|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/01.20.21.3912.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Integrate[z^n E^(p z^2) Sin[b z^2] Cosh[c z]^v, z] ==
I 2^(-2 - v) z^(1 + n) Binomial[v, v/2]
((((-I) b - p) z^2)^((1/2) (-1 - n)) Gamma[(1 + n)/2, ((-I) b - p) z^2] -
((I b - p) z^2)^((1/2) (-1 - n)) Gamma[(1 + n)/2, (I b - p) z^2])
(1 - Mod[v, 2]) - I 2^(-2 - v)
(Sum[E^((c^2 p (-2 s + v)^2)/(2 (I b - p) (I b + p))) Binomial[v, s]
(E^((c^2 (-2 s + v)^2)/(4 (I b + p))) Sqrt[I b + p]
Sum[2^(-n + q) ((-I) b + p)^(-(1/2) - n) (c (-2 s + v))^(n - q)
((c (-2 s + v) + 2 (I b - p) z)^2/(I b - p))^((1/2) (-1 - q))
(2 c s - c v - 2 I b z + 2 p z)^(1 + q) Binomial[n, q]
Gamma[(1 + q)/2, (c (-2 s + v) + 2 (I b - p) z)^2/(4 (I b - p))],
{q, 0, n}] + E^((c^2 (-2 s + v)^2)/(4 (I b + p))) Sqrt[I b + p]
Sum[((-I) b + p)^(-(1/2) - n) (c (s - v/2))^(n - q)
(-2 c s + c v - 2 I b z + 2 p z)^(1 + q)
((-2 c s + c v - 2 I b z + 2 p z)^2/(I b - p))^((1/2) (-1 - q))
Binomial[n, q] Gamma[(1 + q)/2, (-2 c s + c v - 2 I b z + 2 p z)^2/
(4 (I b - p))], {q, 0, n}] -
E^((c^2 (-2 s + v)^2)/(4 ((-I) b + p))) Sqrt[(-I) b + p]
(Sum[2^(-n + q) (I b + p)^(-(1/2) - n) (c (-2 s + v))^(n - q)
(c (2 s - v) + 2 (I b + p) z)^(1 + q)
(-((c (2 s - v) + 2 (I b + p) z)^2/(I b + p)))^((1/2) (-1 - q))
Binomial[n, q] Gamma[(1 + q)/2, -((c (2 s - v) + 2 (I b + p) z)^
2/(4 (I b + p)))], {q, 0, n}] + Sum[(I b + p)^(-(1/2) - n)
(c (s - v/2))^(n - q) (c (-2 s + v) + 2 (I b + p) z)^(1 + q)
(-((c (-2 s + v) + 2 (I b + p) z)^2/(I b + p)))^((1/2) (-1 - q))
Binomial[n, q] Gamma[(1 + q)/2, -((c (-2 s + v) + 2 (I b + p) z)^
2/(4 (I b + p)))], {q, 0, n}])),
{s, 0, Floor[(1/2) (-1 + v)]}]/(Sqrt[(-I) b + p] Sqrt[I b + p])) /;
Element[v, Integers] && v > 0 && Element[n, Integers] && n >= 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["z", "n"], SuperscriptBox["\[ExponentialE]", RowBox[List["p", " ", SuperscriptBox["z", "2"]]]], " ", RowBox[List["Sin", "[", RowBox[List["b", " ", SuperscriptBox["z", "2"]]], "]"]], " ", SuperscriptBox[RowBox[List["Cosh", "[", RowBox[List["c", " ", "z"]], "]"]], "v"], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["2", RowBox[List[RowBox[List["-", "2"]], "-", "v"]]], " ", SuperscriptBox["z", RowBox[List["1", "+", "n"]]], " ", RowBox[List["Binomial", "[", RowBox[List["v", ",", FractionBox["v", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]], "-", "p"]], ")"]], " ", SuperscriptBox["z", "2"]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "n"]], ")"]]]]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox[RowBox[List["1", "+", "n"]], "2"], ",", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]], "-", "p"]], ")"]], " ", SuperscriptBox["z", "2"]]]]], "]"]]]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "-", "p"]], ")"]], " ", SuperscriptBox["z", "2"]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "n"]], ")"]]]]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox[RowBox[List["1", "+", "n"]], "2"], ",", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "-", "p"]], ")"]], " ", SuperscriptBox["z", "2"]]]]], "]"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["v", ",", "2"]], "]"]]]], ")"]]]], "-", RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["2", RowBox[List[RowBox[List["-", "2"]], "-", "v"]]], " ", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["s", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "v"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List[SuperscriptBox["c", "2"], " ", "p", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]], "2"]]], RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "-", "p"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", "p"]], ")"]]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["v", ",", "s"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List[SuperscriptBox["c", "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]], "2"]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", "p"]], ")"]]]]]], " ", SqrtBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", "p"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["q", "=", "0"]], "n"], RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "n"]], "+", "q"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]], "+", "p"]], ")"]], RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "n"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]], ")"]], RowBox[List["n", "-", "q"]]], " ", SuperscriptBox[RowBox[List["(", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "-", "p"]], ")"]], " ", "z"]]]], ")"]], "2"], RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "-", "p"]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "q"]], ")"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["c", " ", "v"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "z"]], "+", RowBox[List["2", " ", "p", " ", "z"]]]], ")"]], RowBox[List["1", "+", "q"]]], " ", RowBox[List["Binomial", "[", RowBox[List["n", ",", "q"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox[RowBox[List["1", "+", "q"]], "2"], ",", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "-", "p"]], ")"]], " ", "z"]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "-", "p"]], ")"]]]]]]], "]"]]]]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List[SuperscriptBox["c", "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]], "2"]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", "p"]], ")"]]]]]], " ", SqrtBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", "p"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["q", "=", "0"]], "n"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]], "+", "p"]], ")"]], RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "n"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["c", " ", RowBox[List["(", RowBox[List["s", "-", FractionBox["v", "2"]]], ")"]]]], ")"]], RowBox[List["n", "-", "q"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "c", " ", "s"]], "+", RowBox[List["c", " ", "v"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "z"]], "+", RowBox[List["2", " ", "p", " ", "z"]]]], ")"]], RowBox[List["1", "+", "q"]]], " ", SuperscriptBox[RowBox[List["(", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "c", " ", "s"]], "+", RowBox[List["c", " ", "v"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "z"]], "+", RowBox[List["2", " ", "p", " ", "z"]]]], ")"