Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Cosh






Mathematica Notation

Traditional Notation









Elementary Functions > Cosh[z] > Integration > Indefinite integration > Involving functions of the direct function, trigonometric and exponential functions > Involving powers of the direct function, trigonometric and exponential functions > Involving cos and exp > Involving ep zr cos(b z)coshv(c z)





http://functions.wolfram.com/01.20.21.3805.01









  


  










Input Form





Integrate[E^(p Sqrt[z]) Cos[b z] Cosh[c z]^v, z] == 2^(-2 - v) Binomial[v, v/2] (1 - Mod[v, 2]) (-((p Sqrt[Pi] Erfi[(p - 2 I b Sqrt[z])/(2 Sqrt[(-I) b])])/ (E^((I p^2)/(4 b)) ((-I) b)^(3/2))) - (E^((I p^2)/(4 b)) p Sqrt[Pi] Erfi[(p + 2 I b Sqrt[z])/(2 Sqrt[I b])])/ (I b)^(3/2) + (4 E^(p Sqrt[z]) Sin[b z])/b) + 2^(-2 - v) Sum[Binomial[v, k] (-((p Sqrt[Pi] Erfi[(p + 2 ((-I) b + 2 c k - c v) Sqrt[z])/ (2 Sqrt[(-I) b + 2 c k - c v])])/ (E^(p^2/(4 ((-I) b + 2 c k - c v))) ((-I) b + 2 c k - c v)^(3/2))) - (p Sqrt[Pi] Erfi[(p + 2 (I b + 2 c k - c v) Sqrt[z])/ (2 Sqrt[I b + 2 c k - c v])])/(E^(p^2/(4 (I b + 2 c k - c v))) (I b + 2 c k - c v)^(3/2)) - (p Sqrt[Pi] Erfi[(p + 2 ((-I) b - 2 c k + c v) Sqrt[z])/ (2 Sqrt[(-I) b - 2 c k + c v])])/ (E^(p^2/(4 ((-I) b - 2 c k + c v))) ((-I) b - 2 c k + c v)^(3/2)) - (p Sqrt[Pi] Erfi[(p + 2 (I b - 2 c k + c v) Sqrt[z])/ (2 Sqrt[I b - 2 c k + c v])])/(E^(p^2/(4 (I b - 2 c k + c v))) (I b - 2 c k + c v)^(3/2)) + 2 E^(p Sqrt[z]) ((2 Sinh[(I b + 2 c k - c v) z])/(I b + 2 c k - c v) + (2 Sinh[(I b + c (-2 k + v)) z])/(I b + c (-2 k + v)))), {k, 0, Floor[(1/2) (-1 + v)]}] /; Element[v, Integers] && v > 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["p", " ", SqrtBox["z"]]]], " ", RowBox[List["Cos", "[", RowBox[List["b", " ", "z"]], "]"]], " ", SuperscriptBox[RowBox[List["Cosh", "[", RowBox[List["c", " ", "z"]], "]"]], "v"], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "2"]], "-", "v"]]], " ", RowBox[List["Binomial", "[", RowBox[List["v", ",", FractionBox["v", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["v", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["p", "2"]]], RowBox[List["4", " ", "b"]]]]]], " ", "p", " ", SqrtBox["\[Pi]"], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List["p", "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", SqrtBox["z"]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]]]]]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]], ")"]], RowBox[List["3", "/", "2"]]]]]], "-", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["p", "2"]]], RowBox[List["4", " ", "b"]]]], " ", "p", " ", SqrtBox["\[Pi]"], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List["p", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", SqrtBox["z"]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["\[ImaginaryI]", " ", "b"]]]]]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", "b"]], ")"]], RowBox[List["3", "/", "2"]]]], "+", FractionBox[RowBox[List["4", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["p", " ", SqrtBox["z"]]]], " ", RowBox[List["Sin", "[", RowBox[List["b", " ", "z"]], "]"]]]], "b"]]], ")"]]]], "+", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "2"]], "-", "v"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "v"]], ")"]]]], "]"]]], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["v", ",", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[SuperscriptBox["p", "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]], "+", RowBox[List["2", " ", "c", " ", "k"]], "-", RowBox[List["c", " ", "v"]]]], ")"]]]]]]]], " ", "p", " ", SqrtBox["\[Pi]"], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List["p", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]], "+", RowBox[List["2", " ", "c", " ", "k"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]], "+", RowBox[List["2", " ", "c", " ", "k"]], "-", RowBox[List["c", " ", "v"]]]]]]]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]], "+", RowBox[List["2", " ", "c", " ", "k"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], RowBox[List["3", "/", "2"]]]]]], "-", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[SuperscriptBox["p", "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", RowBox[List["2", " ", "c", " ", "k"]], "-", RowBox[List["c", " ", "v"]]]], ")"]]]]]]]], " ", "p", " ", SqrtBox["\[Pi]"], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List["p", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", RowBox[List["2", " ", "c", " ", "k"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", RowBox[List["2", " ", "c", " ", "k"]], "-", RowBox[List["c", " ", "v"]]]]]]]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", RowBox[List["2", " ", "c", " ", "k"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], RowBox[List["3", "/", "2"]]]], "-", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[SuperscriptBox["p", "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]], "-", RowBox[List["2", " ", "c", " ", "k"]], "+", RowBox[List["c", " ", "v"]]]], ")"]]]]]]]], " ", "p", " ", SqrtBox["