|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/01.20.21.4310.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Integrate[(Cosh[z]^3 - Sinh[z]^3)/(Cosh[z]^3 + Sinh[z]^3), z] ==
(1/18) (-Cosh[z] + Sinh[z]) ((3 + 8 Sqrt[3] ArcTan[(1 - 2 Tanh[z])/Sqrt[3]])
Cosh[z] + (-3 + 8 Sqrt[3] ArcTan[(1 - 2 Tanh[z])/Sqrt[3]]) Sinh[z])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["Cosh", "[", "z", "]"]], "3"], "-", SuperscriptBox[RowBox[List["Sinh", "[", "z", "]"]], "3"]]], RowBox[List[SuperscriptBox[RowBox[List["Cosh", "[", "z", "]"]], "3"], "+", SuperscriptBox[RowBox[List["Sinh", "[", "z", "]"]], "3"]]]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox["1", "18"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["Cosh", "[", "z", "]"]]]], "+", RowBox[List["Sinh", "[", "z", "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["3", "+", RowBox[List["8", " ", SqrtBox["3"], " ", RowBox[List["ArcTan", "[", FractionBox[RowBox[List["1", "-", RowBox[List["2", " ", RowBox[List["Tanh", "[", "z", "]"]]]]]], SqrtBox["3"]], "]"]]]]]], ")"]], " ", RowBox[List["Cosh", "[", "z", "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "+", RowBox[List["8", " ", SqrtBox["3"], " ", RowBox[List["ArcTan", "[", FractionBox[RowBox[List["1", "-", RowBox[List["2", " ", RowBox[List["Tanh", "[", "z", "]"]]]]]], SqrtBox["3"]], "]"]]]]]], ")"]], " ", RowBox[List["Sinh", "[", "z", "]"]]]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> ∫ </mo> <mrow> <mfrac> <mrow> <mrow> <msup> <mi> cosh </mi> <mn> 3 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <msup> <mi> sinh </mi> <mn> 3 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <msup> <mi> cosh </mi> <mn> 3 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <msup> <mi> sinh </mi> <mn> 3 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 18 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> sinh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> cosh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <msqrt> <mn> 3 </mn> </msqrt> <mo> ⁢ </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mi> tanh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <msqrt> <mn> 3 </mn> </msqrt> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> cosh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <msqrt> <mn> 3 </mn> </msqrt> <mo> ⁢ </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mi> tanh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <msqrt> <mn> 3 </mn> </msqrt> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> sinh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <plus /> <apply> <power /> <apply> <cosh /> <ci> z </ci> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <sinh /> <ci> z </ci> </apply> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <cosh /> <ci> z </ci> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <apply> <sinh /> <ci> z </ci> </apply> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 18 </cn> <apply> <plus /> <apply> <sinh /> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <cosh /> <ci> z </ci> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <arctan /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <tanh /> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <cosh /> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <arctan /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <tanh /> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> -3 </cn> </apply> <apply> <sinh /> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["Cosh", "[", "z_", "]"]], "3"], "-", SuperscriptBox[RowBox[List["Sinh", "[", "z_", "]"]], "3"]]], RowBox[List[SuperscriptBox[RowBox[List["Cosh", "[", "z_", "]"]], "3"], "+", SuperscriptBox[RowBox[List["Sinh", "[", "z_", "]"]], "3"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox["1", "18"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["Cosh", "[", "z", "]"]]]], "+", RowBox[List["Sinh", "[", "z", "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["3", "+", RowBox[List["8", " ", SqrtBox["3"], " ", RowBox[List["ArcTan", "[", FractionBox[RowBox[List["1", "-", RowBox[List["2", " ", RowBox[List["Tanh", "[", "z", "]"]]]]]], SqrtBox["3"]], "]"]]]]]], ")"]], " ", RowBox[List["Cosh", "[", "z", "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "+", RowBox[List["8", " ", SqrtBox["3"], " ", RowBox[List["ArcTan", "[", FractionBox[RowBox[List["1", "-", RowBox[List["2", " ", RowBox[List["Tanh", "[", "z", "]"]]]]]], SqrtBox["3"]], "]"]]]]]], ")"]], " ", RowBox[List["Sinh", "[", "z", "]"]]]]]], ")"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|