|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/01.20.21.4112.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Integrate[Sinh[b Sqrt[z] + d z + e] Cosh[c Sqrt[z] + f z + g]^v, z] ==
(-(1/((-I) d)^(3/2))) 2^(-1 - v) Binomial[v, v/2] (1 - Mod[v, 2])
(2 I Sqrt[(-I) d] Cosh[e + b Sqrt[z] + d z] -
b Sqrt[2 Pi] (I Cosh[b^2/(4 d) - e] FresnelS[(-b - 2 d Sqrt[z])/
(Sqrt[(-I) d] Sqrt[2 Pi])] +
FresnelC[(-b - 2 d Sqrt[z])/(Sqrt[(-I) d] Sqrt[2 Pi])]
Sinh[b^2/(4 d) - e])) + 2^(-1 - v)
Sum[Binomial[v, s] ((-2 I Sqrt[I (-d - 2 f s + f v)]
Cosh[e + 2 g s - g v - (-b - 2 c s + c v) Sqrt[z] -
(-d - 2 f s + f v) z] - Sqrt[2 Pi] (-b - 2 c s + c v)
(I Cosh[e + 2 g s - g v + (-b - 2 c s + c v)^2/(-4 d - 8 f s +
4 f v)] FresnelS[(-b - 2 c s + c v + 2 (-d - 2 f s + f v)
Sqrt[z])/(Sqrt[2 Pi] Sqrt[I (-d - 2 f s + f v)])] -
FresnelC[(-b - 2 c s + c v + 2 (-d - 2 f s + f v) Sqrt[z])/
(Sqrt[2 Pi] Sqrt[I (-d - 2 f s + f v)])]
Sinh[e + 2 g s - g v + (-b - 2 c s + c v)^2/(-4 d - 8 f s +
4 f v)]))/(I (-d - 2 f s + f v))^(3/2) +
(-2 I Sqrt[I (-d + 2 f s - f v)] Cosh[e - 2 g s + g v -
(-b + 2 c s - c v) Sqrt[z] - (-d + 2 f s - f v) z] -
Sqrt[2 Pi] (-b + 2 c s - c v)
(I Cosh[e - 2 g s + g v + (b + c (-2 s + v))^2/(-4 d + 8 f s -
4 f v)] FresnelS[(-b + 2 c s - c v + 2 (-d + 2 f s - f v)
Sqrt[z])/(Sqrt[2 Pi] Sqrt[I (-d + 2 f s - f v)])] -
FresnelC[(-b + 2 c s - c v + 2 (-d + 2 f s - f v) Sqrt[z])/
(Sqrt[2 Pi] Sqrt[I (-d + 2 f s - f v)])]
Sinh[e - 2 g s + g v + (b + c (-2 s + v))^2/(-4 d + 8 f s -
4 f v)]))/(I (-d + 2 f s - f v))^(3/2)),
{s, 0, Floor[(1/2) (-1 + v)]}] /; Element[v, Integers] && v > 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["\[Integral]", RowBox[List[RowBox[List["Sinh", "[", RowBox[List[RowBox[List["b", " ", SqrtBox["z"]]], "+", RowBox[List["d", " ", "z"]], "+", "e"]], "]"]], SuperscriptBox[RowBox[List["Cosh", "[", RowBox[List[RowBox[List["c", " ", SqrtBox["z"]]], "+", RowBox[List["f", " ", "z"]], "+", "g"]], "]"]], "v"], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "d"]], ")"]], RowBox[List["3", "/", "2"]]]]]], SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", "v"]]], " ", RowBox[List["Binomial", "[", RowBox[List["v", ",", FractionBox["v", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["v", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[ImaginaryI]", " ", SqrtBox[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "d"]]], " ", RowBox[List["Cosh", "[", RowBox[List["e", "+", RowBox[List["b", " ", SqrtBox["z"]]], "+", RowBox[List["d", " ", "z"]]]], "]"]]]], "-", RowBox[List["b", " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["Cosh", "[", RowBox[List[FractionBox[SuperscriptBox["b", "2"], RowBox[List["4", " ", "d"]]], "-", "e"]], "]"]], " ", RowBox[List["FresnelS", "[", FractionBox[RowBox[List[RowBox[List["-", "b"]], "-", RowBox[List["2", " ", "d", " ", SqrtBox["z"]]]]], RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "d"]]], " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]]]]], "]"]]]], "+", RowBox[List[RowBox[List["FresnelC", "[", FractionBox[RowBox[List[RowBox[List["-", "b"]], "-", RowBox[List["2", " ", "d", " ", SqrtBox["z"]]]]], RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "d"]]], " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]]]]], "]"]], " ", RowBox[List["Sinh", "[", RowBox[List[FractionBox[SuperscriptBox["b", "2"], RowBox[List["4", " ", "d"]]], "-", "e"]], "]"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", "v"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["s", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "v"]], ")"]]]], "]"]]], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["v", ",", "s"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "\[ImaginaryI]", " ", SqrtBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "d"]], "-", RowBox[List["2", " ", "f", " ", "s"]], "+", RowBox[List["f", " ", "v"]]]], ")"]]]]], " ", RowBox[List["Cosh", "[", RowBox[List["e", "+", RowBox[List["2", " ", "g", " ", "s"]], "-", RowBox[List["g", " ", "v"]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "-", RowBox[List["2", " ", "c", " ", "s"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "d"]], "-", RowBox[List["2", " ", "f", " ", "s"]], "+", RowBox[List["f", " ", "v"]]]], ")"]], " ", "z"]]]], "]"]]]], "-", RowBox[List[SqrtBox[RowBox[List["2", " ", "\[Pi]"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "-", RowBox[List["2", " ", "c", " ", "s"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["Cosh", "[", RowBox[List["e", "+", RowBox[List["2", " ", "g", " ", "s"]], "-", RowBox[List["g", " ", "v"]], "+", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "-", RowBox[List["2", " ", "c", " ", "s"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], "2"], RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", "d"]], "-", RowBox[List["8", " ", "f", " ", "s"]], "+", RowBox[List["4", " ", "f", " ", "v"]]]]]]], "]"]], " ", RowBox[List["FresnelS", "[", FractionBox[RowBox[List[RowBox[List["-", "b"]], "-", RowBox[List["2", " ", "c", " ", "s"]], "+", RowBox[List["c", " ", "v"]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "d"]], "-", RowBox[List["2", " ", "f", " ", "s"]], "+", RowBox[List["f", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], RowBox[List[SqrtBox[RowBox[List["2", " ", "\[Pi]"]]], " ", SqrtBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "d"]], "-", RowBox[List["2", " ", "f", " ", "s"]], "+", RowBox[List["f", " ", "v"]]]], ")"]]]]]]]], "]"]]]], "-", RowBox[List[RowBox[List["FresnelC", "[", FractionBox[RowBox[List[RowBox[List["-", "b"]], "-", RowBox[List["2", " ", "c", " ", "s"]], "+", RowBox[List["c", " ", "v"]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "d"]], "-", RowBox[List["2", " ", "f", " ", "s"]], "+", RowBox[List["f", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], RowBox[List[SqrtBox[RowBox[List["2", " ", "\[Pi]"]]], " ", SqrtBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "d"]], "-", RowBox[List["2", " ", "f", " ", "s"]], "+", RowBox[List["f", " ", "v"]]]], ")"]]]]]]]], "]"]], " ", RowBox[List["Sinh", "[", RowBox[List["e", "+", RowBox[List["2", " ", "g", " ", "s"]], "-", RowBox[List["g", " ", "v"]], "+", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "-", RowBox[List["2", " ", "c", " ", "s"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], "2"], RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", "d"]], "-", RowBox[List["8", " ", "f", " ", "s"]], "+", RowBox[List["4", " ", "f", " ", "v"]]]]]]], "]"]]]]]], ")"]]]]]], ")"]], "/", SuperscriptBox[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "d"]], "-", RowBox[List["2", " ", "f", " ", "s"]], "+", RowBox[List["f", " ", "v"]]]], ")"]]]], ")"]], RowBox[List["3", "/", "2"]]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "\[ImaginaryI]", " ", SqrtBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "d"]], "+", RowBox[List["2", " ", "f", " ", "s"]], "-", RowBox[List["f", " ", "v"]]]], ")"]]]]], " ", RowBox[List["Cosh", "[", RowBox[List["e", "-", RowBox[List["2", " ", "g", " ", "s"]], "+", RowBox[List["g", " ", "v"]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "d"]], "+", RowBox[List["2", " ", "f", " ", "s"]], "-", RowBox[List["f", " ", "v"]]]], ")"]], " ", "z"]]]], "]"]]]], "-", RowBox[List[SqrtBox[RowBox[List["2", " ", "\[Pi]"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["Cosh", "[", RowBox[List["e", "-", RowBox[List["2", " ", "g", " ", "s"]], "+", RowBox[List["g", " ", "v"]], "+", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["b", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]]]], ")"]], "2"], RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", "d"]], "+", RowBox[List["8", " ", "f", " ", "s"]], "-", RowBox[List["4", " ", "f", " ", "v"]]]]]]], "]"]], " ", RowBox[List["FresnelS", "[", FractionBox[RowBox[List[RowBox[List["-", "b"]], "+", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["c", " ", "v"]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "d"]], "+", RowBox[List["2", " ", "f", " ", "s"]], "-", RowBox[List["f", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], RowBox[List[SqrtBox[RowBox[List["2", " ", "\[Pi]"]]], " ", SqrtBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "d"]], "+", RowBox[List["2", " ", "f", " ", "s"]], "-", RowBox[List["f", " ", "v"]]]], ")"]]]]]]]], "]"]]]], "-", RowBox[List[RowBox[List["FresnelC", "[", FractionBox[RowBox[List[RowBox[List["-", "b"]], "+", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["c", " ", "v"]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "d"]], "+", RowBox[List["2", " ", "f", " ", "s"]], "-", RowBox[List["f", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], RowBox[List[SqrtBox[RowBox[List["2", " ", "\[Pi]"]]], " ", SqrtBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "d"]], "+", RowBox[List["2", " ", "f", " ", "s"]], "-", RowBox[List["f", " ", "v"]]]], ")"]]]]]]]], "]"]], " ", RowBox[List["Sinh", "[", RowBox[List["e", "-", RowBox[List["2", " ", "g", " ", "s"]], "+", RowBox[List["g", " ", "v"]], "+", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["b", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]]]], ")"]], "2"], RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", "d"]], "+", RowBox[List["8", " ", "f", " ", "s"]], "-", RowBox[List["4", " ", "f", " ", "v"]]]]]]], "]"]]]]]], ")"]]]]]], ")"]], "/", SuperscriptBox[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "d"]], "+", RowBox[List["2", " ", "f", " ", "s"]], "-", RowBox[List["f", " ", "v"]]]], ")"]]]], ")"]], RowBox[List["3", "/", "2"]]]]]]], ")"]]]]]]]]]]]], "/;", RowBox[List[RowBox[List["v", "\[Element]", "Integers"]], "\[And]", RowBox[List["v", ">", "0"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mo> ∫ </mo> <mrow> <mrow> <mrow> <mi> sinh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> + </mo> <mi> e </mi> <mo> + </mo> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> cosh </mi> <mi> v </mi> </msup> <mo> ( </mo> <mrow> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> + </mo> <mi> g </mi> <mo> + </mo> <mrow> <mi> f </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mrow> <msup> <mn> 2 </mn> <mrow> <mrow> <mo> - </mo> <mi> v </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> s </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mo> ⌊ </mo> <mfrac> <mrow> <mi> v </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> ⌋ </mo> </mrow> </munderover> <mrow> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> v </mi> </mtd> </mtr> <mtr> <mtd> <mi> s </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["v", Identity]], List[TagBox["s", Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <msup> <mrow> <mo> ( </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> d </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> f </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> + </mo> <mrow> <mi> f </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <msqrt> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> d </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> f </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> + </mo> <mrow> <mi> f </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <mi> cosh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> g </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mi> g </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> d </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> f </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> + </mo> <mrow> <mi> f </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msqrt> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mi> cosh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 4 </mn> </mrow> <mo> ⁢ </mo> <mi> d </mi> </mrow> <mo> - </mo> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <mi> f </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> f </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> </mrow> </mfrac> <mo> + </mo> <mi> e </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> g </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mi> g </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <semantics> <mi> S </mi> <annotation encoding='Mathematica'> TagBox["S", FresnelS] </annotation> </semantics> <mo> ( </mo> <mfrac> <mrow> <mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> d </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> f </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> + </mo> <mrow> <mi> f </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mrow> <msqrt> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> d </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> f </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> + </mo> <mrow> <mi> f </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mrow> <semantics> <mi> C </mi> <annotation encoding='Mathematica'> TagBox["C", FresnelC] </annotation> </semantics> <mo> ( </mo> <mfrac> <mrow> <mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> d </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> f </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> + </mo> <mrow> <mi> f </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mrow> <msqrt> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> d </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> f </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> + </mo> <mrow> <mi> f </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> sinh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 4 </mn> </mrow> <mo> ⁢ </mo> <mi> d </mi> </mrow> <mo> - </mo> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <mi> f </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> f </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> </mrow> </mfrac> <mo> + </mo> <mi> e </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> g </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mi> g </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <msup> <mrow> <mo> ( </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> d </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> f </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mi> f </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <msqrt> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> d </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> f </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mi> f </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <mi> cosh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> g </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> + </mo> <mrow> <mi> g </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> d </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> f </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mi> f </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msqrt> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mi> cosh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 4 </mn> </mrow> <mo> ⁢ </mo> <mi> d </mi> </mrow> <mo> + </mo> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <mi> f </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> f </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> </mrow> </mfrac> <mo> + </mo> <mi> e </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> g </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> + </mo> <mrow> <mi> g </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <semantics> <mi> S </mi> <annotation encoding='Mathematica'> TagBox["S", FresnelS] </annotation> </semantics> <mo> ( </mo> <mfrac> <mrow> <mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> d </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> f </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mi> f </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mrow> <msqrt> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> d </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> f </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mi> f </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mrow> <semantics> <mi> C </mi> <annotation encoding='Mathematica'> TagBox["C", FresnelC] </annotation> </semantics> <mo> ( </mo> <mfrac> <mrow> <mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> d </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> f </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mi> f </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mrow> <msqrt> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> d </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> f </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mi> f </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> sinh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 4 </mn> </mrow> <mo> ⁢ </mo> <mi> d </mi> </mrow> <mo> + </mo> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <mi> f </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> f </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> </mrow> </mfrac> <mo> + </mo> <mi> e </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> g </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> + </mo> <mrow> <mi> g </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ⁢ </mo> <mi> d </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mn> 2 </mn> <mrow> <mrow> <mo> - </mo> <mi> v </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> v </mi> </mtd> </mtr> <mtr> <mtd> <mfrac> <mi> v </mi> <mn> 2 </mn> </mfrac> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["v", Identity]], List[TagBox[FractionBox["v", "2"], Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <semantics> <mrow> <mi> v </mi> <mo> ⁢ </mo> <mi> mod </mi> <mo> ⁢ </mo> <mn> 2 </mn> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <rem /> <ci> $CellContext`v </ci> <cn type='integer'> 2 </cn> </apply> </annotation-xml> </semantics> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ⁢ </mo> <mi> d </mi> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <mi> cosh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> + </mo> <mi> e </mi> <mo> + </mo> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mi> cosh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> d </mi> </mrow> </mfrac> <mo> - </mo> <mi> e </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <semantics> <mi> S </mi> <annotation encoding='Mathematica'> TagBox["S", FresnelS] </annotation> </semantics> <mo> ( </mo> <mfrac> <mrow> <mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> d </mi> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mrow> <msqrt> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ⁢ </mo> <mi> d </mi> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <semantics> <mi> C </mi> <annotation encoding='Mathematica'> TagBox["C", FresnelC] </annotation> </semantics> <mo> ( </mo> <mfrac> <mrow> <mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> d </mi> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mrow> <msqrt> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ⁢ </mo> <mi> d </mi> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> sinh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> d </mi> </mrow> </mfrac> <mo> - </mo> <mi> e </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> m </mi> <mo> ∈ </mo> <msup> <mi> ℕ </mi> <mo> + </mo> </msup> </mrow> <mo> ∧ </mo> <mrow> <mi> v </mi> <mo> ∈ </mo> <msup> <mi> ℕ </mi> <mo> + </mo> </msup> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <sinh /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> b </ci> </apply> <ci> e </ci> <apply> <times /> <ci> d </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <apply> <cosh /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> c </ci> </apply> <ci> g </ci> <apply> <times /> <ci> f </ci> <ci> z </ci> </apply> </apply> </apply> <ci> v </ci> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> v </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> s </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <floor /> <apply> <times /> <apply> <plus /> <ci> v </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </uplimit> <apply> <times /> <apply> <ci> Binomial </ci> <ci> v </ci> <ci> s </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <apply> <times /> <imaginaryi /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> d </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> f </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <ci> f </ci> <ci> v </ci> </apply> </apply> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <imaginaryi /> <apply> <power /> <apply> <times /> <imaginaryi /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> d </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> f </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <ci> f </ci> <ci> v </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <cosh /> <apply> <plus /> <ci> e </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> g </ci> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> g </ci> <ci> v </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> d </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> f </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <ci> f </ci> <ci> v </ci> </apply> </apply> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <imaginaryi /> <apply> <cosh /> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -4 </cn> <ci> d </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 8 </cn> <ci> f </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <ci> f </ci> <ci> v </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <ci> e </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> g </ci> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> g </ci> <ci> v </ci> </apply> </apply> </apply> </apply> <apply> <ci> FresnelS </ci> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> d </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> f </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <ci> f </ci> <ci> v </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <imaginaryi /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> d </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> f </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <ci> f </ci> <ci> v </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> FresnelC </ci> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> d </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> f </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <ci> f </ci> <ci> v </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <imaginaryi /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> d </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> f </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <ci> f </ci> <ci> v </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <sinh /> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -4 </cn> <ci> d </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 8 </cn> <ci> f </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <ci> f </ci> <ci> v </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <ci> e </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> g </ci> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> g </ci> <ci> v </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <apply> <times /> <imaginaryi /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> d </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> f </ci> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> f </ci> <ci> v </ci> </apply> </apply> </apply> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <imaginaryi /> <apply> <power /> <apply> <times /> <imaginaryi /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> d </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> f </ci> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> f </ci> <ci> v </ci> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <cosh /> <apply> <plus /> <ci> e </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> g </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <ci> g </ci> <ci> v </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> d </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> f </ci> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> f </ci> <ci> v </ci> </apply> </apply> </apply> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <imaginaryi /> <apply> <cosh /> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> b </ci> <apply> <times /> <ci> c </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -4 </cn> <ci> d </ci> </apply> <apply> <times /> <cn type='integer'> 8 </cn> <ci> f </ci> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> f </ci> <ci> v </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <ci> e </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> g </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <ci> g </ci> <ci> v </ci> </apply> </apply> </apply> <apply> <ci> FresnelS </ci> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> d </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> f </ci> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> f </ci> <ci> v </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <imaginaryi /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> d </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> f </ci> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> f </ci> <ci> v </ci> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> FresnelC </ci> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> d </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> f </ci> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> f </ci> <ci> v </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <imaginaryi /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> d </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> f </ci> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> f </ci> <ci> v </ci> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <sinh /> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> b </ci> <apply> <times /> <ci> c </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -4 </cn> <ci> d </ci> </apply> <apply> <times /> <cn type='integer'> 8 </cn> <ci> f </ci> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> f </ci> <ci> v </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <ci> e </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> g </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <ci> g </ci> <ci> v </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> d </ci> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> v </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Binomial </ci> <ci> v </ci> <apply> <times /> <ci> v </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <rem /> <ci> $CellContext`v </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> d </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <cosh /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> b </ci> </apply> <ci> e </ci> <apply> <times /> <ci> d </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <imaginaryi /> <apply> <cosh /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> d </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> e </ci> </apply> </apply> </apply> <apply> <ci> FresnelS </ci> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> d </ci> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> d </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <ci> FresnelC </ci> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> d </ci> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> d </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <sinh /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> d </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> e </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <in /> <ci> m </ci> <apply> <ci> SuperPlus </ci> <ci> ℕ </ci> </apply> </apply> <apply> <in /> <ci> v </ci> <apply> <ci> SuperPlus </ci> <ci> ℕ </ci> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[RowBox[List["Sinh", "[", RowBox[List[RowBox[List["b_", " ", SqrtBox["z_"]]], "+", RowBox[List["d_", " ", "z_"]], "+", "e_"]], "]"]], " ", SuperscriptBox[RowBox[List["Cosh", "[", RowBox[List[RowBox[List["c_", " ", SqrtBox["z_"]]], "+", RowBox[List["f_", " ", "z_"]], "+", "g_"]], "]"]], "v_"]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", "v"]]], " ", RowBox[List["Binomial", "[", RowBox[List["v", ",", FractionBox["v", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["v", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[ImaginaryI]", " ", SqrtBox[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "d"]]], " ", RowBox[List["Cosh", "[", RowBox[List["e", "+", RowBox[List["b", " ", SqrtBox["z"]]], "+", RowBox[List["d", " ", "z"]]]], "]"]]]], "-", RowBox[List["b", " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["Cosh", "[", RowBox[List[FractionBox[SuperscriptBox["b", "2"], RowBox[List["4", " ", "d"]]], "-", "e"]], "]"]], " ", RowBox[List["FresnelS", "[", FractionBox[RowBox[List[RowBox[List["-", "b"]], "-", RowBox[List["2", " ", "d", " ", SqrtBox["z"]]]]], RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "d"]]], " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]]]]], "]"]]]], "+", RowBox[List[RowBox[List["FresnelC", "[", FractionBox[RowBox[List[RowBox[List["-", "b"]], "-", RowBox[List["2", " ", "d", " ", SqrtBox["z"]]]]], RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "d"]]], " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]]]]], "]"]], " ", RowBox[List["Sinh", "[", RowBox[List[FractionBox[SuperscriptBox["b", "2"], RowBox[List["4", " ", "d"]]], "-", "e"]], "]"]]]]]], ")"]]]]]], ")"]]]], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "d"]], ")"]], RowBox[List["3", "/", "2"]]]]]], "+", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", "v"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["s", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "v"]], ")"]]]], "]"]]], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["v", ",", "s"]], "]"]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "\[ImaginaryI]", " ", SqrtBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "d"]], "-", RowBox[List["2", " ", "f", " ", "s"]], "+", RowBox[List["f", " ", "v"]]]], ")"]]]]], " ", RowBox[List["Cosh", "[", RowBox[List["e", "+", RowBox[List["2", " ", "g", " ", "s"]], "-", RowBox[List["g", " ", "v"]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "-", RowBox[List["2", " ", "c", " ", "s"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "d"]], "-", RowBox[List["2", " ", "f", " ", "s"]], "+", RowBox[List["f", " ", "v"]]]], ")"]], " ", "z"]]]], "]"]]]], "-", RowBox[List[SqrtBox[RowBox[List["2", " ", "\[Pi]"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "-", RowBox[List["2", " ", "c", " ", "s"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["Cosh", "[", RowBox[List["e", "+", RowBox[List["2", " ", "g", " ", "s"]], "-", RowBox[List["g", " ", "v"]], "+", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "-", RowBox[List["2", " ", "c", " ", "s"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], "2"], RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", "d"]], "-", RowBox[List["8", " ", "f", " ", "s"]], "+", RowBox[List["4", " ", "f", " ", "v"]]]]]]], "]"]], " ", RowBox[List["FresnelS", "[", FractionBox[RowBox[List[RowBox[List["-", "b"]], "-", RowBox[List["2", " ", "c", " ", "s"]], "+", RowBox[List["c", " ", "v"]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "d"]], "-", RowBox[List["2", " ", "f", " ", "s"]], "+", RowBox[List["f", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], RowBox[List[SqrtBox[RowBox[List["2", " ", "\[Pi]"]]], " ", SqrtBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "d"]], "-", RowBox[List["2", " ", "f", " ", "s"]], "+", RowBox[List["f", " ", "v"]]]], ")"]]]]]]]], "]"]]]], "-", RowBox[List[RowBox[List["FresnelC", "[", FractionBox[RowBox[List[RowBox[List["-", "b"]], "-", RowBox[List["2", " ", "c", " ", "s"]], "+", RowBox[List["c", " ", "v"]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "d"]], "-", RowBox[List["2", " ", "f", " ", "s"]], "+", RowBox[List["f", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], RowBox[List[SqrtBox[RowBox[List["2", " ", "\[Pi]"]]], " ", SqrtBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "d"]], "-", RowBox[List["2", " ", "f", " ", "s"]], "+", RowBox[List["f", " ", "v"]]]], ")"]]]]]]]], "]"]], " ", RowBox[List["Sinh", "[", RowBox[List["e", "+", RowBox[List["2", " ", "g", " ", "s"]], "-", RowBox[List["g", " ", "v"]], "+", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "-", RowBox[List["2", " ", "c", " ", "s"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], "2"], RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", "d"]], "-", RowBox[List["8", " ", "f", " ", "s"]], "+", RowBox[List["4", " ", "f", " ", "v"]]]]]]], "]"]]]]]], ")"]]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "d"]], "-", RowBox[List["2", " ", "f", " ", "s"]], "+", RowBox[List["f", " ", "v"]]]], ")"]]]], ")"]], RowBox[List["3", "/", "2"]]]], "+", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "\[ImaginaryI]", " ", SqrtBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "d"]], "+", RowBox[List["2", " ", "f", " ", "s"]], "-", RowBox[List["f", " ", "v"]]]], ")"]]]]], " ", RowBox[List["Cosh", "[", RowBox[List["e", "-", RowBox[List["2", " ", "g", " ", "s"]], "+", RowBox[List["g", " ", "v"]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "d"]], "+", RowBox[List["2", " ", "f", " ", "s"]], "-", RowBox[List["f", " ", "v"]]]], ")"]], " ", "z"]]]], "]"]]]], "-", RowBox[List[SqrtBox[RowBox[List["2", " ", "\[Pi]"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["Cosh", "[", RowBox[List["e", "-", RowBox[List["2", " ", "g", " ", "s"]], "+", RowBox[List["g", " ", "v"]], "+", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["b", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]]]], ")"]], "2"], RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", "d"]], "+", RowBox[List["8", " ", "f", " ", "s"]], "-", RowBox[List["4", " ", "f", " ", "v"]]]]]]], "]"]], " ", RowBox[List["FresnelS", "[", FractionBox[RowBox[List[RowBox[List["-", "b"]], "+", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["c", " ", "v"]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "d"]], "+", RowBox[List["2", " ", "f", " ", "s"]], "-", RowBox[List["f", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], RowBox[List[SqrtBox[RowBox[List["2", " ", "\[Pi]"]]], " ", SqrtBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "d"]], "+", RowBox[List["2", " ", "f", " ", "s"]], "-", RowBox[List["f", " ", "v"]]]], ")"]]]]]]]], "]"]]]], "-", RowBox[List[RowBox[List["FresnelC", "[", FractionBox[RowBox[List[RowBox[List["-", "b"]], "+", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["c", " ", "v"]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "d"]], "+", RowBox[List["2", " ", "f", " ", "s"]], "-", RowBox[List["f", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], RowBox[List[SqrtBox[RowBox[List["2", " ", "\[Pi]"]]], " ", SqrtBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "d"]], "+", RowBox[List["2", " ", "f", " ", "s"]], "-", RowBox[List["f", " ", "v"]]]], ")"]]]]]]]], "]"]], " ", RowBox[List["Sinh", "[", RowBox[List["e", "-", RowBox[List["2", " ", "g", " ", "s"]], "+", RowBox[List["g", " ", "v"]], "+", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["b", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]]]], ")"]], "2"], RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", "d"]], "+", RowBox[List["8", " ", "f", " ", "s"]], "-", RowBox[List["4", " ", "f", " ", "v"]]]]]]], "]"]]]]]], ")"]]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "d"]], "+", RowBox[List["2", " ", "f", " ", "s"]], "-", RowBox[List["f", " ", "v"]]]], ")"]]]], ")"]], RowBox[List["3", "/", "2"]]]]]], ")"]]]]]]]]]], "/;", RowBox[List[RowBox[List["v", "\[Element]", "Integers"]], "&&", RowBox[List["v", ">", "0"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|