Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Cosh






Mathematica Notation

Traditional Notation









Elementary Functions > Cosh[z] > Integration > Indefinite integration > Involving functions of the direct function and hyperbolic functions > Involving powers of the direct function and hyperbolic functions > Involving powers of sinh > Involving sinhm(d z+e) coshv(c zr+f z+g)





http://functions.wolfram.com/01.20.21.4207.01









  


  










Input Form





Integrate[Sinh[d z + e]^m Cosh[c z^2 + f z + g]^v, z] == I^m 2^(-m - v) z Binomial[m, m/2] Binomial[v, v/2] (1 - Mod[m, 2]) (1 - Mod[v, 2]) - (1/d) (2^(-m - v) Binomial[v, v/2] (-1 + Mod[v, 2]) Sum[(1/(2 k - m)) ((-1)^k E^((-2 k + m) (e + d z)) (-1 + (-1)^m E^(2 (2 k - m) (e + d z))) Binomial[m, k]), {k, 0, Floor[(1/2) (-1 + m)]}]) - (1/c) (I^m 2^(-1 - m - v) Sqrt[Pi] Binomial[m, m/2] (1 - Mod[m, 2]) Sum[(1/(-2 s + v)) (E^(((f^2 + 4 c g) (2 s - v))/(4 c)) Binomial[v, s] (E^((f^2 (-2 s + v))/(2 c)) Sqrt[c (2 s - v)] Erfi[(Sqrt[c (2 s - v)] (f + 2 c z))/(2 c)] + E^(2 g (-2 s + v)) Sqrt[c (-2 s + v)] Erfi[((2 s - v) (f + 2 c z))/ (2 Sqrt[c (-2 s + v)])])), {s, 0, Floor[(1/2) (-1 + v)]}]) + 2^(-1 - m - v) Sqrt[Pi] Sum[(-1)^k Binomial[m, k] Sum[Binomial[v, s] ((1/Sqrt[c (-2 s + v)]) (E^(e (-2 k + m) + g (-2 s + v) + (-2 d k + d m - 2 f s + f v)^2/ (8 c s - 4 c v)) Erfi[(-2 d k + d m - (2 s - v) (f + 2 c z))/ (2 Sqrt[c (-2 s + v)])]) - (1/(c (-2 s + v))) ((-1)^m E^(e (2 k - m) + g (2 s - v) - (-2 d k + d m - 2 f s + f v)^ 2/(8 c s - 4 c v)) Sqrt[2 c s - c v] Erfi[(2 d k - d m + (2 s - v) (f + 2 c z))/ (2 Sqrt[2 c s - c v])]) + (1/(2 c s - c v)) (E^((-e) (2 k + m) + g (-2 s + v) - (2 d k - d m + f (-2 s + v))^2/ (-8 c s + 4 c v)) ((-(-1)^m) E^(4 e k) Sqrt[-2 c s + c v] Erfi[(2 d k - d m - (2 s - v) (f + 2 c z))/(2 Sqrt[-2 c s + c v])] + E^(2 (e m + g (2 s - v) + (2 d k - d m - 2 f s + f v)^2/(-8 c s + 4 c v))) Sqrt[2 c s - c v] Erfi[(-2 d k + d m + (2 s - v) (f + 2 c z))/(2 Sqrt[2 c s - c v])]))), {s, 0, Floor[(1/2) (-1 + v)]}], {k, 0, Floor[(1/2) (-1 + m)]}] /; Element[m, Integers] && m > 0 && Element[v, Integers] && v > 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox[RowBox[List["Sinh", "[", RowBox[List[RowBox[List["d", " ", "z"]], "+", "e"]], "]"]], "m"], SuperscriptBox[RowBox[List["Cosh", "[", RowBox[List[RowBox[List["c", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["f", " ", "z"]], "+", "g"]], "]"]], "v"], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List[SuperscriptBox["\[ImaginaryI]", "m"], " ", SuperscriptBox["2", RowBox[List[RowBox[List["-", "m"]], "-", "v"]]], " ", "z", " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", FractionBox["m", "2"]]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List["v", ",", FractionBox["v", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["m", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["v", ",", "2"]], "]"]]]], ")"]]]], "-", FractionBox["1", "d"], RowBox[List["(", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "m"]], "-", "v"]]], " ", RowBox[List["Binomial", "[", RowBox[List["v", ",", FractionBox["v", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["Mod", "[", RowBox[List["v", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]]]], "]"]]], RowBox[List[FractionBox["1", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]]], RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]], " ", RowBox[List["(", RowBox[List["e", "+", RowBox[List["d", " ", "z"]]]], ")"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "m"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]], " ", RowBox[List["(", RowBox[List["e", "+", RowBox[List["d", " ", "z"]]]], ")"]]]]]]]]], ")"]], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", "k"]], "]"]]]], ")"]]]]]]]], ")"]], "-", RowBox[List[FractionBox["1", "c"], RowBox[List["(", RowBox[List[SuperscriptBox["\[ImaginaryI]", "m"], " ", SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", "m", "-", "v"]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", FractionBox["m", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["m", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["s", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "v"]], ")"]]]], "]"]]], RowBox[List[FractionBox["1", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]]], RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["f", "2"], "+", RowBox[List["4", " ", "c", " ", "g"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "s"]], "-", "v"]], ")"]]]], RowBox[List["4", " ", "c"]]]], " ", RowBox[List["Binomial", "[", RowBox[List["v", ",", "s"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List[SuperscriptBox["f", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]], RowBox[List["2", " ", "c"]]]], " ", SqrtBox[RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "s"]], "-", "v"]], ")"]]]]], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List[SqrtBox[RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "s"]], "-", "v"]], ")"]]]]], " ", RowBox[List["(", RowBox[List["f", "+", RowBox[List["2", " ", "c", " ", "z"]]]], ")"]]]], RowBox[List["2", " ", "c"]]], "]"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "g", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]]], " ", SqrtBox[RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]]], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "s"]], "-", "v"]], ")"]], " ", RowBox[List["(", RowBox[List["f", "+", RowBox[List["2", " ", "c", " ", "z"]]]], ")"]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]]]]]], "]"]]]]]], ")"]]]], ")"]]]]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", "m", "-", "v"]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", "k"]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["s", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "v"]], ")"]]]], "]"]]], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["v", ",", "s"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[FractionBox["1", SqrtBox[RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]]]], RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["e", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List["g", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]], "+", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "d", " ", "k"]], "+", RowBox[List["d", " ", "m"]], "-", RowBox[List["2", " ", "f", " ", "s"]], "+", RowBox[List["f", " ", "v"]]]], ")"]], "2"], RowBox[List[RowBox[List["8", " ", "c", " ", "s"]], "-", RowBox[List["4", " ", "c", " ", "v"]]]]]]]], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "d", " ", "k"]], "+", RowBox[List["d", " ", "m"]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "s"]], "-", "v"]], ")"]], " ", RowBox[List["(", RowBox[List["f", "+", RowBox[List["2", " ", "c", " ", "z"]]]], ")"]]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]]]]]], "]"]]]], ")"]]]], "-", RowBox[List[FractionBox["1", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]]], RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "m"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["e", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]], "+", RowBox[List["g", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "s"]], "-", "v"]], ")"]]]], "-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "d", " ", "k"]], "+", RowBox[List["d", " ", "m"]], "-", RowBox[List["2", " ", "f", " ", "s"]], "+", RowBox[List["f", " ", "v"]]]], ")"]], "2"], RowBox[List[RowBox[List["8", " ", "c", " ", "s"]], "-", RowBox[List["4", " ", "c", " ", "v"]]]]]]]], " ", SqrtBox[RowBox[List[RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["c", " ", "v"]]]]], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List[RowBox[List["2", " ", "d", " ", "k"]], "-", RowBox[List["d", " ", "m"]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "s"]], "-", "v"]], ")"]], " ", RowBox[List["(", RowBox[List["f", "+", RowBox[List["2", " ", "c", " ", "z"]]]], ")"]]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["c", " ", "v"]]]]]]]], "]"]]]], ")"]]]], "+", RowBox[List[FractionBox["1", RowBox[List[RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["c", " ", "v"]]]]], RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[RowBox[List["-", "e"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List["g", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]], "-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "d", " ", "k"]], "-", RowBox[List["d", " ", "m"]], "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]]]], ")"]], "2"], RowBox[List[RowBox[List[RowBox[List["-", "8"]], " ", "c", " ", "s"]], "+", RowBox[List["4", " ", "c", " ", "v"]]]]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "m"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["4", " ", "e", " ", "k"]]], " ", SqrtBox[RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "c", " ", "s"]], "+", RowBox[List["c", " ", "v"]]]]], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List[RowBox[List["2", " ", "d", " ", "k"]], "-", RowBox[List["d", " ", "m"]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "s"]], "-", "v"]], ")"]], " ", RowBox[List["(", RowBox[List["f", "+", RowBox[List["2", " ", "c", " ", "z"]]]], ")"]]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "c", " ", "s"]], "+", RowBox[List["c", " ", "v"]]]]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["e", " ", "m"]], "+", RowBox[List["g", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "s"]], "-", "v"]], ")"]]]], "+", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "d", " ", "k"]], "-", RowBox[List["d", " ", "m"]], "-", RowBox[List["2", " ", "f", " ", "s"]], "+", RowBox[List["f", " ", "v"]]]], ")"]], "2"], RowBox[List[RowBox[List[RowBox[List["-", "8"]], " ", "c", " ", "s"]], "+", RowBox[List["4", " ", "c", " ", "v"]]]]]]], ")"]]]]], " ", SqrtBox[RowBox[List[RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["c", " ", "v"]]]]], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "d", " ", "k"]], "+", RowBox[List["d", " ", "m"]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "s"]], "-", "v"]], ")"]], " ", RowBox[List["(", RowBox[List["f", "+", RowBox[List["2", " ", "c", " ", "z"]]]], ")"]]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["c", " ", "v"]]]]]]]], "]"]]]]]], ")"]]]], ")"]]]]]], ")"]]]]]]]]]]]]]]]], "/;", RowBox[List[RowBox[List["m", "\[Element]", "Integers"]], "\[And]", RowBox[List["m", ">", "0"]], "\[And]", RowBox[List["v", "\[Element]", "Integers"]], "\[And]", RowBox[List["v", ">", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mrow> <mrow> <msup> <mi> sinh </mi> <mi> m </mi> </msup> <mo> ( </mo> <mrow> <mi> e </mi> <mo> + </mo> <mrow> <mi> d </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> cosh </mi> <mi> v </mi> </msup> <mo> ( </mo> <mrow> <mrow> <mi> c </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mi> f </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mi> g </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <msup> <mi> &#8520; </mi> <mi> m </mi> </msup> <mo> &#8290; </mo> <msup> <mn> 2 </mn> <mrow> <mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> - </mo> <mi> v </mi> </mrow> </msup> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> m </mi> </mtd> </mtr> <mtr> <mtd> <mfrac> <mi> m </mi> <mn> 2 </mn> </mfrac> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;m&quot;, Identity, Rule[Editable, True]]], List[TagBox[FractionBox[&quot;m&quot;, &quot;2&quot;], Identity, Rule[Editable, True]]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> v </mi> </mtd> </mtr> <mtr> <mtd> <mfrac> <mi> v </mi> <mn> 2 </mn> </mfrac> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;v&quot;, Identity, Rule[Editable, True]]], List[TagBox[FractionBox[&quot;v&quot;, &quot;2&quot;], Identity, Rule[Editable, True]]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <semantics> <mrow> <mi> m </mi> <mo> &#8290; </mo> <mi> mod </mi> <mo> &#8290; </mo> <mn> 2 </mn> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <rem /> <ci> $CellContext`m </ci> <cn type='integer'> 2 </cn> </apply> </annotation-xml> </semantics> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <semantics> <mrow> <mi> v </mi> <mo> &#8290; </mo> <mi> mod </mi> <mo> &#8290; </mo> <mn> 2 </mn> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <rem /> <ci> $CellContext`v </ci> <cn type='integer'> 2 </cn> </apply> </annotation-xml> </semantics> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mfrac> <mrow> <msup> <mn> 2 </mn> <mrow> <mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> - </mo> <mi> v </mi> </mrow> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> v </mi> </mtd> </mtr> <mtr> <mtd> <mfrac> <mi> v </mi> <mn> 2 </mn> </mfrac> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;v&quot;, Identity, Rule[Editable, True]]], List[TagBox[FractionBox[&quot;v&quot;, &quot;2&quot;], Identity, Rule[Editable, True]]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <semantics> <mrow> <mi> v </mi> <mo> &#8290; </mo> <mi> mod </mi> <mo> &#8290; </mo> <mn> 2 </mn> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <rem /> <ci> $CellContext`v </ci> <cn type='integer'> 2 </cn> </apply> </annotation-xml> </semantics> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> &#8971; </mo> </mrow> </munderover> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> e </mi> <mo> + </mo> <mrow> <mi> d </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> + </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> m </mi> </msup> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> e </mi> <mo> + </mo> <mrow> <mi> d </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> m </mi> </mtd> </mtr> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;m&quot;, Identity, Rule[Editable, True]]], List[TagBox[&quot;k&quot;, Identity, Rule[Editable, True]]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> </mrow> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mi> m </mi> </mrow> </mfrac> </mrow> </mrow> <mi> d </mi> </mfrac> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mi> c </mi> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> &#8520; </mi> <mi> m </mi> </msup> <mo> &#8290; </mo> <msup> <mn> 2 </mn> <mrow> <mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> - </mo> <mi> v </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> m </mi> </mtd> </mtr> <mtr> <mtd> <mfrac> <mi> m </mi> <mn> 2 </mn> </mfrac> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;m&quot;, Identity, Rule[Editable, True]]], List[TagBox[FractionBox[&quot;m&quot;, &quot;2&quot;], Identity, Rule[Editable, True]]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <semantics> <mrow> <mi> m </mi> <mo> &#8290; </mo> <mi> mod </mi> <mo> &#8290; </mo> <mn> 2 </mn> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <rem /> <ci> $CellContext`m </ci> <cn type='integer'> 2 </cn> </apply> </annotation-xml> </semantics> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> s </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> v </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> &#8971; </mo> </mrow> </munderover> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> s </mi> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> &#8519; </mi> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <msup> <mi> f </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> g </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mi> v </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mfrac> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> v </mi> </mtd> </mtr> <mtr> <mtd> <mi> s </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;v&quot;, Identity, Rule[Editable, True]]], List[TagBox[&quot;s&quot;, Identity, Rule[Editable, True]]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> &#8519; </mi> <mfrac> <mrow> <msup> <mi> f </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mfrac> </msup> <mo> &#8290; </mo> <msqrt> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mi> v </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mi> erfi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <msqrt> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mi> v </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> f </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> g </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <msqrt> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mi> erfi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mi> v </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> f </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mn> 2 </mn> <mrow> <mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> - </mo> <mi> v </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> &#8971; </mo> </mrow> </munderover> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> m </mi> </mtd> </mtr> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;m&quot;, Identity, Rule[Editable, True]]], List[TagBox[&quot;k&quot;, Identity, Rule[Editable, True]]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> s </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> v </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> &#8971; </mo> </mrow> </munderover> <mrow> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> v </mi> </mtd> </mtr> <mtr> <mtd> <mi> s </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;v&quot;, Identity, Rule[Editable, True]]], List[TagBox[&quot;s&quot;, Identity, Rule[Editable, True]]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> d </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mi> d </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> f </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> + </mo> <mrow> <mi> f </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> </mfrac> <mo> + </mo> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> g </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> erfi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> d </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mi> d </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mi> v </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> f </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <msqrt> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> </mfrac> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> d </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> d </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> + </mo> <mrow> <mi> f </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> <mo> - </mo> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> </mrow> </mfrac> </mrow> <mo> - </mo> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> g </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> d </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> d </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> f </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> + </mo> <mrow> <mi> f </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> <mo> - </mo> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> </mrow> </mfrac> <mo> + </mo> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> + </mo> <mrow> <mi> g </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mi> v </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mi> erfi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> d </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mi> d </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mi> v </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> f </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> m </mi> </msup> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> e </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> </msup> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mi> erfi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> d </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> d </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mi> v </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> f </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> </mrow> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> m </mi> </msup> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> d </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mi> d </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> f </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> + </mo> <mrow> <mi> f </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> </mfrac> </mrow> <mo> + </mo> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> g </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mi> v </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msup> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mi> erfi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> d </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> d </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mi> v </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> f </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> m </mi> <mo> &#8712; </mo> <msup> <mi> &#8469; </mi> <mo> + </mo> </msup> </mrow> <mo> &#8743; </mo> <mrow> <mi> v </mi> <mo> &#8712; </mo> <msup> <mi> &#8469; </mi> <mo> + </mo> </msup> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <apply> <sinh /> <apply> <plus /> <ci> e </ci> <apply> <times /> <ci> d </ci> <ci> z </ci> </apply> </apply> </apply> <ci> m </ci> </apply> <apply> <power /> <apply> <cosh /> <apply> <plus /> <apply> <times /> <ci> c </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <ci> f </ci> <ci> z </ci> </apply> <ci> g </ci> </apply> </apply> <ci> v </ci> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <imaginaryi /> <ci> m </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> v </ci> </apply> </apply> </apply> <ci> z </ci> <apply> <ci> Binomial </ci> <ci> m </ci> <apply> <times /> <ci> m </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> Binomial </ci> <ci> v </ci> <apply> <times /> <ci> v </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <rem /> <ci> $CellContext`m </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <rem /> <ci> $CellContext`v </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> v </ci> </apply> </apply> </apply> <apply> <ci> Binomial </ci> <ci> v </ci> <apply> <times /> <ci> v </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <rem /> <ci> $CellContext`v </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <floor /> <apply> <times /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> <apply> <plus /> <ci> e </ci> <apply> <times /> <ci> d </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> <apply> <plus /> <ci> e </ci> <apply> <times /> <ci> d </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <ci> Binomial </ci> <ci> m </ci> <ci> k </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <ci> d </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> c </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <imaginaryi /> <ci> m </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> v </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> Binomial </ci> <ci> m </ci> <apply> <times /> <ci> m </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <rem /> <ci> $CellContext`m </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> s </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <floor /> <apply> <times /> <apply> <plus /> <ci> v </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </uplimit> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> f </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <ci> c </ci> <ci> g </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> v </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> Binomial </ci> <ci> v </ci> <ci> s </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <power /> <ci> f </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <ci> c </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> v </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <apply> <power /> <apply> <times /> <ci> c </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> v </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> f </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> g </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <ci> c </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> v </ci> </apply> </apply> <apply> <plus /> <ci> f </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <ci> c </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> v </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <floor /> <apply> <times /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <ci> Binomial </ci> <ci> m </ci> <ci> k </ci> </apply> <apply> <sum /> <bvar> <ci> s </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <floor /> <apply> <times /> <apply> <plus /> <ci> v </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </uplimit> <apply> <times /> <apply> <ci> Binomial </ci> <ci> v </ci> <ci> s </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> d </ci> <ci> k </ci> </apply> <apply> <times /> <ci> d </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> f </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <ci> f </ci> <ci> v </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 8 </cn> <ci> c </ci> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> c </ci> <ci> v </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <ci> e </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> <apply> <times /> <ci> g </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> d </ci> <ci> k </ci> </apply> <apply> <times /> <ci> d </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> v </ci> </apply> </apply> <apply> <plus /> <ci> f </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <ci> c </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <times /> <ci> c </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> d </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> d </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <ci> f </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> c </ci> <ci> v </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 8 </cn> <ci> c </ci> <ci> s </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> e </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <ci> m </ci> </apply> </apply> </apply> <apply> <times /> <ci> g </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> d </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> d </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> f </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <ci> f </ci> <ci> v </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> c </ci> <ci> v </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 8 </cn> <ci> c </ci> <ci> s </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <ci> e </ci> <ci> m </ci> </apply> <apply> <times /> <ci> g </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> v </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> d </ci> <ci> k </ci> </apply> <apply> <times /> <ci> d </ci> <ci> m </ci> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> v </ci> </apply> </apply> <apply> <plus /> <ci> f </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> e </ci> <ci> k </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> s </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> d </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> d </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> v </ci> </apply> </apply> <apply> <plus /> <ci> f </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> s </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <ci> c </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> d </ci> <ci> k </ci> </apply> <apply> <times /> <ci> d </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> f </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <ci> f </ci> <ci> v </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 8 </cn> <ci> c </ci> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> c </ci> <ci> v </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <ci> e </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> </apply> <apply> <times /> <ci> g </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> v </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> d </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> d </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> v </ci> </apply> </apply> <apply> <plus /> <ci> f </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <in /> <ci> m </ci> <apply> <ci> SuperPlus </ci> <ci> &#8469; </ci> </apply> </apply> <apply> <in /> <ci> v </ci> <apply> <ci> SuperPlus </ci> <ci> &#8469; </ci> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["Sinh", "[", RowBox[List[RowBox[List["d_", " ", "z_"]], "+", "e_"]], "]"]], "m_"], " ", SuperscriptBox[RowBox[List["Cosh", "[", RowBox[List[RowBox[List["c_", " ", SuperscriptBox["z_", "2"]]], "+", RowBox[List["f_", " ", "z_"]], "+", "g_"]], "]"]], "v_"]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[SuperscriptBox["\[ImaginaryI]", "m"], " ", SuperscriptBox["2", RowBox[List[RowBox[List["-", "m"]], "-", "v"]]], " ", "z", " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", FractionBox["m", "2"]]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List["v", ",", FractionBox["v", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["m", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["v", ",", "2"]], "]"]]]], ")"]]]], "-", FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "m"]], "-", "v"]]], " ", RowBox[List["Binomial", "[", RowBox[List["v", ",", FractionBox["v", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["Mod", "[", RowBox[List["v", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]]]], "]"]]], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]], " ", RowBox[List["(", RowBox[List["e", "+", RowBox[List["d", " ", "z"]]]], ")"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "m"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]], " ", RowBox[List["(", RowBox[List["e", "+", RowBox[List["d", " ", "z"]]]], ")"]]]]]]]]], ")"]], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", "k"]], "]"]]]], RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]]]]]]], "d"], "-", FractionBox[RowBox[List[SuperscriptBox["\[ImaginaryI]", "m"], " ", SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", "m", "-", "v"]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", FractionBox["m", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["m", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["s", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "v"]], ")"]]]], "]"]]], FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["f", "2"], "+", RowBox[List["4", " ", "c", " ", "g"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "s"]], "-", "v"]], ")"]]]], RowBox[List["4", " ", "c"]]]], " ", RowBox[List["Binomial", "[", RowBox[List["v", ",", "s"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List[SuperscriptBox["f", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]], RowBox[List["2", " ", "c"]]]], " ", SqrtBox[RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "s"]], "-", "v"]], ")"]]]]], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List[SqrtBox[RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "s"]], "-", "v"]], ")"]]]]], " ", RowBox[List["(", RowBox[List["f", "+", RowBox[List["2", " ", "c", " ", "z"]]]], ")"]]]], RowBox[List["2", " ", "c"]]], "]"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "g", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]]], " ", SqrtBox[RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]]], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "s"]], "-", "v"]], ")"]], " ", RowBox[List["(", RowBox[List["f", "+", RowBox[List["2", " ", "c", " ", "z"]]]], ")"]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]]]]]], "]"]]]]]], ")"]]]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]]]]]]], "c"], "+", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", "m", "-", "v"]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", "k"]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["s", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "v"]], ")"]]]], "]"]]], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["v", ",", "s"]], "]"]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["e", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List["g", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]], "+", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "d", " ", "k"]], "+", RowBox[List["d", " ", "m"]], "-", RowBox[List["2", " ", "f", " ", "s"]], "+", RowBox[List["f", " ", "v"]]]], ")"]], "2"], RowBox[List[RowBox[List["8", " ", "c", " ", "s"]], "-", RowBox[List["4", " ", "c", " ", "v"]]]]]]]], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "d", " ", "k"]], "+", RowBox[List["d", " ", "m"]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "s"]], "-", "v"]], ")"]], " ", RowBox[List["(", RowBox[List["f", "+", RowBox[List["2", " ", "c", " ", "z"]]]], ")"]]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]]]]]], "]"]]]], SqrtBox[RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]]]], "-", FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "m"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["e", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]], "+", RowBox[List["g", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "s"]], "-", "v"]], ")"]]]], "-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "d", " ", "k"]], "+", RowBox[List["d", " ", "m"]], "-", RowBox[List["2", " ", "f", " ", "s"]], "+", RowBox[List["f", " ", "v"]]]], ")"]], "2"], RowBox[List[RowBox[List["8", " ", "c", " ", "s"]], "-", RowBox[List["4", " ", "c", " ", "v"]]]]]]]], " ", SqrtBox[RowBox[List[RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["c", " ", "v"]]]]], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List[RowBox[List["2", " ", "d", " ", "k"]], "-", RowBox[List["d", " ", "m"]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "s"]], "-", "v"]], ")"]], " ", RowBox[List["(", RowBox[List["f", "+", RowBox[List["2", " ", "c", " ", "z"]]]], ")"]]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["c", " ", "v"]]]]]]]], "]"]]]], RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]]], "+", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[RowBox[List["-", "e"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List["g", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]], "-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "d", " ", "k"]], "-", RowBox[List["d", " ", "m"]], "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]]]], ")"]], "2"], RowBox[List[RowBox[List[RowBox[List["-", "8"]], " ", "c", " ", "s"]], "+", RowBox[List["4", " ", "c", " ", "v"]]]]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "m"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["4", " ", "e", " ", "k"]]], " ", SqrtBox[RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "c", " ", "s"]], "+", RowBox[List["c", " ", "v"]]]]], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List[RowBox[List["2", " ", "d", " ", "k"]], "-", RowBox[List["d", " ", "m"]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "s"]], "-", "v"]], ")"]], " ", RowBox[List["(", RowBox[List["f", "+", RowBox[List["2", " ", "c", " ", "z"]]]], ")"]]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "c", " ", "s"]], "+", RowBox[List["c", " ", "v"]]]]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["e", " ", "m"]], "+", RowBox[List["g", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "s"]], "-", "v"]], ")"]]]], "+", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "d", " ", "k"]], "-", RowBox[List["d", " ", "m"]], "-", RowBox[List["2", " ", "f", " ", "s"]], "+", RowBox[List["f", " ", "v"]]]], ")"]], "2"], RowBox[List[RowBox[List[RowBox[List["-", "8"]], " ", "c", " ", "s"]], "+", RowBox[List["4", " ", "c", " ", "v"]]]]]]], ")"]]]]], " ", SqrtBox[RowBox[List[RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["c", " ", "v"]]]]], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "d", " ", "k"]], "+", RowBox[List["d", " ", "m"]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "s"]], "-", "v"]], ")"]], " ", RowBox[List["(", RowBox[List["f", "+", RowBox[List["2", " ", "c", " ", "z"]]]], ")"]]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["c", " ", "v"]]]]]]]], "]"]]]]]], ")"]]]], RowBox[List[RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["c", " ", "v"]]]]]]], ")"]]]]]]]]]]]]]], "/;", RowBox[List[RowBox[List["m", "\[Element]", "Integers"]], "&&", RowBox[List["m", ">", "0"]], "&&", RowBox[List["v", "\[Element]", "Integers"]], "&&", RowBox[List["v", ">", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18