]], "2"], RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "-", "p"]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "q"]], ")"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["n", ",", "q"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox[RowBox[List["1", "+", "q"]], "2"], ",", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "c", " ", "s"]], "+", RowBox[List["c", " ", "v"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "z"]], "+", RowBox[List["2", " ", "p", " ", "z"]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "-", "p"]], ")"]]]]]]], "]"]]]]]]]], "-", RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List[SuperscriptBox["c", "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]], "2"]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]], "+", "p"]], ")"]]]]]], " ", SqrtBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]], "+", "p"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["q", "=", "0"]], "n"], RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "n"]], "+", "q"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", "p"]], ")"]], RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "n"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]], ")"]], RowBox[List["n", "-", "q"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "s"]], "-", "v"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", "p"]], ")"]], " ", "z"]]]], ")"]], RowBox[List["1", "+", "q"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "s"]], "-", "v"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", "p"]], ")"]], " ", "z"]]]], ")"]], "2"], RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", "p"]]]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "q"]], ")"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["n", ",", "q"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox[RowBox[List["1", "+", "q"]], "2"], ",", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "s"]], "-", "v"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", "p"]], ")"]], " ", "z"]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", "p"]], ")"]]]]]]]]], "]"]]]]]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["q", "=", "0"]], "n"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", "p"]], ")"]], RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "n"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["c", " ", RowBox[List["(", RowBox[List["s", "-", FractionBox["v", "2"]]], ")"]]]], ")"]], RowBox[List["n", "-", "q"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", "p"]], ")"]], " ", "z"]]]], ")"]], RowBox[List["1", "+", "q"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", "p"]], ")"]], " ", "z"]]]], ")"]], "2"], RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", "p"]]]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "q"]], ")"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["n", ",", "q"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox[RowBox[List["1", "+", "q"]], "2"], ",", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", "p"]], ")"]], " ", "z"]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", "p"]], ")"]]]]]]]]], "]"]]]]]]]], ")"]]]]]], ")"]]]]]], "/", RowBox[List["(", RowBox[List[SqrtBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]], "+", "p"]]], " ", SqrtBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", "p"]]]]], ")"]]]]]]]]]], "/;", RowBox[List[RowBox[List["v", "\[Element]", "Integers"]], "\[And]", RowBox[List["v", ">", "0"]], "\[And]", RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mo> ∫ </mo> <mrow> <msup> <mi> z </mi> <mi> n </mi> </msup> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> p </mi> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> cosh </mi> <mi> v </mi> </msup> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msup> <mn> 2 </mn> <mrow> <mrow> <mo> - </mo> <mi> v </mi> </mrow> <mo> - </mo> <mn> 2 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> v </mi> </mtd> </mtr> <mtr> <mtd> <mfrac> <mi> v </mi> <mn> 2 </mn> </mfrac> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["v", Identity]], List[TagBox[FractionBox["v", "2"], Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> - </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> , </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> - </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> - </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> , </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> - </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <semantics> <mrow> <mi> v </mi> <mo> ⁢ </mo> <mi> mod </mi> <mo> ⁢ </mo> <mn> 2 </mn> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <rem /> <ci> $CellContext`v </ci> <cn type='integer'> 2 </cn> </apply> </annotation-xml> </semantics> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msup> <mn> 2 </mn> <mrow> <mrow> <mo> - </mo> <mi> v </mi> </mrow> <mo> - </mo> <mn> 2 </mn> </mrow> </msup> <mtext> </mtext> </mrow> <mrow> <msqrt> <mrow> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> + </mo> <mi> p </mi> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> + </mo> <mi> p </mi> </mrow> </msqrt> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> s </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mo> ⌊ </mo> <mfrac> <mrow> <mi> v </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> ⌋ </mo> </mrow> </munderover> <mrow> <msup> <mi> ⅇ </mi> <mfrac> <mrow> <msup> <mi> c </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mi> p </mi> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> - </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </msup> <mo> ⁢ </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> v </mi> </mtd> </mtr> <mtr> <mtd> <mi> s </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["v", Identity]], List[TagBox["s", Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> ⅇ </mi> <mfrac> <mrow> <msup> <mi> c </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </msup> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> + </mo> <mi> p </mi> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> q </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> n </mi> </munderover> <mrow> <msup> <mn> 2 </mn> <mrow> <mi> q </mi> <mo> - </mo> <mi> n </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mi> q </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> - </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> - </mo> <mi> p </mi> </mrow> </mfrac> <mo> ) </mo> </mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> q </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> p </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> q </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> n </mi> </mtd> </mtr> <mtr> <mtd> <mi> q </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["n", Identity]], List[TagBox["q", Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> q </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> - </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> - </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mi> ⅇ </mi> <mfrac> <mrow> <msup> <mi> c </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </msup> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> + </mo> <mi> p </mi> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> q </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> n </mi> </munderover> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> s </mi> <mo> - </mo> <mfrac> <mi> v </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mi> q </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> p </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> q </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> p </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> - </mo> <mi> p </mi> </mrow> </mfrac> <mo> ) </mo> </mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> q </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> ⁢ </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> n </mi> </mtd> </mtr> <mtr> <mtd> <mi> q </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["n", Identity]], List[TagBox["q", Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> q </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> p </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> - </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <mi> ⅇ </mi> <mfrac> <mrow> <msup> <mi> c </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </msup> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> + </mo> <mi> p </mi> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> q </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> n </mi> </munderover> <mrow> <msup> <mn> 2 </mn> <mrow> <mi> q </mi> <mo> - </mo> <mi> n </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mi> q </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> - </mo> <mi> v </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> q </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> - </mo> <mi> v </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> + </mo> <mi> p </mi> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> q </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> ⁢ </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> n </mi> </mtd> </mtr> <mtr> <mtd> <mi> q </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["n", Identity]], List[TagBox["q", Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> q </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> - </mo> <mi> v </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> + </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> q </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> n </mi> </munderover> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> s </mi> <mo> - </mo> <mfrac> <mi> v </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mi> q </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> q </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> + </mo> <mi> p </mi> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> q </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> ⁢ </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> n </mi> </mtd> </mtr> <mtr> <mtd> <mi> q </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["n", Identity]], List[TagBox["q", Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> q </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> v </mi> <mo> ∈ </mo> <msup> <mi> ℕ </mi> <mo> + </mo> </msup> </mrow> <mo> ∧ </mo> <mrow> <mi> n </mi> <mo> ∈ </mo> <mi> ℕ </mi> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <ci> z </ci> <ci> n </ci> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <ci> p </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <sin /> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <cosh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <ci> v </ci> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <imaginaryi /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> v </ci> </apply> <cn type='integer'> -2 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Binomial </ci> <ci> v </ci> <apply> <times /> <ci> v </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <rem /> <ci> $CellContext`v </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <imaginaryi /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> v </ci> </apply> <cn type='integer'> -2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> b </ci> </apply> <ci> p </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> <ci> p </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> s </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <floor /> <apply> <times /> <apply> <plus /> <ci> v </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </uplimit> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <ci> p </ci> <apply> <power /> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> <ci> p </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> Binomial </ci> <ci> v </ci> <ci> s </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> <ci> p </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> <ci> p </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <sum /> <bvar> <ci> q </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> q </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> b </ci> </apply> <ci> p </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <ci> c </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> q </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> c </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> </apply> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> q </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> b </ci> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> p </ci> <ci> z </ci> </apply> </apply> <apply> <plus /> <ci> q </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Binomial </ci> <ci> n </ci> <ci> q </ci> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <apply> <plus /> <ci> q </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> c </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> </apply> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> <ci> p </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> <ci> p </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <sum /> <bvar> <ci> q </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> b </ci> </apply> <ci> p </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <ci> c </ci> <apply> <plus /> <ci> s </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> v </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> q </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> c </ci> <ci> s </ci> </apply> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> b </ci> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> p </ci> <ci> z </ci> </apply> </apply> <apply> <plus /> <ci> q </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> c </ci> <ci> s </ci> </apply> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> b </ci> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> p </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> q </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> Binomial </ci> <ci> n </ci> <ci> q </ci> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <apply> <plus /> <ci> q </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> c </ci> <ci> s </ci> </apply> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> b </ci> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> p </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> b </ci> </apply> <ci> p </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> b </ci> </apply> <ci> p </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <sum /> <bvar> <ci> q </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> q </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> <ci> p </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <ci> c </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> q </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> c </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> v </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> <ci> p </ci> </apply> <ci> z </ci> </apply> </apply> <apply> <plus /> <ci> q </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> c </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> v </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> <ci> p </ci> </apply> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> <ci> p </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> q </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> Binomial </ci> <ci> n </ci> <ci> q </ci> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <apply> <plus /> <ci> q </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> c </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> v </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> <ci> p </ci> </apply> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> <ci> p </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> q </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> <ci> p </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <ci> c </ci> <apply> <plus /> <ci> s </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> v </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> q </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> c </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> <ci> p </ci> </apply> <ci> z </ci> </apply> </apply> <apply> <plus /> <ci> q </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> c </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> <ci> p </ci> </apply> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> <ci> p </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> q </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> Binomial </ci> <ci> n </ci> <ci> q </ci> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <apply> <plus /> <ci> q </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> c </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> <ci> p </ci> </apply> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> <ci> p </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <in /> <ci> v </ci> <apply> <ci> SuperPlus </ci> <ci> ℕ </ci> </apply> </apply> <apply> <in /> <ci> n </ci> <ci> ℕ </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["z_", "n_"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["p_", " ", SuperscriptBox["z_", "2"]]]], " ", RowBox[List["Sin", "[", RowBox[List["b_", " ", SuperscriptBox["z_", "2"]]], "]"]], " ", SuperscriptBox[RowBox[List["Cosh", "[", RowBox[List["c_", " ", "z_"]], "]"]], "v_"]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["2", RowBox[List[RowBox[List["-", "2"]], "-", "v"]]], " ", SuperscriptBox["z", RowBox[List["1", "+", "n"]]], " ", RowBox[List["Binomial", "[", RowBox[List["v", ",", FractionBox["v", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]], "-", "p"]], ")"]], " ", SuperscriptBox["z", "2"]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "n"]], ")"]]]]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox[RowBox[List["1", "+", "n"]], "2"], ",", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]], "-", "p"]], ")"]], " ", SuperscriptBox["z", "2"]]]]], "]"]]]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "-", "p"]], ")"]], " ", SuperscriptBox["z", "2"]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "n"]], ")"]]]]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox[RowBox[List["1", "+", "n"]], "2"], ",", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "-", "p"]], ")"]], " ", SuperscriptBox["z", "2"]]]]], "]"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["v", ",", "2"]], "]"]]]], ")"]]]], "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["2", RowBox[List[RowBox[List["-", "2"]], "-", "v"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["s", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "v"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List[SuperscriptBox["c", "2"], " ", "p", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]], "2"]]], RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "-", "p"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", "p"]], ")"]]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["v", ",", "s"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List[SuperscriptBox["c", "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]], "2"]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", "p"]], ")"]]]]]], " ", SqrtBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", "p"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["q", "=", "0"]], "n"], RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "n"]], "+", "q"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]], "+", "p"]], ")"]], RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "n"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]], ")"]], RowBox[List["n", "-", "q"]]], " ", SuperscriptBox[RowBox[List["(", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "-", "p"]], ")"]], " ", "z"]]]], ")"]], "2"], RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "-", "p"]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "q"]], ")"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["c", " ", "v"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "z"]], "+", RowBox[List["2", " ", "p", " ", "z"]]]], ")"]], RowBox[List["1", "+", "q"]]], " ", RowBox[List["Binomial", "[", RowBox[List["n", ",", "q"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox[RowBox[List["1", "+", "q"]], "2"], ",", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "-", "p"]], ")"]], " ", "z"]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "-", "p"]], ")"]]]]]]], "]"]]]]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List[SuperscriptBox["c", "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]], "2"]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", "p"]], ")"]]]]]], " ", SqrtBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", "p"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["q", "=", "0"]], "n"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]], "+", "p"]], ")"]], RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "n"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["c", " ", RowBox[List["(", RowBox[List["s", "-", FractionBox["v", "2"]]], ")"]]]], ")"]], RowBox[List["n", "-", "q"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "c", " ", "s"]], "+", RowBox[List["c", " ", "v"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "z"]], "+", RowBox[List["2", " ", "p", " ", "z"]]]], ")"]], RowBox[List["1", "+", "q"]]], " ", SuperscriptBox[RowBox[List["(", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "c", " ", "s"]], "+", RowBox[List["c", " ", "v"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "z"]], "+", RowBox[List["2", " ", "p", " ", "z"]]]], ")"]], "2"], RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "-", "p"]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "q"]], ")"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["n", ",", "q"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox[RowBox[List["1", "+", "q"]], "2"], ",", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "c", " ", "s"]], "+", RowBox[List["c", " ", "v"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "z"]], "+", RowBox[List["2", " ", "p", " ", "z"]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "-", "p"]], ")"]]]]]]], "]"]]]]]]]], "-", RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List[SuperscriptBox["c", "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]], "2"]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]], "+", "p"]], ")"]]]]]], " ", SqrtBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]], "+", "p"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["q", "=", "0"]], "n"], RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "n"]], "+", "q"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", "p"]], ")"]], RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "n"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]], ")"]], RowBox[List["n", "-", "q"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "s"]], "-", "v"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", "p"]], ")"]], " ", "z"]]]], ")"]], RowBox[List["1", "+", "q"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "s"]], "-", "v"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", "p"]], ")"]], " ", "z"]]]], ")"]], "2"], RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", "p"]]]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "q"]], ")"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["n", ",", "q"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox[RowBox[List["1", "+", "q"]], "2"], ",", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "s"]], "-", "v"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", "p"]], ")"]], " ", "z"]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", "p"]], ")"]]]]]]]]], "]"]]]]]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["q", "=", "0"]], "n"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", "p"]], ")"]], RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "n"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["c", " ", RowBox[List["(", RowBox[List["s", "-", FractionBox["v", "2"]]], ")"]]]], ")"]], RowBox[List["n", "-", "q"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", "p"]], ")"]], " ", "z"]]]], ")"]], RowBox[List["1", "+", "q"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", "p"]], ")"]], " ", "z"]]]], ")"]], "2"], RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", "p"]]]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "q"]], ")"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["n", ",", "q"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox[RowBox[List["1", "+", "q"]], "2"], ",", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", "p"]], ")"]], " ", "z"]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", "p"]], ")"]]]]]]]]], "]"]]]]]]]], ")"]]]]]], ")"]]]]]]]], RowBox[List[SqrtBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]], "+", "p"]]], " ", SqrtBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", "p"]]]]]]]], "/;", RowBox[List[RowBox[List["v", "\[Element]", "Integers"]], "&&", RowBox[List["v", ">", "0"]], "&&", RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|