a"]], "+", "b", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["d", "-", "p"]], ")"]], " ", SqrtBox["z"]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["d", "-", "p"]]]]]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["d", "-", "p"]], ")"]], RowBox[List["3", "/", "2"]]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List["d", "+", "p"]], ")"]]]]]]], "+", RowBox[List["2", " ", "q"]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List["a", "+", "b", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["d", "+", "p"]], ")"]], " ", SqrtBox["z"]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["d", "+", "p"]]]]]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", "p"]], ")"]], RowBox[List["3", "/", "2"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["v", ",", "2"]], "]"]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "2"]], "-", "v"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "v"]], ")"]]]], "]"]]], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["v", ",", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["e", "-", RowBox[List["2", " ", "g", " ", "k"]], "-", "q", "-", RowBox[List["g", " ", "v"]]]]], " ", RowBox[List["(", RowBox[List[FractionBox[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["4", " ", "g", " ", "k"]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b", "+", RowBox[List["2", " ", "c", " ", "k"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]], "+", RowBox[List[RowBox[List["(", RowBox[List["d", "+", RowBox[List["2", " ", "f", " ", "k"]], "-", "p", "-", RowBox[List["f", " ", "v"]]]], ")"]], " ", "z"]]]]], RowBox[List["d", "+", RowBox[List["2", " ", "f", " ", "k"]], "-", "p", "-", RowBox[List["f", " ", "v"]]]]], "+", FractionBox[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["4", " ", "g", " ", "k"]], "+", RowBox[List["2", " ", "q"]], "+", RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b", "+", RowBox[List["2", " ", "c", " ", "k"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]], "+", RowBox[List[RowBox[List["(", RowBox[List["d", "+", RowBox[List["2", " ", "f", " ", "k"]], "+", "p", "-", RowBox[List["f", " ", "v"]]]], ")"]], " ", "z"]]]]], RowBox[List["d", "+", RowBox[List["2", " ", "f", " ", "k"]], "+", "p", "-", RowBox[List["f", " ", "v"]]]]], "+", FractionBox[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["2", " ", "g", " ", "v"]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b", "-", RowBox[List["2", " ", "c", " ", "k"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]], "+", RowBox[List[RowBox[List["(", RowBox[List["d", "-", RowBox[List["2", " ", "f", " ", "k"]], "-", "p", "+", RowBox[List["f", " ", "v"]]]], ")"]], " ", "z"]]]]], RowBox[List["d", "-", RowBox[List["2", " ", "f", " ", "k"]], "-", "p", "+", RowBox[List["f", " ", "v"]]]]], "+", FractionBox[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["2", " ", "q"]], "+", RowBox[List["2", " ", "g", " ", "v"]], "+", RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b", "-", RowBox[List["2", " ", "c", " ", "k"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]], "+", RowBox[List[RowBox[List["(", RowBox[List["d", "-", RowBox[List["2", " ", "f", " ", "k"]], "+", "p", "+", RowBox[List["f", " ", "v"]]]], ")"]], " ", "z"]]]]], RowBox[List["d", "-", RowBox[List["2", " ", "f", " ", "k"]], "+", "p", "+", RowBox[List["f", " ", "v"]]]]]]], ")"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["e", "+", RowBox[List["2", " ", "g", " ", "k"]], "-", "q", "-", RowBox[List["g", " ", "v"]], "-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b", "+", RowBox[List["2", " ", "c", " ", "k"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["2", " ", "f", " ", "k"]], "-", "p", "-", RowBox[List["f", " ", "v"]]]], ")"]]]]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b", "+", RowBox[List["2", " ", "c", " ", "k"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List[RowBox[List["-", "a"]], "+", "b", "+", RowBox[List["2", " ", "c", " ", "k"]], "-", RowBox[List["c", " ", "v"]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["2", " ", "f", " ", "k"]], "-", "p", "-", RowBox[List["f", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["d", "+", RowBox[List["2", " ", "f", " ", "k"]], "-", "p", "-", RowBox[List["f", " ", "v"]]]]]]]], "]"]]]], ")"]], "/", SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["2", " ", "f", " ", "k"]], "-", "p", "-", RowBox[List["f", " ", "v"]]]], ")"]], RowBox[List["3", "/", "2"]]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["e", "+", RowBox[List["2", " ", "g", " ", "k"]], "+", "q", "-", RowBox[List["g", " ", "v"]], "-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", "b", "+", RowBox[List["2", " ", "c", " ", "k"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["2", " ", "f", " ", "k"]], "+", "p", "-", RowBox[List["f", " ", "v"]]]], ")"]]]]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List["a", "+", "b", "+", RowBox[List["2", " ", "c", " ", "k"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List["a", "+", "b", "+", RowBox[List["2", " ", "c", " ", "k"]], "-", RowBox[List["c", " ", "v"]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["2", " ", "f", " ", "k"]], "+", "p", "-", RowBox[List["f", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["d", "+", RowBox[List["2", " ", "f", " ", "k"]], "+", "p", "-", RowBox[List["f", " ", "v"]]]]]]]], "]"]]]], ")"]], "/", SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["2", " ", "f", " ", "k"]], "+", "p", "-", RowBox[List["f", " ", "v"]]]], ")"]], RowBox[List["3", "/", "2"]]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["e", "-", RowBox[List["2", " ", "g", " ", "k"]], "-", "q", "+", RowBox[List["g", " ", "v"]], "-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b", "-", RowBox[List["2", " ", "c", " ", "k"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List["d", "-", RowBox[List["2", " ", "f", " ", "k"]], "-", "p", "+", RowBox[List["f", " ", "v"]]]], ")"]]]]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b", "-", RowBox[List["2", " ", "c", " ", "k"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List[RowBox[List["-", "a"]], "+", "b", "-", RowBox[List["2", " ", "c", " ", "k"]], "+", RowBox[List["c", " ", "v"]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["d", "-", RowBox[List["2", " ", "f", " ", "k"]], "-", "p", "+", RowBox[List["f", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["d", "-", RowBox[List["2", " ", "f", " ", "k"]], "-", "p", "+", RowBox[List["f", " ", "v"]]]]]]]], "]"]]]], ")"]], "/", SuperscriptBox[RowBox[List["(", RowBox[List["d", "-", RowBox[List["2", " ", "f", " ", "k"]], "-", "p", "+", RowBox[List["f", " ", "v"]]]], ")"]], RowBox[List["3", "/", "2"]]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["e", "-", RowBox[List["2", " ", "g", " ", "k"]], "+", "q", "+", RowBox[List["g", " ", "v"]], "-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", "b", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "v"]], ")"]]]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List["d", "+", "p", "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "v"]], ")"]]]]]], ")"]]]]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List["a", "+", "b", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "v"]], ")"]]]]]], ")"]], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List["a", "+", "b", "-", RowBox[List["2", " ", "c", " ", "k"]], "+", RowBox[List["c", " ", "v"]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["d", "+", "p", "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "v"]], ")"]]]]]], ")"]], " ", SqrtBox["z"]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["d", "+", "p", "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "v"]], ")"]]]]]]]]]], "]"]]]], ")"]], "/", SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", "p", "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "v"]], ")"]]]]]], ")"]], RowBox[List["3", "/", "2"]]]]]]], ")"]]]]]]]]]]]], "/;", RowBox[List[RowBox[List["v", "\[Element]", "Integers"]], "\[And]", RowBox[List["v", ">", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> + </mo> <mrow> <mi> d </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mi> e </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> + </mo> <mrow> <mi> p </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> cosh </mi> <mi> v </mi> </msup> <mo> ( </mo> <mrow> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> &#8290; </mo> <mi> c </mi> </mrow> <mo> + </mo> <mrow> <mi> f </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mi> g </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <msup> <mn> 2 </mn> <mrow> <mrow> <mo> - </mo> <mi> v </mi> </mrow> <mo> - </mo> <mn> 2 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> e </mi> <mo> - </mo> <mi> q </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mo> - </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> - </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> </msup> <mo> &#8290; </mo> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mi> erfi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> - </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mi> d </mi> <mo> - </mo> <mi> p </mi> </mrow> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> - </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mfrac> <mo> + </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> - </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> </msup> </mrow> <mrow> <mi> d </mi> <mo> - </mo> <mi> p </mi> </mrow> </mfrac> <mo> + </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> q </mi> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> </msup> </mrow> <mrow> <mi> d </mi> <mo> + </mo> <mi> p </mi> </mrow> </mfrac> <mo> - </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> q </mi> </mrow> <mo> - </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> </msup> <mo> &#8290; </mo> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mi> erfi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mi> d </mi> <mo> + </mo> <mi> p </mi> </mrow> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> v </mi> </mtd> </mtr> <mtr> <mtd> <mfrac> <mi> v </mi> <mn> 2 </mn> </mfrac> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;v&quot;, Identity]], List[TagBox[FractionBox[&quot;v&quot;, &quot;2&quot;], Identity]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <semantics> <mrow> <mi> v </mi> <mo> &#8290; </mo> <mi> mod </mi> <mo> &#8290; </mo> <mn> 2 </mn> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <rem /> <ci> $CellContext`v </ci> <cn type='integer'> 2 </cn> </apply> </annotation-xml> </semantics> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mn> 2 </mn> <mrow> <mrow> <mo> - </mo> <mi> v </mi> </mrow> <mo> - </mo> <mn> 2 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> v </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> &#8971; </mo> </mrow> </munderover> <mrow> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> v </mi> </mtd> </mtr> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;v&quot;, Identity]], List[TagBox[&quot;k&quot;, Identity]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> e </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> g </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mi> q </mi> <mo> - </mo> <mrow> <mi> g </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> q </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> g </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> f </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mi> p </mi> <mo> + </mo> <mrow> <mi> f </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> </msup> <mrow> <mi> d </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> f </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mi> p </mi> <mo> + </mo> <mrow> <mi> f </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> </mfrac> <mo> + </mo> <mfrac> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> g </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> f </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mi> p </mi> <mo> - </mo> <mrow> <mi> f </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> </msup> <mrow> <mi> d </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> f </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mi> p </mi> <mo> - </mo> <mrow> <mi> f </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> </mfrac> <mo> + </mo> <mfrac> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> g </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> q </mi> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> f </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mi> p </mi> <mo> - </mo> <mrow> <mi> f </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> </msup> <mrow> <mi> d </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> f </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mi> p </mi> <mo> - </mo> <mrow> <mi> f </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> </mfrac> <mo> + </mo> <mfrac> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> g </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> f </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mi> p </mi> <mo> + </mo> <mrow> <mi> f </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> </msup> <mrow> <mi> d </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> f </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mi> p </mi> <mo> + </mo> <mrow> <mi> f </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <msup> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> f </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mi> p </mi> <mo> + </mo> <mrow> <mi> f </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> f </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mi> p </mi> <mo> + </mo> <mrow> <mi> f </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> <mo> + </mo> <mi> e </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> g </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mi> q </mi> <mo> + </mo> <mrow> <mi> g </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> </msup> <mo> &#8290; </mo> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> erfi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> f </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mi> p </mi> <mo> + </mo> <mrow> <mi> f </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mi> d </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> f </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mi> p </mi> <mo> + </mo> <mrow> <mi> f </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <msup> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> f </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mi> p </mi> <mo> - </mo> <mrow> <mi> f </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> f </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mi> p </mi> <mo> - </mo> <mrow> <mi> f </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> <mo> + </mo> <mi> e </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> g </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mi> q </mi> <mo> - </mo> <mrow> <mi> g </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> </msup> <mo> &#8290; </mo> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> erfi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> f </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mi> p </mi> <mo> - </mo> <mrow> <mi> f </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mi> d </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> f </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mi> p </mi> <mo> - </mo> <mrow> <mi> f </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> f </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mi> p </mi> <mo> - </mo> <mrow> <mi> f </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> <mo> + </mo> <mi> e </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> g </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mi> q </mi> <mo> - </mo> <mrow> <mi> g </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> </msup> <mo> &#8290; </mo> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> erfi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> f </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mi> p </mi> <mo> - </mo> <mrow> <mi> f </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mi> d </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> f </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mi> p </mi> <mo> - </mo> <mrow> <mi> f </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> f </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mi> p </mi> <mo> - </mo> <mrow> <mi> f </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mi> p </mi> <mo> + </mo> <mrow> <mi> f </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> <mo> + </mo> <mi> e </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> g </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mi> q </mi> <mo> + </mo> <mrow> <mi> g </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> </msup> <mo> &#8290; </mo> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> erfi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mi> p </mi> <mo> + </mo> <mrow> <mi> f </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mi> d </mi> <mo> + </mo> <mi> p </mi> <mo> + </mo> <mrow> <mi> f </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mi> p </mi> <mo> + </mo> <mrow> <mi> f </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> v </mi> <mo> &#8712; </mo> <msup> <mi> &#8469; </mi> <mo> + </mo> </msup> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> b </ci> </apply> <apply> <times /> <ci> d </ci> <ci> z </ci> </apply> <ci> e </ci> </apply> </apply> <apply> <cosh /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> a </ci> </apply> <apply> <times /> <ci> p </ci> <ci> z </ci> </apply> <ci> q </ci> </apply> </apply> <apply> <power /> <apply> <cosh /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> c </ci> </apply> <apply> <times /> <ci> f </ci> <ci> z </ci> </apply> <ci> g </ci> </apply> </apply> <ci> v </ci> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> v </ci> </apply> <cn type='integer'> -2 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <plus /> <ci> e </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> q </ci> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <ci> b </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> </apply> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> q </ci> </apply> <apply> <times /> <apply> <plus /> <ci> d </ci> <ci> p </ci> </apply> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> d </ci> <ci> p </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> q </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <ci> d </ci> <ci> p </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> d </ci> <ci> p </ci> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> d </ci> <ci> p </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> d </ci> <ci> p </ci> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <ci> Binomial </ci> <ci> v </ci> <apply> <times /> <ci> v </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <rem /> <ci> $CellContext`v </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> v </ci> </apply> <cn type='integer'> -2 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <floor /> <apply> <times /> <apply> <plus /> <ci> v </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </uplimit> <apply> <times /> <apply> <ci> Binomial </ci> <ci> v </ci> <ci> k </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <exponentiale /> <apply> <plus /> <ci> e </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> g </ci> <ci> k </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> q </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> g </ci> <ci> v </ci> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> q </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> g </ci> <ci> v </ci> </apply> <apply> <times /> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> f </ci> <ci> k </ci> </apply> </apply> <ci> p </ci> <apply> <times /> <ci> f </ci> <ci> v </ci> </apply> </apply> <ci> z </ci> </apply> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> k </ci> </apply> </apply> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> f </ci> <ci> k </ci> </apply> </apply> <ci> p </ci> <apply> <times /> <ci> f </ci> <ci> v </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> g </ci> <ci> k </ci> </apply> <apply> <times /> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> f </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> f </ci> <ci> v </ci> </apply> </apply> </apply> <ci> z </ci> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <ci> b </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> f </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> f </ci> <ci> v </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> g </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> q </ci> </apply> <apply> <times /> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> f </ci> <ci> k </ci> </apply> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> f </ci> <ci> v </ci> </apply> </apply> </apply> <ci> z </ci> </apply> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> f </ci> <ci> k </ci> </apply> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> f </ci> <ci> v </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> g </ci> <ci> v </ci> </apply> <apply> <times /> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> f </ci> <ci> k </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> <apply> <times /> <ci> f </ci> <ci> v </ci> </apply> </apply> <ci> z </ci> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> k </ci> </apply> </apply> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> f </ci> <ci> k </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> <apply> <times /> <ci> f </ci> <ci> v </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> f </ci> <ci> k </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> <apply> <times /> <ci> f </ci> <ci> v </ci> </apply> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> k </ci> </apply> </apply> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> f </ci> <ci> k </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> <apply> <times /> <ci> f </ci> <ci> v </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <ci> e </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> g </ci> <ci> k </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> q </ci> </apply> <apply> <times /> <ci> g </ci> <ci> v </ci> </apply> </apply> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> k </ci> </apply> </apply> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> k </ci> </apply> </apply> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> f </ci> <ci> k </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> <apply> <times /> <ci> f </ci> <ci> v </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> f </ci> <ci> k </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> <apply> <times /> <ci> f </ci> <ci> v </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> f </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> f </ci> <ci> v </ci> </apply> </apply> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <ci> b </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> f </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> f </ci> <ci> v </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <ci> e </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> g </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> q </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> g </ci> <ci> v </ci> </apply> </apply> </apply> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <ci> b </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <ci> b </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> f </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> f </ci> <ci> v </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> f </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> f </ci> <ci> v </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> f </ci> <ci> k </ci> </apply> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> f </ci> <ci> v </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <ci> e </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> g </ci> <ci> k </ci> </apply> <ci> q </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> g </ci> <ci> v </ci> </apply> </apply> </apply> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> a </ci> <ci> b </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> f </ci> <ci> k </ci> </apply> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> f </ci> <ci> v </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> f </ci> <ci> k </ci> </apply> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> f </ci> <ci> v </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> f </ci> <ci> k </ci> </apply> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> f </ci> <ci> v </ci> </apply> </apply> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> <apply> <times /> <ci> c </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <ci> d </ci> <ci> p </ci> <apply> <times /> <ci> f </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <ci> e </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> g </ci> <ci> k </ci> </apply> </apply> <ci> q </ci> <apply> <times /> <ci> g </ci> <ci> v </ci> </apply> </apply> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> a </ci> <ci> b </ci> <apply> <times /> <ci> c </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> k </ci> </apply> </apply> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> d </ci> <ci> p </ci> <apply> <times /> <ci> f </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> d </ci> <ci> p </ci> <apply> <times /> <ci> f </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> d </ci> <ci> p </ci> <apply> <times /> <ci> f </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <ci> v </ci> <apply> <ci> SuperPlus </ci> <ci> &#8469; </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["b_", " ", SqrtBox["z_"]]], "+", RowBox[List["d_", " ", "z_"]], "+", "e_"]]], " ", RowBox[List["Cosh", "[", RowBox[List[RowBox[List["a_", " ", SqrtBox["z_"]]], "+", RowBox[List["p_", " ", "z_"]], "+", "q_"]], "]"]], " ", SuperscriptBox[RowBox[List["Cosh", "[", RowBox[List[RowBox[List["c_", " ", SqrtBox["z_"]]], "+", RowBox[List["f_", " ", "z_"]], "+", "g_"]], "]"]], "v_"]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "2"]], "-", "v"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["e", "-", "q"]]], " ", RowBox[List["Binomial", "[", RowBox[List["v", ",", FractionBox["v", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List["2", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b"]], ")"]], " ", SqrtBox["z"]]], "+", RowBox[List[RowBox[List["(", RowBox[List["d", "-", "p"]], ")"]], " ", "z"]]]]]]], RowBox[List["d", "-", "p"]]], "+", FractionBox[RowBox[List["2", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["2", " ", "q"]], "+", RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", SqrtBox["z"]]], "+", RowBox[List[RowBox[List["(", RowBox[List["d", "+", "p"]], ")"]], " ", "z"]]]]]]], RowBox[List["d", "+", "p"]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b"]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List["d", "-", "p"]], ")"]]]]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List[RowBox[List["-", "a"]], "+", "b", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["d", "-", "p"]], ")"]], " ", SqrtBox["z"]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["d", "-", "p"]]]]]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["d", "-", "p"]], ")"]], RowBox[List["3", "/", "2"]]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List["d", "+", "p"]], ")"]]]]]]], "+", RowBox[List["2", " ", "q"]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List["a", "+", "b", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["d", "+", "p"]], ")"]], " ", SqrtBox["z"]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["d", "+", "p"]]]]]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", "p"]], ")"]], RowBox[List["3", "/", "2"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["v", ",", "2"]], "]"]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "2"]], "-", "v"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "v"]], ")"]]]], "]"]]], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["v", ",", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["e", "-", RowBox[List["2", " ", "g", " ", "k"]], "-", "q", "-", RowBox[List["g", " ", "v"]]]]], " ", RowBox[List["(", RowBox[List[FractionBox[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["4", " ", "g", " ", "k"]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b", "+", RowBox[List["2", " ", "c", " ", "k"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]], "+", RowBox[List[RowBox[List["(", RowBox[List["d", "+", RowBox[List["2", " ", "f", " ", "k"]], "-", "p", "-", RowBox[List["f", " ", "v"]]]], ")"]], " ", "z"]]]]], RowBox[List["d", "+", RowBox[List["2", " ", "f", " ", "k"]], "-", "p", "-", RowBox[List["f", " ", "v"]]]]], "+", FractionBox[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["4", " ", "g", " ", "k"]], "+", RowBox[List["2", " ", "q"]], "+", RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b", "+", RowBox[List["2", " ", "c", " ", "k"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]], "+", RowBox[List[RowBox[List["(", RowBox[List["d", "+", RowBox[List["2", " ", "f", " ", "k"]], "+", "p", "-", RowBox[List["f", " ", "v"]]]], ")"]], " ", "z"]]]]], RowBox[List["d", "+", RowBox[List["2", " ", "f", " ", "k"]], "+", "p", "-", RowBox[List["f", " ", "v"]]]]], "+", FractionBox[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["2", " ", "g", " ", "v"]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b", "-", RowBox[List["2", " ", "c", " ", "k"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]], "+", RowBox[List[RowBox[List["(", RowBox[List["d", "-", RowBox[List["2", " ", "f", " ", "k"]], "-", "p", "+", RowBox[List["f", " ", "v"]]]], ")"]], " ", "z"]]]]], RowBox[List["d", "-", RowBox[List["2", " ", "f", " ", "k"]], "-", "p", "+", RowBox[List["f", " ", "v"]]]]], "+", FractionBox[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["2", " ", "q"]], "+", RowBox[List["2", " ", "g", " ", "v"]], "+", RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b", "-", RowBox[List["2", " ", "c", " ", "k"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]], "+", RowBox[List[RowBox[List["(", RowBox[List["d", "-", RowBox[List["2", " ", "f", " ", "k"]], "+", "p", "+", RowBox[List["f", " ", "v"]]]], ")"]], " ", "z"]]]]], RowBox[List["d", "-", RowBox[List["2", " ", "f", " ", "k"]], "+", "p", "+", RowBox[List["f", " ", "v"]]]]]]], ")"]]]], "-", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["e", "+", RowBox[List["2", " ", "g", " ", "k"]], "-", "q", "-", RowBox[List["g", " ", "v"]], "-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b", "+", RowBox[List["2", " ", "c", " ", "k"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["2", " ", "f", " ", "k"]], "-", "p", "-", RowBox[List["f", " ", "v"]]]], ")"]]]]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b", "+", RowBox[List["2", " ", "c", " ", "k"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List[RowBox[List["-", "a"]], "+", "b", "+", RowBox[List["2", " ", "c", " ", "k"]], "-", RowBox[List["c", " ", "v"]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["2", " ", "f", " ", "k"]], "-", "p", "-", RowBox[List["f", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["d", "+", RowBox[List["2", " ", "f", " ", "k"]], "-", "p", "-", RowBox[List["f", " ", "v"]]]]]]]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["2", " ", "f", " ", "k"]], "-", "p", "-", RowBox[List["f", " ", "v"]]]], ")"]], RowBox[List["3", "/", "2"]]]], "-", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["e", "+", RowBox[List["2", " ", "g", " ", "k"]], "+", "q", "-", RowBox[List["g", " ", "v"]], "-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", "b", "+", RowBox[List["2", " ", "c", " ", "k"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["2", " ", "f", " ", "k"]], "+", "p", "-", RowBox[List["f", " ", "v"]]]], ")"]]]]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List["a", "+", "b", "+", RowBox[List["2", " ", "c", " ", "k"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List["a", "+", "b", "+", RowBox[List["2", " ", "c", " ", "k"]], "-", RowBox[List["c", " ", "v"]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["2", " ", "f", " ", "k"]], "+", "p", "-", RowBox[List["f", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["d", "+", RowBox[List["2", " ", "f", " ", "k"]], "+", "p", "-", RowBox[List["f", " ", "v"]]]]]]]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["2", " ", "f", " ", "k"]], "+", "p", "-", RowBox[List["f", " ", "v"]]]], ")"]], RowBox[List["3", "/", "2"]]]], "-", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["e", "-", RowBox[List["2", " ", "g", " ", "k"]], "-", "q", "+", RowBox[List["g", " ", "v"]], "-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b", "-", RowBox[List["2", " ", "c", " ", "k"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List["d", "-", RowBox[List["2", " ", "f", " ", "k"]], "-", "p", "+", RowBox[List["f", " ", "v"]]]], ")"]]]]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b", "-", RowBox[List["2", " ", "c", " ", "k"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List[RowBox[List["-", "a"]], "+", "b", "-", RowBox[List["2", " ", "c", " ", "k"]], "+", RowBox[List["c", " ", "v"]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["d", "-", RowBox[List["2", " ", "f", " ", "k"]], "-", "p", "+", RowBox[List["f", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["d", "-", RowBox[List["2", " ", "f", " ", "k"]], "-", "p", "+", RowBox[List["f", " ", "v"]]]]]]]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["d", "-", RowBox[List["2", " ", "f", " ", "k"]], "-", "p", "+", RowBox[List["f", " ", "v"]]]], ")"]], RowBox[List["3", "/", "2"]]]], "-", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["e", "-", RowBox[List["2", " ", "g", " ", "k"]], "+", "q", "+", RowBox[List["g", " ", "v"]], "-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", "b", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "v"]], ")"]]]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List["d", "+", "p", "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "v"]], ")"]]]]]], ")"]]]]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List["a", "+", "b", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "v"]], ")"]]]]]], ")"]], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List["a", "+", "b", "-", RowBox[List["2", " ", "c", " ", "k"]], "+", RowBox[List["c", " ", "v"]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["d", "+", "p", "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "v"]], ")"]]]]]], ")"]], " ", SqrtBox["z"]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["d", "+", "p", "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "v"]], ")"]]]]]]]]]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", "p", "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "v"]], ")"]]]]]], ")"]], RowBox[List["3", "/", "2"]]]]]], ")"]]]]]]]]]], "/;", RowBox[List[RowBox[List["v", "\[Element]", "Integers"]], "&&", RowBox[List["v", ">", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18