|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/01.20.21.2856.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Integrate[E^(b Sqrt[z] + d z + e) Cosh[a Sqrt[z] + p z + q]^m
Cosh[c Sqrt[z] + f z + g]^v, z] ==
2^(-2 - m - v) E^e Binomial[m, m/2] Binomial[v, v/2]
((4 E^(b Sqrt[z] + d z))/d -
(2 b Sqrt[Pi] Erfi[(b + 2 d Sqrt[z])/(2 Sqrt[d])])/
(E^(b^2/(4 d)) d^(3/2))) (1 - Mod[m, 2]) (1 - Mod[v, 2]) +
2^(-1 - m - v) Binomial[v, v/2] (1 - Mod[v, 2])
Sum[E^(e - q (m - 2 s)) Binomial[m, s]
((2 E^((b - a (m - 2 s)) Sqrt[z] + (d - p (m - 2 s)) z))/
(d - p (m - 2 s)) + (2 E^(2 q (m - 2 s) + (b + a (m - 2 s)) Sqrt[z] +
(d + p (m - 2 s)) z))/(d + p (m - 2 s)) +
(Sqrt[Pi] (-b + a (m - 2 s)) Erfi[(b - a (m - 2 s) +
2 (d - m p + 2 p s) Sqrt[z])/(2 Sqrt[d - m p + 2 p s])])/
E^((b - a m + 2 a s)^2/(4 (d - m p + 2 p s)))/
(d - m p + 2 p s)^(3/2) -
(E^(-((b + a (m - 2 s))^2/(4 (d + p (m - 2 s)))) + 2 q (m - 2 s))
Sqrt[Pi] (b + a (m - 2 s)) Erfi[(b + a (m - 2 s) +
2 (d + m p - 2 p s) Sqrt[z])/(2 Sqrt[d + p (m - 2 s)])])/
(d + p (m - 2 s))^(3/2)), {s, 0, Floor[(1/2) (-1 + m)]}] +
2^(-1 - m - v) Binomial[m, m/2] (1 - Mod[m, 2])
Sum[E^(e - g (-2 s + v)) Binomial[v, s]
((2 E^((b - c (-2 s + v)) Sqrt[z] + (d - f (-2 s + v)) z))/
(d - f (-2 s + v)) +
(2 E^(2 g (-2 s + v) + (b + c (-2 s + v)) Sqrt[z] +
(d + f (-2 s + v)) z))/(d + f (-2 s + v)) -
(Sqrt[Pi] (b + 2 c s - c v) Erfi[(b + c (2 s - v) +
2 (d + 2 f s - f v) Sqrt[z])/(2 Sqrt[d + 2 f s - f v])])/
E^((b + 2 c s - c v)^2/(4 (d + 2 f s - f v)))/
(d + 2 f s - f v)^(3/2) -
(E^(2 g (-2 s + v) - (b + c (-2 s + v))^2/(4 (d + f (-2 s + v))))
Sqrt[Pi] (b + c (-2 s + v)) Erfi[(b + c (-2 s + v) +
2 (d - 2 f s + f v) Sqrt[z])/(2 Sqrt[d + f (-2 s + v)])])/
(d + f (-2 s + v))^(3/2)), {s, 0, Floor[(1/2) (-1 + v)]}] +
2^(-1 - m - v) Sum[Binomial[m, s] Sum[Binomial[v, k]
(2 E^(e - 2 g k - m q - 2 q s - g v)
(E^(4 g k + 2 m q + (b + 2 c k + a m - 2 a s - c v) Sqrt[z] +
(d + 2 f k + m p - 2 p s - f v) z)/(d + 2 f k + m p - 2 p s -
f v) + E^(4 g k + 4 q s + (b + 2 c k - a m + 2 a s - c v) Sqrt[
z] + (d + 2 f k - m p + 2 p s - f v) z)/(d + 2 f k - m p +
2 p s - f v) + E^(2 m q + 2 g v + (b - 2 c k + a m - 2 a s +
c v) Sqrt[z] + (d - 2 f k + m p - 2 p s + f v) z)/
(d - 2 f k + m p - 2 p s + f v) +
E^(4 q s + 2 g v + (b - 2 c k - a m + 2 a s + c v) Sqrt[z] +
(d - 2 f k - m p + 2 p s + f v) z)/(d - 2 f k - m p + 2 p s +
f v)) - (E^(e - 2 g k + m q - 2 q s + g v -
(b + a (m - 2 s) + c (-2 k + v))^2/(4 (d + p (m - 2 s) +
f (-2 k + v)))) Sqrt[Pi] (b + a (m - 2 s) + c (-2 k + v))
Erfi[(b - 2 c k + a m - 2 a s + c v + 2 (d + p (m - 2 s) +
f (-2 k + v)) Sqrt[z])/(2 Sqrt[d + p (m - 2 s) +
f (-2 k + v)])])/(d + p (m - 2 s) + f (-2 k + v))^(3/2) -
(E^(e + 2 g k - m q + 2 q s - g v - (b + 2 c k - a m + 2 a s - c v)^
2/(4 (d + 2 f k - m p + 2 p s - f v))) Sqrt[Pi]
(b + 2 c k - a m + 2 a s - c v) Erfi[(b + 2 c k - a m + 2 a s -
c v + 2 (d + 2 f k - m p + 2 p s - f v) Sqrt[z])/
(2 Sqrt[d + 2 f k - m p + 2 p s - f v])])/
(d + 2 f k - m p + 2 p s - f v)^(3/2) -
(E^(e - 2 g k - m q + 2 q s + g v - (b - 2 c k - a m + 2 a s + c v)^
2/(4 (d - 2 f k - m p + 2 p s + f v))) Sqrt[Pi]
(b - 2 c k - a m + 2 a s + c v) Erfi[(b - 2 c k - a m + 2 a s +
c v + 2 (d - 2 f k - m p + 2 p s + f v) Sqrt[z])/
(2 Sqrt[d - 2 f k - m p + 2 p s + f v])])/
(d - 2 f k - m p + 2 p s + f v)^(3/2) -
(E^(e + 2 g k + m q - 2 q s - g v - (b + 2 c k + a m - 2 a s - c v)^
2/(4 (d + 2 f k + m p - 2 p s - f v))) Sqrt[Pi]
(b + 2 c k + a m - 2 a s - c v) Erfi[(b + 2 c k + a m - 2 a s -
c v + 2 (d + 2 f k + m p - 2 p s - f v) Sqrt[z])/
(2 Sqrt[d + 2 f k + m p - 2 p s - f v])])/
(d + 2 f k + m p - 2 p s - f v)^(3/2)),
{k, 0, Floor[(1/2) (-1 + v)]}], {s, 0, Floor[(1/2) (-1 + m)]}] /;
Element[m, Integers] && m > 0 && Element[v, Integers] && v > 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["b", " ", SqrtBox["z"]]], "+", RowBox[List["d", " ", "z"]], "+", "e"]]], SuperscriptBox[RowBox[List["Cosh", "[", RowBox[List[RowBox[List["a", " ", SqrtBox["z"]]], "+", RowBox[List["p", " ", "z"]], "+", "q"]], "]"]], "m"], SuperscriptBox[RowBox[List["Cosh", "[", RowBox[List[RowBox[List["c", " ", SqrtBox["z"]]], "+", RowBox[List["f", " ", "z"]], "+", "g"]], "]"]], "v"], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "2"]], "-", "m", "-", "v"]]], " ", SuperscriptBox["\[ExponentialE]", "e"], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", FractionBox["m", "2"]]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List["v", ",", FractionBox["v", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List["4", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["b", " ", SqrtBox["z"]]], "+", RowBox[List["d", " ", "z"]]]]]]], "d"], "-", FractionBox[RowBox[List["2", " ", "b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[SuperscriptBox["b", "2"], RowBox[List["4", " ", "d"]]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List["b", "+", RowBox[List["2", " ", "d", " ", SqrtBox["z"]]]]], RowBox[List["2", " ", SqrtBox["d"]]]], "]"]]]], SuperscriptBox["d", RowBox[List["3", "/", "2"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["m", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["v", ",", "2"]], "]"]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", "m", "-", "v"]]], " ", RowBox[List["Binomial", "[", RowBox[List["v", ",", FractionBox["v", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["v", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List["Sum", "[", " ", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["e", "-", RowBox[List["q", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", "s"]], "]"]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List["2", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["b", "-", RowBox[List["a", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], " ", SqrtBox["z"]]], "+", RowBox[List[RowBox[List["(", RowBox[List["d", "-", RowBox[List["p", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], " ", "z"]]]]]]], RowBox[List["d", "-", RowBox[List["p", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]]], "+", FractionBox[RowBox[List["2", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["2", " ", "q", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["b", "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], " ", SqrtBox["z"]]], "+", RowBox[List[RowBox[List["(", RowBox[List["d", "+", RowBox[List["p", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], " ", "z"]]]]]]], RowBox[List["d", "+", RowBox[List["p", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["b", "-", RowBox[List["a", " ", "m"]], "+", RowBox[List["2", " ", "a", " ", "s"]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List["d", "-", RowBox[List["m", " ", "p"]], "+", RowBox[List["2", " ", "p", " ", "s"]]]], ")"]]]]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List["b", "-", RowBox[List["a", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["d", "-", RowBox[List["m", " ", "p"]], "+", RowBox[List["2", " ", "p", " ", "s"]]]], ")"]], " ", SqrtBox["z"]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["d", "-", RowBox[List["m", " ", "p"]], "+", RowBox[List["2", " ", "p", " ", "s"]]]]]]]], "]"]]]], ")"]], "/", SuperscriptBox[RowBox[List["(", RowBox[List["d", "-", RowBox[List["m", " ", "p"]], "+", RowBox[List["2", " ", "p", " ", "s"]]]], ")"]], RowBox[List["3", "/", "2"]]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["b", "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["p", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]]]]]]], "+", RowBox[List["2", " ", "q", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List["b", "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["m", " ", "p"]], "-", RowBox[List["2", " ", "p", " ", "s"]]]], ")"]], " ", SqrtBox["z"]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["d", "+", RowBox[List["p", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]]]]]], "]"]]]], ")"]], "/", SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["p", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], RowBox[List["3", "/", "2"]]]]]]], ")"]]]], ",", RowBox[List["{", RowBox[List["s", ",", "0", ",", RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]]]], "]"]]]], "}"]]]], "]"]]]], "+", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", "m", "-", "v"]]], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", FractionBox["m", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["m", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["s", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "v"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["e", "-", RowBox[List["g", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["v", ",", "s"]], "]"]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List["2", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["b", "-", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]]]], ")"]], " ", SqrtBox["z"]]], "+", RowBox[List[RowBox[List["(", RowBox[List["d", "-", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]]]], ")"]], " ", "z"]]]]]]], RowBox[List["d", "-", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]]]]], "+", FractionBox[RowBox[List["2", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["2", " ", "g", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["b", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]]]], ")"]], " ", SqrtBox["z"]]], "+", RowBox[List[RowBox[List["(", RowBox[List["d", "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]]]], ")"]], " ", "z"]]]]]]], RowBox[List["d", "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["b", "+", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["2", " ", "f", " ", "s"]], "-", RowBox[List["