Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Cosh






Mathematica Notation

Traditional Notation









Elementary Functions > Cosh[z] > Integration > Indefinite integration > Involving functions of the direct function and hyperbolic functions > Involving algebraic functions of the direct function and hyperbolic functions > Involving sinh > Involving sinhm(c z)coshm(c z)(a+b cosh(2c z))beta





http://functions.wolfram.com/01.20.21.4377.01









  


  










Input Form





Integrate[(Sinh[c z]^4 Cosh[c z]^3)/(a + b Cosh[2 c z])^(3/2), z] == (3 Sqrt[2] (5 a^2 + 2 a b - 3 b^2) ArcTanh[(Sqrt[2] Sqrt[b] Sinh[c z])/ Sqrt[a + b Cosh[2 c z]]] Sqrt[a + b Cosh[2 c z]] - 2 Sqrt[b] (15 a^2 + a b - 9 b^2 + b (5 a + b) Cosh[2 c z] - b^2 Cosh[4 c z]) Sinh[c z])/(128 b^(7/2) c Sqrt[a + b Cosh[2 c z]])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["Sinh", "[", RowBox[List["c", " ", "z"]], "]"]], "4"], SuperscriptBox[RowBox[List["Cosh", "[", RowBox[List["c", " ", "z"]], "]"]], "3"]]], SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]], ")"]], RowBox[List["3", "/", "2"]]]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["3", " ", SqrtBox["2"], " ", RowBox[List["(", RowBox[List[RowBox[List["5", " ", SuperscriptBox["a", "2"]]], "+", RowBox[List["2", " ", "a", " ", "b"]], "-", RowBox[List["3", " ", SuperscriptBox["b", "2"]]]]], ")"]], " ", RowBox[List["ArcTanh", "[", FractionBox[RowBox[List[SqrtBox["2"], " ", SqrtBox["b"], " ", RowBox[List["Sinh", "[", RowBox[List["c", " ", "z"]], "]"]]]], SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]]]], "]"]], " ", SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]]]]], "-", RowBox[List["2", " ", SqrtBox["b"], " ", RowBox[List["(", RowBox[List[RowBox[List["15", " ", SuperscriptBox["a", "2"]]], "+", RowBox[List["a", " ", "b"]], "-", RowBox[List["9", " ", SuperscriptBox["b", "2"]]], "+", RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List["5", " ", "a"]], "+", "b"]], ")"]], " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]], "-", RowBox[List[SuperscriptBox["b", "2"], " ", RowBox[List["Cosh", "[", RowBox[List["4", " ", "c", " ", "z"]], "]"]]]]]], ")"]], " ", RowBox[List["Sinh", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], ")"]], "/", RowBox[List["(", RowBox[List["128", " ", SuperscriptBox["b", RowBox[List["7", "/", "2"]]], " ", "c", " ", SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mfrac> <mrow> <mrow> <msup> <mi> sinh </mi> <mn> 4 </mn> </msup> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> cosh </mi> <mn> 3 </mn> </msup> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mtext> </mtext> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mfrac> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 5 </mn> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> tanh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <msqrt> <mi> b </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mi> b </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 15 </mn> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> - </mo> <mrow> <mn> 9 </mn> <mo> &#8290; </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 5 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mn> 128 </mn> <mo> &#8290; </mo> <msup> <mi> b </mi> <mrow> <mn> 7 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <apply> <sinh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <apply> <cosh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <cosh /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 5 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <arctanh /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> b </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <sinh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <cosh /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <cosh /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> b </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 15 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <ci> b </ci> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 9 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <ci> b </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 5 </cn> <ci> a </ci> </apply> <ci> b </ci> </apply> <apply> <cosh /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <cosh /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <sinh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 128 </cn> <apply> <power /> <ci> b </ci> <cn type='rational'> 7 <sep /> 2 </cn> </apply> <ci> c </ci> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <cosh /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["Sinh", "[", RowBox[List["c_", " ", "z_"]], "]"]], "4"], " ", SuperscriptBox[RowBox[List["Cosh", "[", RowBox[List["c_", " ", "z_"]], "]"]], "3"]]], SuperscriptBox[RowBox[List["(", RowBox[List["a_", "+", RowBox[List["b_", " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "c_", " ", "z_"]], "]"]]]]]], ")"]], RowBox[List["3", "/", "2"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List["3", " ", SqrtBox["2"], " ", RowBox[List["(", RowBox[List[RowBox[List["5", " ", SuperscriptBox["a", "2"]]], "+", RowBox[List["2", " ", "a", " ", "b"]], "-", RowBox[List["3", " ", SuperscriptBox["b", "2"]]]]], ")"]], " ", RowBox[List["ArcTanh", "[", FractionBox[RowBox[List[SqrtBox["2"], " ", SqrtBox["b"], " ", RowBox[List["Sinh", "[", RowBox[List["c", " ", "z"]], "]"]]]], SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]]]], "]"]], " ", SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]]]]], "-", RowBox[List["2", " ", SqrtBox["b"], " ", RowBox[List["(", RowBox[List[RowBox[List["15", " ", SuperscriptBox["a", "2"]]], "+", RowBox[List["a", " ", "b"]], "-", RowBox[List["9", " ", SuperscriptBox["b", "2"]]], "+", RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List["5", " ", "a"]], "+", "b"]], ")"]], " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]], "-", RowBox[List[SuperscriptBox["b", "2"], " ", RowBox[List["Cosh", "[", RowBox[List["4", " ", "c", " ", "z"]], "]"]]]]]], ")"]], " ", RowBox[List["Sinh", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], RowBox[List["128", " ", SuperscriptBox["b", RowBox[List["7", "/", "2"]]], " ", "c", " ", SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18