\[Pi]"], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List["p", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]], "-", RowBox[List["2", " ", "c", " ", "k"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]], "-", RowBox[List["2", " ", "c", " ", "k"]], "+", RowBox[List["c", " ", "v"]]]]]]]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]], "-", RowBox[List["2", " ", "c", " ", "k"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], RowBox[List["3", "/", "2"]]]], "-", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[SuperscriptBox["p", "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "-", RowBox[List["2", " ", "c", " ", "k"]], "+", RowBox[List["c", " ", "v"]]]], ")"]]]]]]]], " ", "p", " ", SqrtBox["\[Pi]"], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List["p", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "-", RowBox[List["2", " ", "c", " ", "k"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "-", RowBox[List["2", " ", "c", " ", "k"]], "+", RowBox[List["c", " ", "v"]]]]]]]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "-", RowBox[List["2", " ", "c", " ", "k"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], RowBox[List["3", "/", "2"]]]], "+", RowBox[List["2", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["p", " ", SqrtBox["z"]]]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List["2", " ", RowBox[List["Sinh", "[", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", RowBox[List["2", " ", "c", " ", "k"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], " ", "z"]], "]"]]]], RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", RowBox[List["2", " ", "c", " ", "k"]], "-", RowBox[List["c", " ", "v"]]]]], "+", FractionBox[RowBox[List["2", " ", RowBox[List["Sinh", "[", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "v"]], ")"]]]]]], ")"]], " ", "z"]], "]"]]]], RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "v"]], ")"]]]]]]]]], ")"]]]]]], ")"]]]]]]]]]]]], "/;", RowBox[List[RowBox[List["v", "\[Element]", "Integers"]], "\[And]", RowBox[List["v", ">", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mi> p </mi> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> cosh </mi> <mi> v </mi> </msup> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <msup> <mn> 2 </mn> <mrow> <mrow> <mo> - </mo> <mi> v </mi> </mrow> <mo> - </mo> <mn> 2 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msup> <mi> p </mi> <mn> 2 </mn> </msup> </mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> b </mi> </mrow> </mfrac> </mrow> </msup> <mo> &#8290; </mo> <mi> p </mi> <mo> &#8290; </mo> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mi> erfi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> p </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <mi> b </mi> </mrow> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mfrac> </mrow> <mo> + </mo> <mfrac> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> p </mi> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mi> b </mi> </mfrac> <mo> - </mo> <mfrac> <mrow> <msup> <mi> &#8519; </mi> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msup> <mi> p </mi> <mn> 2 </mn> </msup> </mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> b </mi> </mrow> </mfrac> </msup> <mo> &#8290; </mo> <mi> p </mi> <mo> &#8290; </mo> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mi> erfi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> p </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> </mrow> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> v </mi> </mtd> </mtr> <mtr> <mtd> <mfrac> <mi> v </mi> <mn> 2 </mn> </mfrac> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;v&quot;, Identity]], List[TagBox[FractionBox[&quot;v&quot;, &quot;2&quot;], Identity]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <semantics> <mrow> <mi> v </mi> <mo> &#8290; </mo> <mi> mod </mi> <mo> &#8290; </mo> <mn> 2 </mn> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <rem /> <ci> $CellContext`v </ci> <cn type='integer'> 2 </cn> </apply> </annotation-xml> </semantics> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mn> 2 </mn> <mrow> <mrow> <mo> - </mo> <mi> v </mi> </mrow> <mo> - </mo> <mn> 2 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> v </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> &#8971; </mo> </mrow> </munderover> <mrow> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> v </mi> </mtd> </mtr> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;v&quot;, Identity]], List[TagBox[&quot;k&quot;, Identity]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> p </mi> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> </mfrac> <mo> + </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mfrac> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mo> - </mo> <mfrac> <msup> <mi> p </mi> <mn> 2 </mn> </msup> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> </msup> <mo> &#8290; </mo> <mi> p </mi> <mo> &#8290; </mo> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mi> erfi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> p </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mfrac> <mo> - </mo> <mfrac> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mo> - </mo> <mfrac> <msup> <mi> p </mi> <mn> 2 </mn> </msup> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> </msup> <mo> &#8290; </mo> <mi> p </mi> <mo> &#8290; </mo> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mi> erfi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> p </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mfrac> <mo> - </mo> <mfrac> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mo> - </mo> <mfrac> <msup> <mi> p </mi> <mn> 2 </mn> </msup> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> </msup> <mo> &#8290; </mo> <mi> p </mi> <mo> &#8290; </mo> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mi> erfi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> p </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mfrac> <mo> - </mo> <mfrac> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mo> - </mo> <mfrac> <msup> <mi> p </mi> <mn> 2 </mn> </msup> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> </msup> <mo> &#8290; </mo> <mi> p </mi> <mo> &#8290; </mo> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mi> erfi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> p </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> v </mi> <mo> &#8712; </mo> <msup> <mi> &#8469; </mi> <mo> + </mo> </msup> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <ci> p </ci> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <cos /> <apply> <times /> <ci> b </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <cosh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <ci> v </ci> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> v </ci> </apply> <cn type='integer'> -2 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <ci> p </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <ci> p </ci> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> b </ci> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> b </ci> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <ci> p </ci> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <sin /> <apply> <times /> <ci> b </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <apply> <power /> <ci> p </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <ci> p </ci> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> b </ci> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <ci> Binomial </ci> <ci> v </ci> <apply> <times /> <ci> v </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <rem /> <ci> $CellContext`v </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> v </ci> </apply> <cn type='integer'> -2 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <floor /> <apply> <times /> <apply> <plus /> <ci> v </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </uplimit> <apply> <times /> <apply> <ci> Binomial </ci> <ci> v </ci> <ci> k </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <ci> p </ci> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <sinh /> <apply> <times /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> </apply> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <sinh /> <apply> <times /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> <apply> <times /> <ci> c </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> <apply> <times /> <ci> c </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> p </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> k </ci> </apply> </apply> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <ci> p </ci> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> k </ci> </apply> </apply> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> k </ci> </apply> </apply> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> k </ci> </apply> </apply> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> p </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> k </ci> </apply> </apply> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <ci> p </ci> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> k </ci> </apply> </apply> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> k </ci> </apply> </apply> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> k </ci> </apply> </apply> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> p </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <ci> p </ci> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> p </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <ci> p </ci> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <ci> v </ci> <apply> <ci> SuperPlus </ci> <ci> &#8469; </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["p_", " ", SqrtBox["z_"]]]], " ", RowBox[List["Cos", "[", RowBox[List["b_", " ", "z_"]], "]"]], " ", SuperscriptBox[RowBox[List["Cosh", "[", RowBox[List["c_", " ", "z_"]], "]"]], "v_"]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "2"]], "-", "v"]]], " ", RowBox[List["Binomial", "[", RowBox[List["v", ",", FractionBox["v", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["v", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["p", "2"]]], RowBox[List["4", " ", "b"]]]]]], " ", "p", " ", SqrtBox["\[Pi]"], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List["p", "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", SqrtBox["z"]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]]]]]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]], ")"]], RowBox[List["3", "/", "2"]]]]]], "-", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["p", "2"]]], RowBox[List["4", " ", "b"]]]], " ", "p", " ", SqrtBox["\[Pi]"], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List["p", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", SqrtBox["z"]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["\[ImaginaryI]", " ", "b"]]]]]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", "b"]], ")"]], RowBox[List["3", "/", "2"]]]], "+", FractionBox[RowBox[List["4", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["p", " ", SqrtBox["z"]]]], " ", RowBox[List["Sin", "[", RowBox[List["b", " ", "z"]], "]"]]]], "b"]]], ")"]]]], "+", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "2"]], "-", "v"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "v"]], ")"]]]], "]"]]], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["v", ",", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[SuperscriptBox["p", "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]], "+", RowBox[List["2", " ", "c", " ", "k"]], "-", RowBox[List["c", " ", "v"]]]], ")"]]]]]]]], " ", "p", " ", SqrtBox["\[Pi]"], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List["p", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]], "+", RowBox[List["2", " ", "c", " ", "k"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]], "+", RowBox[List["2", " ", "c", " ", "k"]], "-", RowBox[List["c", " ", "v"]]]]]]]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]], "+", RowBox[List["2", " ", "c", " ", "k"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], RowBox[List["3", "/", "2"]]]]]], "-", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[SuperscriptBox["p", "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", RowBox[List["2", " ", "c", " ", "k"]], "-", RowBox[List["c", " ", "v"]]]], ")"]]]]]]]], " ", "p", " ", SqrtBox["\[Pi]"], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List["p", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", RowBox[List["2", " ", "c", " ", "k"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", RowBox[List["2", " ", "c", " ", "k"]], "-", RowBox[List["c", " ", "v"]]]]]]]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", RowBox[List["2", " ", "c", " ", "k"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], RowBox[List["3", "/", "2"]]]], "-", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[SuperscriptBox["p", "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]], "-", RowBox[List["2", " ", "c", " ", "k"]], "+", RowBox[List["c", " ", "v"]]]], ")"]]]]]]]], " ", "p", " ", SqrtBox["\[Pi]"], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List["p", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]], "-", RowBox[List["2", " ", "c", " ", "k"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]], "-", RowBox[List["2", " ", "c", " ", "k"]], "+", RowBox[List["c", " ", "v"]]]]]]]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]], "-", RowBox[List["2", " ", "c", " ", "k"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], RowBox[List["3", "/", "2"]]]], "-", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[SuperscriptBox["p", "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "-", RowBox[List["2", " ", "c", " ", "k"]], "+", RowBox[List["c", " ", "v"]]]], ")"]]]]]]]], " ", "p", " ", SqrtBox["\[Pi]"], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List["p", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "-", RowBox[List["2", " ", "c", " ", "k"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "-", RowBox[List["2", " ", "c", " ", "k"]], "+", RowBox[List["c", " ", "v"]]]]]]]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "-", RowBox[List["2", " ", "c", " ", "k"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], RowBox[List["3", "/", "2"]]]], "+", RowBox[List["2", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["p", " ", SqrtBox["z"]]]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List["2", " ", RowBox[List["Sinh", "[", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", RowBox[List["2", " ", "c", " ", "k"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], " ", "z"]], "]"]]]], RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", RowBox[List["2", " ", "c", " ", "k"]], "-", RowBox[List["c", " ", "v"]]]]], "+", FractionBox[RowBox[List["2", " ", RowBox[List["Sinh", "[", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "v"]], ")"]]]]]], ")"]], " ", "z"]], "]"]]]], RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "v"]], ")"]]]]]]]]], ")"]]]]]], ")"]]]]]]]]]], "/;", RowBox[List[RowBox[List["v", "\[Element]", "Integers"]], "&&", RowBox[List["v", ">", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18