f", " ", "v"]]]], ")"]]]]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List["b", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "s"]], "-", "v"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["2", " ", "f", " ", "s"]], "-", RowBox[List["f", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["d", "+", RowBox[List["2", " ", "f", " ", "s"]], "-", RowBox[List["f", " ", "v"]]]]]]]], "]"]]]], ")"]], "/", SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["2", " ", "f", " ", "s"]], "-", RowBox[List["f", " ", "v"]]]], ")"]], RowBox[List["3", "/", "2"]]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["2", " ", "g", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]], "-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["b", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]]]], ")"]]]]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]]]], ")"]], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List["b", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["d", "-", RowBox[List["2", " ", "f", " ", "s"]], "+", RowBox[List["f", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["d", "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]]]]]]]], "]"]]]], ")"]], "/", SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]]]], ")"]], RowBox[List["3", "/", "2"]]]]]]], ")"]]]]]]]], "+", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", "m", "-", "v"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["s", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]]]], "]"]]], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["m", ",", "s"]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "v"]], ")"]]]], "]"]]], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["v", ",", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["e", "-", RowBox[List["2", " ", "g", " ", "k"]], "-", RowBox[List["m", " ", "q"]], "-", RowBox[List["2", " ", "q", " ", "s"]], "-", RowBox[List["g", " ", "v"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["4", " ", "g", " ", "k"]], "+", RowBox[List["2", " ", "m", " ", "q"]], "+", RowBox[List[RowBox[List["(", RowBox[List["b", "+", RowBox[List["2", " ", "c", " ", "k"]], "+", RowBox[List["a", " ", "m"]], "-", RowBox[List["2", " ", "a", " ", "s"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]], "+", RowBox[List[RowBox[List["(", RowBox[List["d", "+", RowBox[List["2", " ", "f", " ", "k"]], "+", RowBox[List["m", " ", "p"]], "-", RowBox[List["2", " ", "p", " ", "s"]], "-", RowBox[List["f", " ", "v"]]]], ")"]], " ", "z"]]]]], "/", RowBox[List["(", RowBox[List["d", "+", RowBox[List["2", " ", "f", " ", "k"]], "+", RowBox[List["m", " ", "p"]], "-", RowBox[List["2", " ", "p", " ", "s"]], "-", RowBox[List["f", " ", "v"]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["4", " ", "g", " ", "k"]], "+", RowBox[List["4", " ", "q", " ", "s"]], "+", RowBox[List[RowBox[List["(", RowBox[List["b", "+", RowBox[List["2", " ", "c", " ", "k"]], "-", RowBox[List["a", " ", "m"]], "+", RowBox[List["2", " ", "a", " ", "s"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]], "+", RowBox[List[RowBox[List["(", RowBox[List["d", "+", RowBox[List["2", " ", "f", " ", "k"]], "-", RowBox[List["m", " ", "p"]], "+", RowBox[List["2", " ", "p", " ", "s"]], "-", RowBox[List["f", " ", "v"]]]], ")"]], " ", "z"]]]]], "/", RowBox[List["(", RowBox[List["d", "+", RowBox[List["2", " ", "f", " ", "k"]], "-", RowBox[List["m", " ", "p"]], "+", RowBox[List["2", " ", "p", " ", "s"]], "-", RowBox[List["f", " ", "v"]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["2", " ", "m", " ", "q"]], "+", RowBox[List["2", " ", "g", " ", "v"]], "+", RowBox[List[RowBox[List["(", RowBox[List["b", "-", RowBox[List["2", " ", "c", " ", "k"]], "+", RowBox[List["a", " ", "m"]], "-", RowBox[List["2", " ", "a", " ", "s"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]], "+", RowBox[List[RowBox[List["(", RowBox[List["d", "-", RowBox[List["2", " ", "f", " ", "k"]], "+", RowBox[List["m", " ", "p"]], "-", RowBox[List["2", " ", "p", " ", "s"]], "+", RowBox[List["f", " ", "v"]]]], ")"]], " ", "z"]]]]], "/", RowBox[List["(", RowBox[List["d", "-", RowBox[List["2", " ", "f", " ", "k"]], "+", RowBox[List["m", " ", "p"]], "-", RowBox[List["2", " ", "p", " ", "s"]], "+", RowBox[List["f", " ", "v"]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["4", " ", "q", " ", "s"]], "+", RowBox[List["2", " ", "g", " ", "v"]], "+", RowBox[List[RowBox[List["(", RowBox[List["b", "-", RowBox[List["2", " ", "c", " ", "k"]], "-", RowBox[List["a", " ", "m"]], "+", RowBox[List["2", " ", "a", " ", "s"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]], "+", RowBox[List[RowBox[List["(", RowBox[List["d", "-", RowBox[List["2", " ", "f", " ", "k"]], "-", RowBox[List["m", " ", "p"]], "+", RowBox[List["2", " ", "p", " ", "s"]], "+", RowBox[List["f", " ", "v"]]]], ")"]], " ", "z"]]]]], "/", RowBox[List["(", RowBox[List["d", "-", RowBox[List["2", " ", "f", " ", "k"]], "-", RowBox[List["m", " ", "p"]], "+", RowBox[List["2", " ", "p", " ", "s"]], "+", RowBox[List["f", " ", "v"]]]], ")"]]]]]], ")"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["e", "-", RowBox[List["2", " ", "g", " ", "k"]], "+", RowBox[List["m", " ", "q"]], "-", RowBox[List["2", " ", "q", " ", "s"]], "+", RowBox[List["g", " ", "v"]], "-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["b", "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "v"]], ")"]]]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["p", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "v"]], ")"]]]]]], ")"]]]]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "v"]], ")"]]]]]], ")"]], " ", RowBox[List["Erfi", "[", RowBox[List[RowBox[List["(", RowBox[List["b", "-", RowBox[List["2", " ", "c", " ", "k"]], "+", RowBox[List["a", " ", "m"]], "-", RowBox[List["2", " ", "a", " ", "s"]], "+", RowBox[List["c", " ", "v"]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["p", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "v"]], ")"]]]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "/", RowBox[List["(", RowBox[List["2", " ", SqrtBox[RowBox[List["d", "+", RowBox[List["p", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "v"]], ")"]]]]]]]]], ")"]]]], "]"]]]], ")"]], "/", SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["p", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "v"]], ")"]]]]]], ")"]], RowBox[List["3", "/", "2"]]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["e", "+", RowBox[List["2", " ", "g", " ", "k"]], "-", RowBox[List["m", " ", "q"]], "+", RowBox[List["2", " ", "q", " ", "s"]], "-", RowBox[List["g", " ", "v"]], "-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["b", "+", RowBox[List["2", " ", "c", " ", "k"]], "-", RowBox[List["a", " ", "m"]], "+", RowBox[List["2", " ", "a", " ", "s"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["2", " ", "f", " ", "k"]], "-", RowBox[List["m", " ", "p"]], "+", RowBox[List["2", " ", "p", " ", "s"]], "-", RowBox[List["f", " ", "v"]]]], ")"]]]]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["2", " ", "c", " ", "k"]], "-", RowBox[List["a", " ", "m"]], "+", RowBox[List["2", " ", "a", " ", "s"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], " ", RowBox[List["Erfi", "[", RowBox[List[RowBox[List["(", RowBox[List["b", "+", RowBox[List["2", " ", "c", " ", "k"]], "-", RowBox[List["a", " ", "m"]], "+", RowBox[List["2", " ", "a", " ", "s"]], "-", RowBox[List["c", " ", "v"]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["2", " ", "f", " ", "k"]], "-", RowBox[List["m", " ", "p"]], "+", RowBox[List["2", " ", "p", " ", "s"]], "-", RowBox[List["f", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "/", RowBox[List["(", RowBox[List["2", " ", SqrtBox[RowBox[List["d", "+", RowBox[List["2", " ", "f", " ", "k"]], "-", RowBox[List["m", " ", "p"]], "+", RowBox[List["2", " ", "p", " ", "s"]], "-", RowBox[List["f", " ", "v"]]]]]]], ")"]]]], "]"]]]], ")"]], "/", SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["2", " ", "f", " ", "k"]], "-", RowBox[List["m", " ", "p"]], "+", RowBox[List["2", " ", "p", " ", "s"]], "-", RowBox[List["f", " ", "v"]]]], ")"]], RowBox[List["3", "/", "2"]]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["e", "-", RowBox[List["2", " ", "g", " ", "k"]], "-", RowBox[List["m", " ", "q"]], "+", RowBox[List["2", " ", "q", " ", "s"]], "+", RowBox[List["g", " ", "v"]], "-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["b", "-", RowBox[List["2", " ", "c", " ", "k"]], "-", RowBox[List["a", " ", "m"]], "+", RowBox[List["2", " ", "a", " ", "s"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List["d", "-", RowBox[List["2", " ", "f", " ", "k"]], "-", RowBox[List["m", " ", "p"]], "+", RowBox[List["2", " ", "p", " ", "s"]], "+", RowBox[List["f", " ", "v"]]]], ")"]]]]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List["b", "-", RowBox[List["2", " ", "c", " ", "k"]], "-", RowBox[List["a", " ", "m"]], "+", RowBox[List["2", " ", "a", " ", "s"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", RowBox[List["Erfi", "[", RowBox[List[RowBox[List["(", RowBox[List["b", "-", RowBox[List["2", " ", "c", " ", "k"]], "-", RowBox[List["a", " ", "m"]], "+", RowBox[List["2", " ", "a", " ", "s"]], "+", RowBox[List["c", " ", "v"]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["d", "-", RowBox[List["2", " ", "f", " ", "k"]], "-", RowBox[List["m", " ", "p"]], "+", RowBox[List["2", " ", "p", " ", "s"]], "+", RowBox[List["f", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "/", RowBox[List["(", RowBox[List["2", " ", SqrtBox[RowBox[List["d", "-", RowBox[List["2", " ", "f", " ", "k"]], "-", RowBox[List["m", " ", "p"]], "+", RowBox[List["2", " ", "p", " ", "s"]], "