|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/01.20.21.4386.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Integrate[Sqrt[a + b Cosh[2 e z]]/(c + d Sinh[e z]), z] ==
(1/(d e)) ((Sqrt[-2 b c^2 - a d^2 - b d^2]
ArcTan[(Sqrt[-2 b c^2 - a d^2 - b d^2] Cosh[e z])/
(Sqrt[c^2 + d^2] Sqrt[a + b Cosh[2 e z]])])/Sqrt[c^2 + d^2] +
(I Sqrt[(a + b Cosh[2 e z])/(a + b)]
(2 b c^2 EllipticF[I e z, (2 b)/(a + b)] + (-2 b c^2 - (a + b) d^2)
EllipticPi[-(d^2/c^2), I e z, (2 b)/(a + b)]))/
(c d Sqrt[a + b Cosh[2 e z]]) + Sqrt[2] Sqrt[b Cosh[e z]^2]
Log[Sqrt[a + b Cosh[2 e z]] + Sqrt[b + b Cosh[2 e z]]] Sech[e z])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[FractionBox[SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]]], RowBox[List["c", "+", RowBox[List["d", " ", RowBox[List["Sinh", "[", RowBox[List["e", " ", "z"]], "]"]]]]]]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["d", " ", "e"]]], RowBox[List["(", RowBox[List[FractionBox[RowBox[List[SqrtBox[RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "b", " ", SuperscriptBox["c", "2"]]], "-", RowBox[List["a", " ", SuperscriptBox["d", "2"]]], "-", RowBox[List["b", " ", SuperscriptBox["d", "2"]]]]]], " ", RowBox[List["ArcTan", "[", FractionBox[RowBox[List[SqrtBox[RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "b", " ", SuperscriptBox["c", "2"]]], "-", RowBox[List["a", " ", SuperscriptBox["d", "2"]]], "-", RowBox[List["b", " ", SuperscriptBox["d", "2"]]]]]], " ", RowBox[List["Cosh", "[", RowBox[List["e", " ", "z"]], "]"]]]], RowBox[List[SqrtBox[RowBox[List[SuperscriptBox["c", "2"], "+", SuperscriptBox["d", "2"]]]], " ", SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]]]]]], "]"]]]], SqrtBox[RowBox[List[SuperscriptBox["c", "2"], "+", SuperscriptBox["d", "2"]]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", SqrtBox[FractionBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]], RowBox[List["a", "+", "b"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "b", " ", SuperscriptBox["c", "2"], " ", RowBox[List["EllipticF", "[", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "e", " ", "z"]], ",", FractionBox[RowBox[List["2", " ", "b"]], RowBox[List["a", "+", "b"]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "b", " ", SuperscriptBox["c", "2"]]], "-", RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", SuperscriptBox["d", "2"]]]]], ")"]], " ", RowBox[List["EllipticPi", "[", RowBox[List[RowBox[List["-", FractionBox[SuperscriptBox["d", "2"], SuperscriptBox["c", "2"]]]], ",", RowBox[List["\[ImaginaryI]", " ", "e", " ", "z"]], ",", FractionBox[RowBox[List["2", " ", "b"]], RowBox[List["a", "+", "b"]]]]], "]"]]]]]], ")"]]]], ")"]], "/", RowBox[List["(", RowBox[List["c", " ", "d", " ", SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]]]]], ")"]]]], "+", RowBox[List[SqrtBox["2"], " ", SqrtBox[RowBox[List["b", " ", SuperscriptBox[RowBox[List["Cosh", "[", RowBox[List["e", " ", "z"]], "]"]], "2"]]]], " ", RowBox[List["Log", "[", RowBox[List[SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]]], "+", SqrtBox[RowBox[List["b", "+", RowBox[List["b", " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]]]]], "]"]], " ", RowBox[List["Sech", "[", RowBox[List["e", " ", "z"]], "]"]]]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> ∫ </mo> <mrow> <mfrac> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mi> cosh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> <mrow> <mi> c </mi> <mo> + </mo> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mrow> <mi> sinh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mi> e </mi> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <msqrt> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <msup> <mi> d </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> d </mi> <mn> 2 </mn> </msup> </mrow> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mrow> <msqrt> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <msup> <mi> d </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> d </mi> <mn> 2 </mn> </msup> </mrow> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <mi> cosh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <msqrt> <mrow> <msup> <mi> c </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> d </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mi> cosh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <msqrt> <mrow> <msup> <mi> c </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> d </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mfrac> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msqrt> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mi> cosh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </mfrac> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mi> F </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ❘ </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> d </mi> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Π </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <msup> <mi> d </mi> <mn> 2 </mn> </msup> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> <mo> ; </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ❘ </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> d </mi> <mo> ⁢ </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mi> cosh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> cosh </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mi> cosh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> <mo> + </mo> <msqrt> <mrow> <mrow> <mrow> <mi> cosh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> + </mo> <mi> b </mi> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> sech </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <cosh /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> c </ci> <apply> <times /> <ci> d </ci> <apply> <sinh /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <ci> d </ci> <ci> e </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> b </ci> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> d </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> d </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <arctan /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> b </ci> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> d </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> d </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <cosh /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> d </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <cosh /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> d </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <cosh /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <apply> <ci> EllipticF </ci> <apply> <times /> <imaginaryi /> <ci> e </ci> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> b </ci> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <apply> <power /> <ci> d </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <ci> EllipticPi </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> d </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <imaginaryi /> <ci> e </ci> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <ci> c </ci> <ci> d </ci> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <cosh /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <cosh /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ln /> <apply> <plus /> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <cosh /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <cosh /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> z </ci> </apply> </apply> <ci> b </ci> </apply> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <sech /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[FractionBox[SqrtBox[RowBox[List["a_", "+", RowBox[List["b_", " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "e_", " ", "z_"]], "]"]]]]]]], RowBox[List["c_", "+", RowBox[List["d_", " ", RowBox[List["Sinh", "[", RowBox[List["e_", " ", "z_"]], "]"]]]]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[FractionBox[RowBox[List[SqrtBox[RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "b", " ", SuperscriptBox["c", "2"]]], "-", RowBox[List["a", " ", SuperscriptBox["d", "2"]]], "-", RowBox[List["b", " ", SuperscriptBox["d", "2"]]]]]], " ", RowBox[List["ArcTan", "[", FractionBox[RowBox[List[SqrtBox[RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "b", " ", SuperscriptBox["c", "2"]]], "-", RowBox[List["a", " ", SuperscriptBox["d", "2"]]], "-", RowBox[List["b", " ", SuperscriptBox["d", "2"]]]]]], " ", RowBox[List["Cosh", "[", RowBox[List["e", " ", "z"]], "]"]]]], RowBox[List[SqrtBox[RowBox[List[SuperscriptBox["c", "2"], "+", SuperscriptBox["d", "2"]]]], " ", SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]]]]]], "]"]]]], SqrtBox[RowBox[List[SuperscriptBox["c", "2"], "+", SuperscriptBox["d", "2"]]]]], "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", SqrtBox[FractionBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]], RowBox[List["a", "+", "b"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "b", " ", SuperscriptBox["c", "2"], " ", RowBox[List["EllipticF", "[", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "e", " ", "z"]], ",", FractionBox[RowBox[List["2", " ", "b"]], RowBox[List["a", "+", "b"]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "b", " ", SuperscriptBox["c", "2"]]], "-", RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", SuperscriptBox["d", "2"]]]]], ")"]], " ", RowBox[List["EllipticPi", "[", RowBox[List[RowBox[List["-", FractionBox[SuperscriptBox["d", "2"], SuperscriptBox["c", "2"]]]], ",", RowBox[List["\[ImaginaryI]", " ", "e", " ", "z"]], ",", FractionBox[RowBox[List["2", " ", "b"]], RowBox[List["a", "+", "b"]]]]], "]"]]]]]], ")"]]]], RowBox[List["c", " ", "d", " ", SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]]]]]], "+", RowBox[List[SqrtBox["2"], " ", SqrtBox[RowBox[List["b", " ", SuperscriptBox[RowBox[List["Cosh", "[", RowBox[List["e", " ", "z"]], "]"]], "2"]]]], " ", RowBox[List["Log", "[", RowBox[List[SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]]], "+", SqrtBox[RowBox[List["b", "+", RowBox[List["b", " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]]]]], "]"]], " ", RowBox[List["Sech", "[", RowBox[List["e", " ", "z"]], "]"]]]]]], RowBox[List["d", " ", "e"]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|