Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Cosh






Mathematica Notation

Traditional Notation









Elementary Functions > Cosh[z] > Integration > Indefinite integration > Involving functions of the direct function and hyperbolic functions > Involving powers of the direct function and hyperbolic functions > Involving algebraic functions of sinh





http://functions.wolfram.com/01.20.21.4242.01









  


  










Input Form





Integrate[Cosh[c z]^2/(Sqrt[Sinh[c z]] (1 + Sinh[c z])^2), z] == (-2 EllipticE[(1/4) (Pi - 2 I c z), 2] Sqrt[I Sinh[c z]] (1 + Sinh[c z]) + 2 I EllipticF[(1/4) (Pi - 2 I c z), 2] Sqrt[I Sinh[c z]] (1 + Sinh[c z]) + Sinh[2 c z])/(2 c Sqrt[Sinh[c z]] (1 + Sinh[c z]))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[FractionBox[SuperscriptBox[RowBox[List["Cosh", "[", RowBox[List["c", " ", "z"]], "]"]], "2"], RowBox[List[SqrtBox[RowBox[List["Sinh", "[", RowBox[List["c", " ", "z"]], "]"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", RowBox[List["Sinh", "[", RowBox[List["c", " ", "z"]], "]"]]]], ")"]], "2"]]]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["EllipticE", "[", RowBox[List[RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["\[Pi]", "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "z"]]]], ")"]]]], ",", "2"]], "]"]], " ", SqrtBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["Sinh", "[", RowBox[List["c", " ", "z"]], "]"]]]]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["Sinh", "[", RowBox[List["c", " ", "z"]], "]"]]]], ")"]]]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", RowBox[List["EllipticF", "[", RowBox[List[RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["\[Pi]", "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "z"]]]], ")"]]]], ",", "2"]], "]"]], " ", SqrtBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["Sinh", "[", RowBox[List["c", " ", "z"]], "]"]]]]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["Sinh", "[", RowBox[List["c", " ", "z"]], "]"]]]], ")"]]]], "+", RowBox[List["Sinh", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]], ")"]], "/", RowBox[List["(", RowBox[List["2", " ", "c", " ", SqrtBox[RowBox[List["Sinh", "[", RowBox[List["c", " ", "z"]], "]"]]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["Sinh", "[", RowBox[List["c", " ", "z"]], "]"]]]], ")"]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mfrac> <mrow> <msup> <mi> cosh </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <msup> <mi> sinh </mi> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </msup> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mrow> <mi> E </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#960; </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#10072; </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mi> F </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#960; </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#10072; </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> sinh </mi> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </msup> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <apply> <cosh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <sinh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <sinh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <apply> <ci> EllipticE </ci> <apply> <times /> <cn type='rational'> 1 <sep /> 4 </cn> <apply> <plus /> <pi /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <imaginaryi /> <apply> <sinh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <sinh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <apply> <ci> EllipticF </ci> <apply> <times /> <cn type='rational'> 1 <sep /> 4 </cn> <apply> <plus /> <pi /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <imaginaryi /> <apply> <sinh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <sinh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <sinh /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <apply> <power /> <apply> <sinh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <sinh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[FractionBox[SuperscriptBox[RowBox[List["Cosh", "[", RowBox[List["c_", " ", "z_"]], "]"]], "2"], RowBox[List[SqrtBox[RowBox[List["Sinh", "[", RowBox[List["c_", " ", "z_"]], "]"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", RowBox[List["Sinh", "[", RowBox[List["c_", " ", "z_"]], "]"]]]], ")"]], "2"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["EllipticE", "[", RowBox[List[RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["\[Pi]", "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "z"]]]], ")"]]]], ",", "2"]], "]"]], " ", SqrtBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["Sinh", "[", RowBox[List["c", " ", "z"]], "]"]]]]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["Sinh", "[", RowBox[List["c", " ", "z"]], "]"]]]], ")"]]]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", RowBox[List["EllipticF", "[", RowBox[List[RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["\[Pi]", "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "z"]]]], ")"]]]], ",", "2"]], "]"]], " ", SqrtBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["Sinh", "[", RowBox[List["c", " ", "z"]], "]"]]]]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["Sinh", "[", RowBox[List["c", " ", "z"]], "]"]]]], ")"]]]], "+", RowBox[List["Sinh", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]], RowBox[List["2", " ", "c", " ", SqrtBox[RowBox[List["Sinh", "[", RowBox[List["c", " ", "z"]], "]"]]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["Sinh", "[", RowBox[List["c", " ", "z"]], "]"]]]], ")"]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18