+", RowBox[List["f", " ", "v"]]]]]]], ")"]]]], "]"]]]], ")"]], "/", SuperscriptBox[RowBox[List["(", RowBox[List["d", "-", RowBox[List["2", " ", "f", " ", "k"]], "-", RowBox[List["m", " ", "p"]], "+", RowBox[List["2", " ", "p", " ", "s"]], "+", RowBox[List["f", " ", "v"]]]], ")"]], RowBox[List["3", "/", "2"]]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["e", "+", RowBox[List["2", " ", "g", " ", "k"]], "+", RowBox[List["m", " ", "q"]], "-", RowBox[List["2", " ", "q", " ", "s"]], "-", RowBox[List["g", " ", "v"]], "-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["b", "+", RowBox[List["2", " ", "c", " ", "k"]], "+", RowBox[List["a", " ", "m"]], "-", RowBox[List["2", " ", "a", " ", "s"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["2", " ", "f", " ", "k"]], "+", RowBox[List["m", " ", "p"]], "-", RowBox[List["2", " ", "p", " ", "s"]], "-", RowBox[List["f", " ", "v"]]]], ")"]]]]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["2", " ", "c", " ", "k"]], "+", RowBox[List["a", " ", "m"]], "-", RowBox[List["2", " ", "a", " ", "s"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], " ", RowBox[List["Erfi", "[", RowBox[List[RowBox[List["(", RowBox[List["b", "+", RowBox[List["2", " ", "c", " ", "k"]], "+", RowBox[List["a", " ", "m"]], "-", RowBox[List["2", " ", "a", " ", "s"]], "-", RowBox[List["c", " ", "v"]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["2", " ", "f", " ", "k"]], "+", RowBox[List["m", " ", "p"]], "-", RowBox[List["2", " ", "p", " ", "s"]], "-", RowBox[List["f", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "/", RowBox[List["(", RowBox[List["2", " ", SqrtBox[RowBox[List["d", "+", RowBox[List["2", " ", "f", " ", "k"]], "+", RowBox[List["m", " ", "p"]], "-", RowBox[List["2", " ", "p", " ", "s"]], "-", RowBox[List["f", " ", "v"]]]]]]], ")"]]]], "]"]]]], ")"]], "/", SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["2", " ", "f", " ", "k"]], "+", RowBox[List["m", " ", "p"]], "-", RowBox[List["2", " ", "p", " ", "s"]], "-", RowBox[List["f", " ", "v"]]]], ")"]], RowBox[List["3", "/", "2"]]]]]]], ")"]]]]]]]]]]]]]]]], "/;", RowBox[List[RowBox[List["m", "\[Element]", "Integers"]], "\[And]", RowBox[List["m", ">", "0"]], "\[And]", RowBox[List["v", "\[Element]", "Integers"]], "\[And]", RowBox[List["v", ">", "0"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mo> ∫ </mo> <mrow> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> + </mo> <mi> e </mi> <mo> + </mo> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> </msup> <mo> ⁢ </mo> <mrow> <msup> <mi> cosh </mi> <mi> m </mi> </msup> <mo> ( </mo> <mrow> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mi> q </mi> <mo> + </mo> <mrow> <mi> p </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> cosh </mi> <mi> v </mi> </msup> <mo> ( </mo> <mrow> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> + </mo> <mi> g </mi> <mo> + </mo> <mrow> <mi> f </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mrow> <msup> <mn> 2 </mn> <mrow> <mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> - </mo> <mi> v </mi> <mo> - </mo> <mn> 2 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> + </mo> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> </msup> </mrow> <mi> d </mi> </mfrac> <mo> - </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mo> - </mo> <mfrac> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> d </mi> </mrow> </mfrac> </mrow> </msup> <mo> ⁢ </mo> <msqrt> <mi> π </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mi> erfi </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> d </mi> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mi> d </mi> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <msup> <mi> d </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mi> e </mi> </msup> <mo> ⁢ </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> m </mi> </mtd> </mtr> <mtr> <mtd> <mfrac> <mi> m </mi> <mn> 2 </mn> </mfrac> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["m", Identity]], List[TagBox[FractionBox["m", "2"], Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> ⁢ </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> v </mi> </mtd> </mtr> <mtr> <mtd> <mfrac> <mi> v </mi> <mn> 2 </mn> </mfrac> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["v", Identity]], List[TagBox[FractionBox["v", "2"], Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <semantics> <mrow> <mi> m </mi> <mo> ⁢ </mo> <mi> mod </mi> <mo> ⁢ </mo> <mn> 2 </mn> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <rem /> <ci> $CellContext`m </ci> <cn type='integer'> 2 </cn> </apply> </annotation-xml> </semantics> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <semantics> <mrow> <mi> v </mi> <mo> ⁢ </mo> <mi> mod </mi> <mo> ⁢ </mo> <mn> 2 </mn> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <rem /> <ci> $CellContext`v </ci> <cn type='integer'> 2 </cn> </apply> </annotation-xml> </semantics> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mn> 2 </mn> <mrow> <mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> - </mo> <mi> v </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> v </mi> </mtd> </mtr> <mtr> <mtd> <mfrac> <mi> v </mi> <mn> 2 </mn> </mfrac> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["v", Identity]], List[TagBox[FractionBox["v", "2"], Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> s </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mo> ⌊ </mo> <mfrac> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> ⌋ </mo> </mrow> </munderover> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mi> e </mi> <mo> - </mo> <mrow> <mi> q </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msup> <mo> ⁢ </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> m </mi> </mtd> </mtr> <mtr> <mtd> <mi> s </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["m", Identity]], List[TagBox["s", Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mo> - </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> - </mo> <mrow> <mi> m </mi> <mo> ⁢ </mo> <mi> p </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> p </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> </msup> <mo> ⁢ </mo> <msqrt> <mi> π </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> erfi </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mi> b </mi> <mo> - </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> - </mo> <mrow> <mi> m </mi> <mo> ⁢ </mo> <mi> p </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> p </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mi> d </mi> <mo> - </mo> <mrow> <mi> m </mi> <mo> ⁢ </mo> <mi> p </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> p </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> - </mo> <mrow> <mi> m </mi> <mo> ⁢ </mo> <mi> p </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> p </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> q </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mrow> <mi> p </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> </msup> </mrow> <mrow> <mi> d </mi> <mo> + </mo> <mrow> <mi> p </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mfrac> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <msup> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mrow> <mi> p </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> q </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mrow> <mi> p </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> </msup> <mo> ⁢ </mo> <msqrt> <mi> π </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> erfi </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mrow> <mi> m </mi> <mo> ⁢ </mo> <mi> p </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> p </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mi> d </mi> <mo> + </mo> <mrow> <mi> p </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> - </mo> <mrow> <mi> p </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> </msup> </mrow> <mrow> <mi> d </mi> <mo> - </mo> <mrow> <mi> p </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <semantics> <mrow> <mi> v </mi> <mo> ⁢ </mo> <mi> mod </mi> <mo> ⁢ </mo> <mn> 2 </mn> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <rem /> <ci> $CellContext`v </ci> <cn type='integer'> 2 </cn> </apply> </annotation-xml> </semantics> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mn> 2 </mn> <mrow> <mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> - </mo> <mi> v </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> m </mi> </mtd> </mtr> <mtr> <mtd> <mfrac> <mi> m </mi> <mn> 2 </mn> </mfrac> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["m", Identity]], List[TagBox[FractionBox["m", "2"], Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <semantics> <mrow> <mi> m </mi> <mo> ⁢ </mo> <mi> mod </mi> <mo> ⁢ </mo> <mn> 2 </mn> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <rem /> <ci> $CellContext`m </ci> <cn type='integer'> 2 </cn> </apply> </annotation-xml> </semantics> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> s </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mo> ⌊ </mo> <mfrac> <mrow> <mi> v </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> ⌋ </mo> </mrow> </munderover> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mi> e </mi> <mo> - </mo> <mrow> <mi> g </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msup> <mo> ⁢ </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> v </mi> </mtd> </mtr> <mtr> <mtd> <mi> s </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["v", Identity]], List[TagBox["s", Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mo> - </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> f </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mi> f </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> </msup> <mo> ⁢ </mo> <msqrt> <mi> π </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> erfi </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> - </mo> <mi> v </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> f </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mi> f </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mi> d </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> f </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mi> f </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> </mrow> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> f </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mi> f </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mrow> <mo> + </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> g </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mrow> <mi> f </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> </msup> </mrow> <mrow> <mi> d </mi> <mo> + </mo> <mrow> <mi> f </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mfrac> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> g </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mrow> <mi> f </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> </msup> <mo> ⁢ </mo> <msqrt> <mi> π </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> erfi </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> f </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> + </mo> <mrow> <mi> f </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mi> d </mi> <mo> + </mo> <mrow> <mi> f </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mrow> <mi> f </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> - </mo> <mrow> <mi> f </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> </msup> </mrow> <mrow> <mi> d </mi> <mo> - </mo> <mrow> <mi> f </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mn> 2 </mn> <mrow> <mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> - </mo> <mi> v </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> s </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mo> ⌊ </mo> <mfrac> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> ⌋ </mo> </mrow> </munderover> <mrow> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> m </mi> </mtd> </mtr> <mtr> <mtd> <mi> s </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["m", Identity]], List[TagBox["s", Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mo> ⌊ </mo> <mfrac> <mrow> <mi> v </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> ⌋ </mo> </mrow> </munderover> <mrow> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> v </mi> </mtd> </mtr> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["v", Identity]], List[TagBox["k", Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> e </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> g </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> m </mi> <mo> ⁢ </mo> <mi> q </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> q </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mi> g </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> m </mi> <mo> ⁢ </mo> <mi> q </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> g </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> f </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mi> m </mi> <mo> ⁢ </mo> <mi> p </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> p </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> + </mo> <mrow> <mi> f </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> </msup> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> f </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mi> m </mi> <mo> ⁢ </mo> <mi> p </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> p </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> + </mo> <mrow> <mi> f </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> g </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> q </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> f </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> m </mi> <mo> ⁢ </mo> <mi> p </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> p </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mi> f </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> </msup> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> f </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> m </mi> <mo> ⁢ </mo> <mi> p </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> p </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mi> f </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> g </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> m </mi> <mo> ⁢ </mo> <mi> q </mi> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> f </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mi> m </mi> <mo> ⁢ </mo> <mi> p </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> p </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mi> f </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> </msup> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> f </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mi> m </mi> <mo> ⁢ </mo> <mi> p </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> p </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mi> f </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> q </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> g </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> f </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> m </mi> <mo> ⁢ </mo> <mi> p </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> p </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> + </mo> <mrow> <mi> f </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> </msup> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> f </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> m </mi> <mo> ⁢ </mo> <mi> p </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> p </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> + </mo> <mrow> <mi> f </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mo> - </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> f </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> m </mi> <mo> ⁢ </mo> <mi> p </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> p </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> + </mo> <mrow> <mi> f </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> <mo> + </mo> <mi> e </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> g </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> m </mi> <mo> ⁢ </mo> <mi> q </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> q </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> + </mo> <mrow> <mi> g </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> </mrow> </msup> <mo> ⁢ </mo> <msqrt> <mi> π </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> erfi </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> f </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> m </mi> <mo> ⁢ </mo> <mi> p </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> p </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> + </mo> <mrow> <mi> f </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mi> d </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> f </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> m </mi> <mo> ⁢ </mo> <mi> p </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> p </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> + </mo> <mrow> <mi> f </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> f </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> m </mi> <mo> ⁢ </mo> <mi> p </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> p </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> + </mo> <mrow> <mi> f </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mo> - </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> f </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> m </mi> <mo> ⁢ </mo> <mi> p </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> p </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mi> f </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> <mo> + </mo> <mi> e </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> g </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> m </mi> <mo> ⁢ </mo> <mi> q </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> q </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mi> g </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> </mrow> </msup> <mo> ⁢ </mo> <msqrt> <mi> π </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> erfi </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> f </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> m </mi> <mo> ⁢ </mo> <mi> p </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> p </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mi> f </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mi> d </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> f </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> m </mi> <mo> ⁢ </mo> <mi> p </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> p </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mi> f </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> f </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> m </mi> <mo> ⁢ </mo> <mi> p </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> p </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mi> f </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mo> - </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> f </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mi> m </mi> <mo> ⁢ </mo> <mi> p </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> p </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mi> f </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> <mo> + </mo> <mi> e </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> g </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mi> m </mi> <mo> ⁢ </mo> <mi> q </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> q </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mi> g </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> </mrow> </msup> <mo> ⁢ </mo> <msqrt> <mi> π </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> erfi </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> f </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mi> m </mi> <mo> ⁢ </mo> <mi> p </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> p </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mi> f </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mi> d </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> f </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mi> m </mi> <mo> ⁢ </mo> <mi> p </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> p </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mi> f </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> f </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mi> m </mi> <mo> ⁢ </mo> <mi> p </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> p </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mi> f </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mo> - </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mrow> <mi> p </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> f </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> <mo> + </mo> <mi> e </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> g </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mi> m </mi> <mo> ⁢ </mo> <mi> q </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> q </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> + </mo> <mrow> <mi> g </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> </mrow> </msup> <mo> ⁢ </mo> <msqrt> <mi> π </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> erfi </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mrow> <mi> p </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> f </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mi> d </mi> <mo> + </mo> <mrow> <mi> p </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> f </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mrow> <mi> p </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> f </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> m </mi> <mo> ∈ </mo> <msup> <mi> ℕ </mi> <mo> + </mo> </msup> </mrow> <mo> ∧ </mo> <mrow> <mi> v </mi> <mo> ∈ </mo> <msup> <mi> ℕ </mi> <mo> + </mo> </msup> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> b </ci> </apply> <ci> e </ci> <apply> <times /> <ci> d </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <apply> <cosh /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> a </ci> </apply> <ci> q </ci> <apply> <times /> <ci> p </ci> <ci> z </ci> </apply> </apply> </apply> <ci> m </ci> </apply> <apply> <power /> <apply> <cosh /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> c </ci> </apply> <ci> g </ci> <apply> <times /> <ci> f </ci> <ci> z </ci> </apply> </apply> </apply> <ci> v </ci> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> v </ci> </apply> <cn type='integer'> -2 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> b </ci> </apply> <apply> <times /> <ci> d </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <ci> d </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> d </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> d </ci> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> d </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <ci> d </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <exponentiale /> <ci> e </ci> </apply> <apply> <ci> Binomial </ci> <ci> m </ci> <apply> <times /> <ci> m </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> Binomial </ci> <ci> v </ci> <apply> <times /> <ci> v </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <rem /> <ci> $CellContext`m </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <rem /> <ci> $CellContext`v </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> v </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Binomial </ci> <ci> v </ci> <apply> <times /> <ci> v </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> s </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <floor /> <apply> <times /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </uplimit> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <plus /> <ci> e </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> q </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <ci> Binomial </ci> <ci> m </ci> <ci> s </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> a </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> <ci> s </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> m </ci> <ci> p </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> p </ci> <ci> s </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <ci> a </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> a </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> m </ci> <ci> p </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> p </ci> <ci> s </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> m </ci> <ci> p </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> p </ci> <ci> s </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> m </ci> <ci> p </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> p </ci> <ci> s </ci> </apply> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> q </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> d </ci> <apply> <times /> <ci> p </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> </apply> <ci> z </ci> </apply> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <times /> <ci> a </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> d </ci> <apply> <times /> <ci> p </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> d </ci> <apply> <times /> <ci> p </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> q </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> b </ci> <apply> <times /> <ci> a </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <ci> d </ci> <apply> <times /> <ci> p </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> b </ci> <apply> <times /> <ci> a </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <times /> <ci> a </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> d </ci> <apply> <times /> <ci> m </ci> <ci> p </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> p </ci> <ci> s </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> d </ci> <apply> <times /> <ci> p </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> a </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> p </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> </apply> </apply> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> p </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <rem /> <ci> $CellContext`v </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> v </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Binomial </ci> <ci> m </ci> <apply> <times /> <ci> m </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <rem /> <ci> $CellContext`m </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> s </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <floor /> <apply> <times /> <apply> <plus /> <ci> v </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </uplimit> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <plus /> <ci> e </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> g </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <ci> Binomial </ci> <ci> v </ci> <ci> s </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> f </ci> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> f </ci> <ci> v </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <times /> <ci> c </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> v </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> f </ci> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> f </ci> <ci> v </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> f </ci> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> f </ci> <ci> v </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> f </ci> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> f </ci> <ci> v </ci> </apply> </apply> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> g </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> d </ci> <apply> <times /> <ci> f </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> </apply> <ci> z </ci> </apply> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <times /> <ci> c </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> d </ci> <apply> <times /> <ci> f </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> g </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> b </ci> <apply> <times /> <ci> c </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <ci> d </ci> <apply> <times /> <ci> f </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> b </ci> <apply> <times /> <ci> c </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <times /> <ci> c </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> f </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <ci> f </ci> <ci> v </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> d </ci> <apply> <times /> <ci> f </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> d </ci> <apply> <times /> <ci> f </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> f </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> </apply> </apply> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> f </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> v </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> s </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <floor /> <apply> <times /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </uplimit> <apply> <times /> <apply> <ci> Binomial </ci> <ci> m </ci> <ci> s </ci> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <floor /> <apply> <times /> <apply> <plus /> <ci> v </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </uplimit> <apply> <times /> <apply> <ci> Binomial </ci> <ci> v </ci> <ci> k </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <exponentiale /> <apply> <plus /> <ci> e </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> g </ci> <ci> k </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> m </ci> <ci> q </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> q </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> g </ci> <ci> v </ci> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> m </ci> <ci> q </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> g </ci> <ci> v </ci> </apply> <apply> <times /> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> f </ci> <ci> k </ci> </apply> </apply> <apply> <times /> <ci> m </ci> <ci> p </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> p </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <ci> f </ci> <ci> v </ci> </apply> </apply> <ci> z </ci> </apply> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> k </ci> </apply> </apply> <apply> <times /> <ci> a </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> f </ci> <ci> k </ci> </apply> </apply> <apply> <times /> <ci> m </ci> <ci> p </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> p </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <ci> f </ci> <ci> v </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> g </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <ci> q </ci> <ci> s </ci> </apply> <apply> <times /> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> f </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> m </ci> <ci> p </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> p </ci> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> f </ci> <ci> v </ci> </apply> </apply> </apply> <ci> z </ci> </apply> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> a </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> f </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> m </ci> <ci> p </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> p </ci> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> f </ci> <ci> v </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> g </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> m </ci> <ci> q </ci> </apply> <apply> <times /> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> f </ci> <ci> k </ci> </apply> <apply> <times /> <ci> m </ci> <ci> p </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> p </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> f </ci> <ci> v </ci> </apply> </apply> </apply> <ci> z </ci> </apply> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> k </ci> </apply> <apply> <times /> <ci> a </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> f </ci> <ci> k </ci> </apply> <apply> <times /> <ci> m </ci> <ci> p </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> p </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> f </ci> <ci> v </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> q </ci> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> g </ci> <ci> v </ci> </apply> <apply> <times /> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> f </ci> <ci> k </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> m </ci> <ci> p </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> p </ci> <ci> s </ci> </apply> <apply> <times /> <ci> f </ci> <ci> v </ci> </apply> </apply> <ci> z </ci> </apply> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> k </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> a </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> <ci> s </ci> </apply> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> f </ci> <ci> k </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> m </ci> <ci> p </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> p </ci> <ci> s </ci> </apply> <apply> <times /> <ci> f </ci> <ci> v </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> k </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> a </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> <ci> s </ci> </apply> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> f </ci> <ci> k </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> m </ci> <ci> p </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> p </ci> <ci> s </ci> </apply> <apply> <times /> <ci> f </ci> <ci> v </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <ci> e </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> g </ci> <ci> k </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> m </ci> <ci> q </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> q </ci> <ci> s </ci> </apply> <apply> <times /> <ci> g </ci> <ci> v </ci> </apply> </apply> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> k </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> a </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> <ci> s </ci> </apply> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> k </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> a </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> <ci> s </ci> </apply> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> f </ci> <ci> k </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> m </ci> <ci> p </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> p </ci> <ci> s </ci> </apply> <apply> <times /> <ci> f </ci> <ci> v </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> f </ci> <ci> k </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> m </ci> <ci> p </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> p </ci> <ci> s </ci> </apply> <apply> <times /> <ci> f </ci> <ci> v </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> f </ci> <ci> k </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> m </ci> <ci> p </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> p </ci> <ci> s </ci> </apply> <apply> <times /> <ci> f </ci> <ci> v </ci> </apply> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> a </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> f </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> m </ci> <ci> p </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> p </ci> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> f </ci> <ci> v </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <ci> e </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> g </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> m </ci> <ci> q </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> q </ci> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> g </ci> <ci> v </ci> </apply> </apply> </apply> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> a </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> a </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> f </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> m </ci> <ci> p </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> p </ci> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> f </ci> <ci> v </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> f </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> m </ci> <ci> p </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> p </ci> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> f </ci> <ci> v </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> f </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> m </ci> <ci> p </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> p </ci> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> f </ci> <ci> v </ci> </apply> </apply> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> k </ci> </apply> <apply> <times /> <ci> a </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> f </ci> <ci> k </ci> </apply> <apply> <times /> <ci> m </ci> <ci> p </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> p </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> f </ci> <ci> v </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <ci> e </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> g </ci> <ci> k </ci> </apply> <apply> <times /> <ci> m </ci> <ci> q </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> q </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> g </ci> <ci> v </ci> </apply> </apply> </apply> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> k </ci> </apply> <apply> <times /> <ci> a </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> k </ci> </apply> <apply> <times /> <ci> a </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> f </ci> <ci> k </ci> </apply> <apply> <times /> <ci> m </ci> <ci> p </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> p </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> f </ci> <ci> v </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> f </ci> <ci> k </ci> </apply> <apply> <times /> <ci> m </ci> <ci> p </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> p </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> f </ci> <ci> v </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> f </ci> <ci> k </ci> </apply> <apply> <times /> <ci> m </ci> <ci> p </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> p </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> f </ci> <ci> v </ci> </apply> </apply> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> b </ci> <apply> <times /> <ci> a </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> <apply> <times /> <ci> c </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <ci> d </ci> <apply> <times /> <ci> p </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> <apply> <times /> <ci> f </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <ci> e </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> g </ci> <ci> k </ci> </apply> </apply> <apply> <times /> <ci> m </ci> <ci> q </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> q </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <ci> g </ci> <ci> v </ci> </apply> </apply> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> b </ci> <apply> <times /> <ci> a </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> <apply> <times /> <ci> c </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> k </ci> </apply> </apply> <apply> <times /> <ci> a </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> d </ci> <apply> <times /> <ci> p </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> <apply> <times /> <ci> f </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> d </ci> <apply> <times /> <ci> p </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> <apply> <times /> <ci> f </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> d </ci> <apply> <times /> <ci> p </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> <apply> <times /> <ci> f </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <in /> <ci> m </ci> <apply> <ci> SuperPlus </ci> <ci> ℕ </ci> </apply> </apply> <apply> <in /> <ci> v </ci> <apply> <ci> SuperPlus </ci> <ci> ℕ </ci> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["b_", " ", SqrtBox["z_"]]], "+", RowBox[List["d_", " ", "z_"]], "+", "e_"]]], " ", SuperscriptBox[RowBox[List["Cosh", "[", RowBox[List[RowBox[List["a_", " ", SqrtBox["z_"]]], "+", RowBox[List["p_", " ", "z_"]], "+", "q_"]], "]"]], "m_"], " ", SuperscriptBox[RowBox[List["Cosh", "[", RowBox[List[RowBox[List["c_", " ", SqrtBox["z_"]]], "+", RowBox[List["f_", " ", "z_"]], "+", "g_"]], "]"]], "v_"]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "2"]], "-", "m", "-", "v"]]], " ", SuperscriptBox["\[ExponentialE]", "e"], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", FractionBox["m", "2"]]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List["v", ",", FractionBox["v", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List["4", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["b", " ", SqrtBox["z"]]], "+", RowBox[List["d", " ", "z"]]]]]]], "d"], "-", FractionBox[RowBox[List["2", " ", "b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[SuperscriptBox["b", "2"], RowBox[List["4", " ", "d"]]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List["b", "+", RowBox[List["2", " ", "d", " ", SqrtBox["z"]]]]], RowBox[List["2", " ", SqrtBox["d"]]]], "]"]]]], SuperscriptBox["d", RowBox[List["3", "/", "2"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["m", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["v", ",", "2"]], "]"]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", "m", "-", "v"]]], " ", RowBox[List["Binomial", "[", RowBox[List["v", ",", FractionBox["v", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["v", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["s", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["e", "-", RowBox[List["q", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", "s"]], "]"]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List["2", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["b", "-", RowBox[List["a", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], " ", SqrtBox["z"]]], "+", RowBox[List[RowBox[List["(", RowBox[List["d", "-", RowBox[List["p", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], " ", "z"]]]]]]], RowBox[List["d", "-", RowBox[List["p", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]]], "+", FractionBox[RowBox[List["2", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["2", " ", "q", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["b", "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], " ", SqrtBox["z"]]], "+", RowBox[List[RowBox[List["(", RowBox[List["d", "+", RowBox[List["p", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], " ", "z"]]]]]]], RowBox[List["d", "+", RowBox[List["p", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]]], "+", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["b", "-", RowBox[List["a", " ", "m"]], "+", RowBox[List["2", " ", "a", " ", "s"]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List["d", "-", RowBox[List["m", " ", "p"]], "+", RowBox[List["2", " ", "p", " ", "s"]]]], ")"]]]]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List["b", "-", RowBox[List["a", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["d", "-", RowBox[List["m", " ", "p"]], "+", RowBox[List["2", " ", "p", " ", "s"]]]], ")"]], " ", SqrtBox["z"]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["d", "-", RowBox[List["m", " ", "p"]], "+", RowBox[List["2", " ", "p", " ", "s"]]]]]]]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["d", "-", RowBox[List["m", " ", "p"]], "+", RowBox[List["2", " ", "p", " ", "s"]]]], ")"]], RowBox[List["3", "/", "2"]]]], "-", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["b", "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["p", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]]]]]]], "+", RowBox[List["2", " ", "q", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List["b", "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["m", " ", "p"]], "-", RowBox[List["2", " ", "p", " ", "s"]]]], ")"]], " ", SqrtBox["z"]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["d", "+", RowBox[List["p", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]]]]]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["p", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], RowBox[List["3", "/", "2"]]]]]], ")"]]]]]]]], "+", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", "m", "-", "v"]]], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", FractionBox["m", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["m", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["s", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "v"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["e", "-", RowBox[List["g", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["v", ",", "s"]], "]"]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List["2", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["b", "-", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]]]], ")"]], " ", SqrtBox["z"]]], "+", RowBox[List[RowBox[List["(", RowBox[List["d", "-", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]]]], ")"]], " ", "z"]]]]]]], RowBox[List["d", "-", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]]]]], "+", FractionBox[RowBox[List["2", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["2", " ", "g", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["b", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]]]], ")"]], " ", SqrtBox["z"]]], "+", RowBox[List[RowBox[List["(", RowBox[List["d", "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]]]], ")"]], " ", "z"]]]]]]], RowBox[List["d", "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]]]]], "-", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["b", "+", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["2", " ", "f", " ", "s"]], "-", RowBox[List["f", " ", "v"]]]], ")"]]]]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List["b", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "s"]], "-", "v"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["2", " ", "f", " ", "s"]], "-", RowBox[List["f", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["d", "+", RowBox[List["2", " ", "f", " ", "s"]], "-", RowBox[List["f", " ", "v"]]]]]]]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["2", " ", "f", " ", "s"]], "-", RowBox[List["f", " ", "v"]]]], ")"]], RowBox[List["3", "/", "2"]]]], "-", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["2", " ", "g", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]], "-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["b", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]]]], ")"]]]]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]]]], ")"]], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List["b", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["d", "-", RowBox[List["2", " ", "f", " ", "s"]], "+", RowBox[List["f", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["d", "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]]]]]]]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]]]], ")"]], RowBox[List["3", "/", "2"]]]]]], ")"]]]]]]]], "+", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", "m", "-", "v"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["s", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]]]], "]"]]], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["m", ",", "s"]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "v"]], ")"]]]], "]"]]], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["v", ",", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["e", "-", RowBox[List["2", " ", "g", " ", "k"]], "-", RowBox[List["m", " ", "q"]], "-", RowBox[List["2", " ", "q", " ", "s"]], "-", RowBox[List["g", " ", "v"]]]]], " ", RowBox[List["(", RowBox[List[FractionBox[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["4", " ", "g", " ", "k"]], "+", RowBox[List["2", " ", "m", " ", "q"]], "+", RowBox[List[RowBox[List["(", RowBox[List["b", "+", RowBox[List["2", " ", "c", " ", "k"]], "+", RowBox[List["a", " ", "m"]], "-", RowBox[List["2", " ", "a", " ", "s"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]], "+", RowBox[List[RowBox[List["(", RowBox[List["d", "+", RowBox[List["2", " ", "f", " ", "k"]], "+", RowBox[List["m", " ", "p"]], "-", RowBox[List["2", " ", "p", " ", "s"]], "-", RowBox[List["f", " ", "v"]]]], ")"]], " ", "z"]]]]], RowBox[List["d", "+", RowBox[List["2", " ", "f", " ", "k"]], "+", RowBox[List["m", " ", "p"]], "-", RowBox[List["2", " ", "p", " ", "s"]], "-", RowBox[List["f", " ", "v"]]]]], "+", FractionBox[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["4", " ", "g", " ", "k"]], "+", RowBox[List["4", " ", "q", " ", "s"]], "+", RowBox[List[RowBox[List["(", RowBox[List["b", "+", RowBox[List["2", " ", "c", " ", "k"]], "-", RowBox[List["a", " ", "m"]], "+", RowBox[List["2", " ", "a", " ", "s"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]], "+", RowBox[List[RowBox[List["(", RowBox[List["d", "+", RowBox[List["2", " ", "f", " ", "k"]], "-", RowBox[List["m", " ", "p"]], "+", RowBox[List["2", " ", "p", " ", "s"]], "-", RowBox[List["f", " ", "v"]]]], ")"]], " ", "z"]]]]], RowBox[List["d", "+", RowBox[List["2", " ", "f", " ", "k"]], "-", RowBox[List["m", " ", "p"]], "+", RowBox[List["2", " ", "p", " ", "s"]], "-", RowBox[List["f", " ", "v"]]]]], "+", FractionBox[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["2", " ", "m", " ", "q"]], "+", RowBox[List["2", " ", "g", " ", "v"]], "+", RowBox[List[RowBox[List["(", RowBox[List["b", "-", RowBox[List["2", " ", "c", " ", "k"]], "+", RowBox[List["a", " ", "m"]], "-", RowBox[List["2", " ", "a", " ", "s"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]], "+", RowBox[List[RowBox[List["(", RowBox[List["d", "-", RowBox[List["2", " ", "f", " ", "k"]], "+", RowBox[List["m", " ", "p"]], "-", RowBox[List["2", " ", "p", " ", "s"]], "+", RowBox[List["f", " ", "v"]]]], ")"]], " ", "z"]]]]], RowBox[List["d", "-", RowBox[List["2", " ", "f", " ", "k"]], "+", RowBox[List["m", " ", "p"]], "-", RowBox[List["2", " ", "p", " ", "s"]], "+", RowBox[List["f", " ", "v"]]]]], "+", FractionBox[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["4", " ", "q", " ", "s"]], "+", RowBox[List["2", " ", "g", " ", "v"]], "+", RowBox[List[RowBox[List["(", RowBox[List["b", "-", RowBox[List["2", " ", "c", " ", "k"]], "-", RowBox[List["a", " ", "m"]], "+", RowBox[List["2", " ", "a", " ", "s"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]], "+", RowBox[List[RowBox[List["(", RowBox[List["d", "-", RowBox[List["2", " ", "f", " ", "k"]], "-", RowBox[List["m", " ", "p"]], "+", RowBox[List["2", " ", "p", " ", "s"]], "+", RowBox[List["f", " ", "v"]]]], ")"]], " ", "z"]]]]], RowBox[List["d", "-", RowBox[List["2", " ", "f", " ", "k"]], "-", RowBox[List["m", " ", "p"]], "+", RowBox[List["2", " ", "p", " ", "s"]], "+", RowBox[List["f", " ", "v"]]]]]]], ")"]]]], "-", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["e", "-", RowBox[List["2", " ", "g", " ", "k"]], "+", RowBox[List["m", " ", "q"]], "-", RowBox[List["2", " ", "q", " ", "s"]], "+", RowBox[List["g", " ", "v"]], "-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["b", "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "v"]], ")"]]]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["p", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "v"]], ")"]]]]]], ")"]]]]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "v"]], ")"]]]]]], ")"]], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List["b", "-", RowBox[List["2", " ", "c", " ", "k"]], "+", RowBox[List["a", " ", "m"]], "-", RowBox[List["2", " ", "a", " ", "s"]], "+", RowBox[List["c", " ", "v"]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["p", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "v"]], ")"]]]]]], ")"]], " ", SqrtBox["z"]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["d", "+", RowBox[List["p", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "v"]], ")"]]]]]]]]]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["p", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "v"]], ")"]]]]]], ")"]], RowBox[List["3", "/", "2"]]]], "-", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["e", "+", RowBox[List["2", " ", "g", " ", "k"]], "-", RowBox[List["m", " ", "q"]], "+", RowBox[List["2", " ", "q", " ", "s"]], "-", RowBox[List["g", " ", "v"]], "-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["b", "+", RowBox[List["2", " ", "c", " ", "k"]], "-", RowBox[List["a", " ", "m"]], "+", RowBox[List["2", " ", "a", " ", "s"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["2", " ", "f", " ", "k"]], "-", RowBox[List["m", " ", "p"]], "+", RowBox[List["2", " ", "p", " ", "s"]], "-", RowBox[List["f", " ", "v"]]]], ")"]]]]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["2", " ", "c", " ", "k"]], "-", RowBox[List["a", " ", "m"]], "+", RowBox[List["2", " ", "a", " ", "s"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List["b", "+", RowBox[List["2", " ", "c", " ", "k"]], "-", RowBox[List["a", " ", "m"]], "+", RowBox[List["2", " ", "a", " ", "s"]], "-", RowBox[List["c", " ", "v"]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["2", " ", "f", " ", "k"]], "-", RowBox[List["m", " ", "p"]], "+", RowBox[List["2", " ", "p", " ", "s"]], "-", RowBox[List["f", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["d", "+", RowBox[List["2", " ", "f", " ", "k"]], "-", RowBox[List["m", " ", "p"]], "+", RowBox[List["2", " ", "p", " ", "s"]], "-", RowBox[List["f", " ", "v"]]]]]]]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["2", " ", "f", " ", "k"]], "-", RowBox[List["m", " ", "p"]], "+", RowBox[List["2", " ", "p", " ", "s"]], "-", RowBox[List["f", " ", "v"]]]], ")"]], RowBox[List["3", "/", "2"]]]], "-", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["e", "-", RowBox[List["2", " ", "g", " ", "k"]], "-", RowBox[List["m", " ", "q"]], "+", RowBox[List["2", " ", "q", " ", "s"]], "+", RowBox[List["g", " ", "v"]], "-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["b", "-", RowBox[List["2", " ", "c", " ", "k"]], "-", RowBox[List["a", " ", "m"]], "+", RowBox[List["2", " ", "a", " ", "s"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List["d", "-", RowBox[List["2", " ", "f", " ", "k"]], "-", RowBox[List["m", " ", "p"]], "+", RowBox[List["2", " ", "p", " ", "s"]], "+", RowBox[List["f", " ", "v"]]]], ")"]]]]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List["b", "-", RowBox[List["2", " ", "c", " ", "k"]], "-", RowBox[List["a", " ", "m"]], "+", RowBox[List["2", " ", "a", " ", "s"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List["b", "-", RowBox[List["2", " ", "c", " ", "k"]], "-", RowBox[List["a", " ", "m"]], "+", RowBox[List["2", " ", "a", " ", "s"]], "+", RowBox[List["c", " ", "v"]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["d", "-", RowBox[List["2", " ", "f", " ", "k"]], "-", RowBox[List["m", " ", "p"]], "+", RowBox[List["2", " ", "p", " ", "s"]], "+", RowBox[List["f", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["d", "-", RowBox[List["2", " ", "f", " ", "k"]], "-", RowBox[List["m", " ", "p"]], "+", RowBox[List["2", " ", "p", " ", "s"]], "+", RowBox[List["f", " ", "v"]]]]]]]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["d", "-", RowBox[List["2", " ", "f", " ", "k"]], "-", RowBox[List["m", " ", "p"]], "+", RowBox[List["2", " ", "p", " ", "s"]], "+", RowBox[List["f", " ", "v"]]]], ")"]], RowBox[List["3", "/", "2"]]]], "-", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["e", "+", RowBox[List["2", " ", "g", " ", "k"]], "+", RowBox[List["m", " ", "q"]], "-", RowBox[List["2", " ", "q", " ", "s"]], "-", RowBox[List["g", " ", "v"]], "-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["b", "+", RowBox[List["2", " ", "c", " ", "k"]], "+", RowBox[List["a", " ", "m"]], "-", RowBox[List["2", " ", "a", " ", "s"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["2", " ", "f", " ", "k"]], "+", RowBox[List["m", " ", "p"]], "-", RowBox[List["2", " ", "p", " ", "s"]], "-", RowBox[List["f", " ", "v"]]]], ")"]]]]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["2", " ", "c", " ", "k"]], "+", RowBox[List["a", " ", "m"]], "-", RowBox[List["2", " ", "a", " ", "s"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List["b", "+", RowBox[List["2", " ", "c", " ", "k"]], "+", RowBox[List["a", " ", "m"]], "-", RowBox[List["2", " ", "a", " ", "s"]], "-", RowBox[List["c", " ", "v"]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["2", " ", "f", " ", "k"]], "+", RowBox[List["m", " ", "p"]], "-", RowBox[List["2", " ", "p", " ", "s"]], "-", RowBox[List["f", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["d", "+", RowBox[List["2", " ", "f", " ", "k"]], "+", RowBox[List["m", " ", "p"]], "-", RowBox[List["2", " ", "p", " ", "s"]], "-", RowBox[List["f", " ", "v"]]]]]]]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["2", " ", "f", " ", "k"]], "+", RowBox[List["m", " ", "p"]], "-", RowBox[List["2", " ", "p", " ", "s"]], "-", RowBox[List["f", " ", "v"]]]], ")"]], RowBox[List["3", "/", "2"]]]]]], ")"]]]]]]]]]]]]]], "/;", RowBox[List[RowBox[List["m", "\[Element]", "Integers"]], "&&", RowBox[List["m", ">", "0"]], "&&", RowBox[List["v", "\[Element]", "Integers"]], "&&", RowBox[List["v", ">", "0"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|