Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Cosh






Mathematica Notation

Traditional Notation









Elementary Functions > Cosh[z] > Integration > Indefinite integration > Involving functions of the direct function and exponential function > Involving products of powers of two direct functions and exponential function > Involving products of powers of two direct functions and exponential function > Involving ep zcoshmu(c z) coshv(a z+b)





http://functions.wolfram.com/01.20.21.2836.01









  


  










Input Form





Integrate[E^(p z) Cosh[c z]^\[Mu] Cosh[b + a z]^v, z] == (Binomial[v, v/2] (1 - Mod[v, 2]) (1/(p - c \[Mu])) ((E^(p z) Cosh[c z]^\[Mu] Hypergeometric2F1[(p - c \[Mu])/(2 c), -\[Mu], (1/2) (2 + p/c - \[Mu]), -E^(2 c z)])/(1 + E^(2 c z))^\[Mu]))/2^v + Sum[(Binomial[v, s] Cosh[c z]^\[Mu] (-(E^((p - a (-2 s + v)) z) Hypergeometric2F1[ -((p - a (-2 s + v) + c \[Mu])/(2 c)), -\[Mu], (1/2) (2 + (-p + a (-2 s + v))/c - \[Mu]), -E^(-2 c z)])/ (-p + a (-2 s + v) - c \[Mu]) + (E^(2 b (-2 s + v) + (p + a (-2 s + v)) z) Hypergeometric2F1[ -((p + a (-2 s + v) + c \[Mu])/(2 c)), -\[Mu], -((p + a (-2 s + v) + c (-2 + \[Mu]))/(2 c)), -E^(-2 c z)])/ (p + a (-2 s + v) + c \[Mu])))/(E^(b (-2 s + v)) (1 + E^(-2 c z))^\[Mu]), {s, 0, Floor[(1/2) (-1 + v)]}]/2^v /; Element[v, Integers] && v > 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["p", " ", "z"]]], " ", SuperscriptBox[RowBox[List["Cosh", "[", RowBox[List["c", " ", "z"]], "]"]], "\[Mu]"], SuperscriptBox[RowBox[List["Cosh", "[", RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]], "]"]], "v"], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List[SuperscriptBox["2", RowBox[List["-", "v"]]], " ", RowBox[List["Binomial", "[", RowBox[List["v", ",", FractionBox["v", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["v", ",", "2"]], "]"]]]], ")"]], FractionBox["1", RowBox[List["p", "-", RowBox[List["c", " ", "\[Mu]"]]]]], RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["p", " ", "z"]]], " ", SuperscriptBox[RowBox[List["Cosh", "[", RowBox[List["c", " ", "z"]], "]"]], "\[Mu]"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]], ")"]], RowBox[List["-", "\[Mu]"]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["p", "-", RowBox[List["c", " ", "\[Mu]"]]]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["-", "\[Mu]"]], ",", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "+", FractionBox["p", "c"], "-", "\[Mu]"]], ")"]]]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["2", RowBox[List["-", "v"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["s", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "v"]], ")"]]]], "]"]]], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["v", ",", "s"]], "]"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "b"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "2"]], " ", "c", " ", "z"]]]]], ")"]], RowBox[List["-", "\[Mu]"]]], " ", SuperscriptBox[RowBox[List["Cosh", "[", RowBox[List["c", " ", "z"]], "]"]], "\[Mu]"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["p", "-", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]]]], ")"]], " ", "z"]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["p", "-", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]], "+", RowBox[List["c", " ", "\[Mu]"]]]], RowBox[List["2", " ", "c"]]]]], ",", RowBox[List["-", "\[Mu]"]], ",", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "+", FractionBox[RowBox[List[RowBox[List["-", "p"]], "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]]]], "c"], "-", "\[Mu]"]], ")"]]]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "2"]], " ", "c", " ", "z"]]]]]]], "]"]]]], ")"]]]], "/", RowBox[List["(", RowBox[List[RowBox[List["-", "p"]], "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]], "-", RowBox[List["c", " ", "\[Mu]"]]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["2", " ", "b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["p", "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]]]], ")"]], " ", "z"]]]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["p", "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]], "+", RowBox[List["c", " ", "\[Mu]"]]]], RowBox[List["2", " ", "c"]]]]], ",", RowBox[List["-", "\[Mu]"]], ",", RowBox[List["-", FractionBox[RowBox[List["p", "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", "\[Mu]"]], ")"]]]]]], RowBox[List["2", " ", "c"]]]]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "2"]], " ", "c", " ", "z"]]]]]]], "]"]]]], ")"]], "/", RowBox[List["(", RowBox[List["p", "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]], "+", RowBox[List["c", " ", "\[Mu]"]]]], ")"]]]]]], ")"]]]]]]]]]]]], "/;", RowBox[List[RowBox[List["v", "\[Element]", "Integers"]], "\[And]", RowBox[List["v", ">", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mi> p </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <msup> <mi> cosh </mi> <mi> &#956; </mi> </msup> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> cosh </mi> <mi> v </mi> </msup> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mfrac> <mrow> <msup> <mn> 2 </mn> <mrow> <mo> - </mo> <mi> v </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> p </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <msup> <mi> cosh </mi> <mi> &#956; </mi> </msup> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msup> <mi> &#8519; </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> &#956; </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <semantics> <mrow> <mi> v </mi> <mo> &#8290; </mo> <mi> mod </mi> <mo> &#8290; </mo> <mn> 2 </mn> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <rem /> <ci> $CellContext`v </ci> <cn type='integer'> 2 </cn> </apply> </annotation-xml> </semantics> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> p </mi> <mo> - </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> &#956; </mi> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> v </mi> </mtd> </mtr> <mtr> <mtd> <mfrac> <mi> v </mi> <mn> 2 </mn> </mfrac> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;v&quot;, Identity]], List[TagBox[FractionBox[&quot;v&quot;, &quot;2&quot;], Identity]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> &#8290; </mo> <mtext> </mtext> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mi> p </mi> <mo> - </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> &#956; </mi> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mfrac> <mo> , </mo> <mrow> <mo> - </mo> <mi> &#956; </mi> </mrow> </mrow> <mo> ; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mi> p </mi> <mi> c </mi> </mfrac> <mo> - </mo> <mi> &#956; </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <msup> <mi> &#8519; </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List[&quot;p&quot;, &quot;-&quot;, RowBox[List[&quot;c&quot;, &quot; &quot;, &quot;\[Mu]&quot;]]]], RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;c&quot;]]], Hypergeometric2F1], &quot;,&quot;, TagBox[RowBox[List[&quot;-&quot;, &quot;\[Mu]&quot;]], Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], &quot;;&quot;, TagBox[TagBox[TagBox[RowBox[List[FractionBox[&quot;1&quot;, &quot;2&quot;], &quot; &quot;, RowBox[List[&quot;(&quot;, RowBox[List[FractionBox[&quot;p&quot;, &quot;c&quot;], &quot;-&quot;, &quot;\[Mu]&quot;, &quot;+&quot;, &quot;2&quot;]], &quot;)&quot;]]]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, SuperscriptBox[&quot;\[ExponentialE]&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;c&quot;, &quot; &quot;, &quot;z&quot;]]]]], Hypergeometric2F1]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <msup> <mn> 2 </mn> <mrow> <mo> - </mo> <mi> v </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> s </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> v </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> &#8971; </mo> </mrow> </munderover> <mrow> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> v </mi> </mtd> </mtr> <mtr> <mtd> <mi> s </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;v&quot;, Identity]], List[TagBox[&quot;s&quot;, Identity]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> &#956; </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <msup> <mi> cosh </mi> <mi> &#956; </mi> </msup> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> + </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> </msup> <mtext> </mtext> </mrow> <mrow> <mi> p </mi> <mo> + </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> &#956; </mi> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> p </mi> <mo> + </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> &#956; </mi> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mfrac> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mi> &#956; </mi> </mrow> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> p </mi> <mo> + </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#956; </mi> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mfrac> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;-&quot;, FractionBox[RowBox[List[&quot;p&quot;, &quot;+&quot;, RowBox[List[&quot;a&quot;, &quot; &quot;, RowBox[List[&quot;(&quot;, RowBox[List[&quot;v&quot;, &quot;-&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;s&quot;]]]], &quot;)&quot;]]]], &quot;+&quot;, RowBox[List[&quot;c&quot;, &quot; &quot;, &quot;\[Mu]&quot;]]]], RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;c&quot;]]]]], Hypergeometric2F1], &quot;,&quot;, TagBox[RowBox[List[&quot;-&quot;, &quot;\[Mu]&quot;]], Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], &quot;;&quot;, TagBox[TagBox[TagBox[RowBox[List[&quot;-&quot;, FractionBox[RowBox[List[&quot;p&quot;, &quot;+&quot;, RowBox[List[&quot;a&quot;, &quot; &quot;, RowBox[List[&quot;(&quot;, RowBox[List[&quot;v&quot;, &quot;-&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;s&quot;]]]], &quot;)&quot;]]]], &quot;+&quot;, RowBox[List[&quot;c&quot;, &quot; &quot;, RowBox[List[&quot;(&quot;, RowBox[List[&quot;\[Mu]&quot;, &quot;-&quot;, &quot;2&quot;]], &quot;)&quot;]]]]]], RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;c&quot;]]]]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, SuperscriptBox[&quot;\[ExponentialE]&quot;, RowBox[List[RowBox[List[&quot;-&quot;, &quot;2&quot;]], &quot; &quot;, &quot;c&quot;, &quot; &quot;, &quot;z&quot;]]]]], Hypergeometric2F1]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> - </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mtext> </mtext> </mrow> <mrow> <mrow> <mo> - </mo> <mi> p </mi> </mrow> <mo> + </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> &#956; </mi> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> p </mi> <mo> - </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> &#956; </mi> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mfrac> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mi> &#956; </mi> </mrow> </mrow> <mo> ; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mi> p </mi> </mrow> <mi> c </mi> </mfrac> <mo> - </mo> <mi> &#956; </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;-&quot;, FractionBox[RowBox[List[&quot;p&quot;, &quot;-&quot;, RowBox[List[&quot;a&quot;, &quot; &quot;, RowBox[List[&quot;(&quot;, RowBox[List[&quot;v&quot;, &quot;-&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;s&quot;]]]], &quot;)&quot;]]]], &quot;+&quot;, RowBox[List[&quot;c&quot;, &quot; &quot;, &quot;\[Mu]&quot;]]]], RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;c&quot;]]]]], Hypergeometric2F1], &quot;,&quot;, TagBox[RowBox[List[&quot;-&quot;, &quot;\[Mu]&quot;]], Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], &quot;;&quot;, TagBox[TagBox[TagBox[RowBox[List[FractionBox[&quot;1&quot;, &quot;2&quot;], &quot; &quot;, RowBox[List[&quot;(&quot;, RowBox[List[FractionBox[RowBox[List[RowBox[List[&quot;a&quot;, &quot; &quot;, RowBox[List[&quot;(&quot;, RowBox[List[&quot;v&quot;, &quot;-&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;s&quot;]]]], &quot;)&quot;]]]], &quot;-&quot;, &quot;p&quot;]], &quot;c&quot;], &quot;-&quot;, &quot;\[Mu]&quot;, &quot;+&quot;, &quot;2&quot;]], &quot;)&quot;]]]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, SuperscriptBox[&quot;\[ExponentialE]&quot;, RowBox[List[RowBox[List[&quot;-&quot;, &quot;2&quot;]], &quot; &quot;, &quot;c&quot;, &quot; &quot;, &quot;z&quot;]]]]], Hypergeometric2F1]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> v </mi> <mo> &#8712; </mo> <msup> <mi> &#8469; </mi> <mo> + </mo> </msup> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <ci> p </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <cosh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <ci> &#956; </ci> </apply> <apply> <power /> <apply> <cosh /> <apply> <plus /> <ci> b </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> </apply> <ci> v </ci> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> v </ci> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <ci> p </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <cosh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <ci> &#956; </ci> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#956; </ci> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <rem /> <ci> $CellContext`v </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <ci> &#956; </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Binomial </ci> <ci> v </ci> <apply> <times /> <ci> v </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> Hypergeometric2F1 </ci> <apply> <times /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <ci> &#956; </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#956; </ci> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <times /> <ci> p </ci> <apply> <power /> <ci> c </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#956; </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> v </ci> </apply> </apply> <apply> <sum /> <bvar> <ci> s </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <floor /> <apply> <times /> <apply> <plus /> <ci> v </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </uplimit> <apply> <times /> <apply> <ci> Binomial </ci> <ci> v </ci> <ci> s </ci> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#956; </ci> </apply> </apply> <apply> <power /> <apply> <cosh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <ci> &#956; </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> p </ci> <apply> <times /> <ci> a </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> </apply> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> p </ci> <apply> <times /> <ci> a </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> <apply> <times /> <ci> c </ci> <ci> &#956; </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Hypergeometric2F1 </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> p </ci> <apply> <times /> <ci> a </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> <apply> <times /> <ci> c </ci> <ci> &#956; </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#956; </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> p </ci> <apply> <times /> <ci> a </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> <apply> <times /> <ci> c </ci> <apply> <plus /> <ci> &#956; </ci> <cn type='integer'> -2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> a </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> </apply> </apply> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> <apply> <times /> <ci> a </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <ci> &#956; </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Hypergeometric2F1 </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> a </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <ci> c </ci> <ci> &#956; </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#956; </ci> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> a </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#956; </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <ci> v </ci> <apply> <ci> SuperPlus </ci> <ci> &#8469; </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["p_", " ", "z_"]]], " ", SuperscriptBox[RowBox[List["Cosh", "[", RowBox[List["c_", " ", "z_"]], "]"]], "\[Mu]_"], " ", SuperscriptBox[RowBox[List["Cosh", "[", RowBox[List["b_", "+", RowBox[List["a_", " ", "z_"]]]], "]"]], "v_"]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List["-", "v"]]], " ", RowBox[List["Binomial", "[", RowBox[List["v", ",", FractionBox["v", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["v", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["p", " ", "z"]]], " ", SuperscriptBox[RowBox[List["Cosh", "[", RowBox[List["c", " ", "z"]], "]"]], "\[Mu]"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]], ")"]], RowBox[List["-", "\[Mu]"]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["p", "-", RowBox[List["c", " ", "\[Mu]"]]]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["-", "\[Mu]"]], ",", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "+", FractionBox["p", "c"], "-", "\[Mu]"]], ")"]]]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], ")"]]]], RowBox[List["p", "-", RowBox[List["c", " ", "\[Mu]"]]]]], "+", RowBox[List[SuperscriptBox["2", RowBox[List["-", "v"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["s", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "v"]], ")"]]]], "]"]]], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["v", ",", "s"]], "]"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "b"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "2"]], " ", "c", " ", "z"]]]]], ")"]], RowBox[List["-", "\[Mu]"]]], " ", SuperscriptBox[RowBox[List["Cosh", "[", RowBox[List["c", " ", "z"]], "]"]], "\[Mu]"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["p", "-", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]]]], ")"]], " ", "z"]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["p", "-", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]], "+", RowBox[List["c", " ", "\[Mu]"]]]], RowBox[List["2", " ", "c"]]]]], ",", RowBox[List["-", "\[Mu]"]], ",", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "+", FractionBox[RowBox[List[RowBox[List["-", "p"]], "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]]]], "c"], "-", "\[Mu]"]], ")"]]]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "2"]], " ", "c", " ", "z"]]]]]]], "]"]]]], RowBox[List[RowBox[List["-", "p"]], "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]], "-", RowBox[List["c", " ", "\[Mu]"]]]]]]], "+", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["2", " ", "b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["p", "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]]]], ")"]], " ", "z"]]]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["p", "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]], "+", RowBox[List["c", " ", "\[Mu]"]]]], RowBox[List["2", " ", "c"]]]]], ",", RowBox[List["-", "\[Mu]"]], ",", RowBox[List["-", FractionBox[RowBox[List["p", "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", "\[Mu]"]], ")"]]]]]], RowBox[List["2", " ", "c"]]]]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "2"]], " ", "c", " ", "z"]]]]]]], "]"]]]], RowBox[List["p", "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]], "+", RowBox[List["c", " ", "\[Mu]"]]]]]]], ")"]]]]]]]]]], "/;", RowBox[List[RowBox[List["v", "\[Element]", "Integers"]], "&&", RowBox[List["v", ">", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18