Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Cosh






Mathematica Notation

Traditional Notation









Elementary Functions > Cosh[z] > Integration > Indefinite integration > Involving functions of the direct function and hyperbolic functions > Involving algebraic functions of the direct function and hyperbolic functions > Involving algebraic functions of sinh > Involving (a sinh(e z)+b cosh(e z))beta





http://functions.wolfram.com/01.20.21.4392.01









  


  










Input Form





Integrate[1/(a Sinh[e z] + b Cosh[e z])^(3/2), z] == (a HypergeometricPFQ[{-(1/2), -(1/4)}, {3/4}, Cosh[e z + ArcTanh[a/b]]^2] Sinh[e z + ArcTanh[a/b]] - Sqrt[-Sinh[e z + ArcTanh[a/b]]^2] (2 Sqrt[1 - a^2/b^2] b Cosh[e z] - 2 b Cosh[e z + ArcTanh[a/b]] + a Sinh[e z + ArcTanh[a/b]]))/(a Sqrt[1 - a^2/b^2] b e Sqrt[b Cosh[e z] + a Sinh[e z]] Sqrt[-Sinh[e z + ArcTanh[a/b]]^2])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[FractionBox["1", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["a", " ", RowBox[List["Sinh", "[", RowBox[List["e", " ", "z"]], "]"]]]], "+", RowBox[List["b", " ", RowBox[List["Cosh", "[", RowBox[List["e", " ", "z"]], "]"]]]]]], ")"]], RowBox[List["3", "/", "2"]]]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["a", " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], ",", RowBox[List["-", FractionBox["1", "4"]]]]], "}"]], ",", RowBox[List["{", FractionBox["3", "4"], "}"]], ",", SuperscriptBox[RowBox[List["Cosh", "[", RowBox[List[RowBox[List["e", " ", "z"]], "+", RowBox[List["ArcTanh", "[", FractionBox["a", "b"], "]"]]]], "]"]], "2"]]], "]"]], " ", RowBox[List["Sinh", "[", RowBox[List[RowBox[List["e", " ", "z"]], "+", RowBox[List["ArcTanh", "[", FractionBox["a", "b"], "]"]]]], "]"]]]], "-", RowBox[List[SqrtBox[RowBox[List["-", SuperscriptBox[RowBox[List["Sinh", "[", RowBox[List[RowBox[List["e", " ", "z"]], "+", RowBox[List["ArcTanh", "[", FractionBox["a", "b"], "]"]]]], "]"]], "2"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SqrtBox[RowBox[List["1", "-", FractionBox[SuperscriptBox["a", "2"], SuperscriptBox["b", "2"]]]]], " ", "b", " ", RowBox[List["Cosh", "[", RowBox[List["e", " ", "z"]], "]"]]]], "-", RowBox[List["2", " ", "b", " ", RowBox[List["Cosh", "[", RowBox[List[RowBox[List["e", " ", "z"]], "+", RowBox[List["ArcTanh", "[", FractionBox["a", "b"], "]"]]]], "]"]]]], "+", RowBox[List["a", " ", RowBox[List["Sinh", "[", RowBox[List[RowBox[List["e", " ", "z"]], "+", RowBox[List["ArcTanh", "[", FractionBox["a", "b"], "]"]]]], "]"]]]]]], ")"]]]]]], ")"]], "/", RowBox[List["(", RowBox[List["a", " ", SqrtBox[RowBox[List["1", "-", FractionBox[SuperscriptBox["a", "2"], SuperscriptBox["b", "2"]]]]], " ", "b", " ", "e", " ", SqrtBox[RowBox[List[RowBox[List["b", " ", RowBox[List["Cosh", "[", RowBox[List["e", " ", "z"]], "]"]]]], "+", RowBox[List["a", " ", RowBox[List["Sinh", "[", RowBox[List["e", " ", "z"]], "]"]]]]]]], " ", SqrtBox[RowBox[List["-", SuperscriptBox[RowBox[List["Sinh", "[", RowBox[List[RowBox[List["e", " ", "z"]], "+", RowBox[List["ArcTanh", "[", FractionBox["a", "b"], "]"]]]], "]"]], "2"]]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mfrac> <mn> 1 </mn> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mfrac> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> </mrow> </mrow> <mo> ; </mo> <mfrac> <mn> 3 </mn> <mn> 4 </mn> </mfrac> <mo> ; </mo> <mrow> <msup> <mi> cosh </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <msup> <mi> tanh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mi> a </mi> <mi> b </mi> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;1&quot;, &quot;2&quot;]]], HypergeometricPFQ], &quot;,&quot;, TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;1&quot;, &quot;4&quot;]]], HypergeometricPFQ]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], &quot;;&quot;, TagBox[TagBox[TagBox[FractionBox[&quot;3&quot;, &quot;4&quot;], HypergeometricPFQ], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], &quot;;&quot;, TagBox[RowBox[List[SuperscriptBox[&quot;cosh&quot;, &quot;2&quot;], &quot;(&quot;, RowBox[List[RowBox[List[&quot;e&quot;, &quot; &quot;, &quot;z&quot;]], &quot;+&quot;, RowBox[List[SuperscriptBox[&quot;tanh&quot;, RowBox[List[&quot;-&quot;, &quot;1&quot;]]], &quot;(&quot;, FractionBox[&quot;a&quot;, &quot;b&quot;], &quot;)&quot;]]]], &quot;)&quot;]], HypergeometricPFQ]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], HypergeometricPFQ] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <msup> <mi> tanh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mi> a </mi> <mi> b </mi> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msqrt> <mrow> <mo> - </mo> <mrow> <msup> <mi> sinh </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <msup> <mi> tanh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mi> a </mi> <mi> b </mi> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <msup> <mi> tanh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mi> a </mi> <mi> b </mi> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <msup> <mi> tanh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mi> a </mi> <mi> b </mi> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> e </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <mrow> <msup> <mi> sinh </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <msup> <mi> tanh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mi> a </mi> <mi> b </mi> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> a </ci> <apply> <sinh /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <ci> b </ci> <apply> <cosh /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> a </ci> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </list> <list> <cn type='rational'> 3 <sep /> 4 </cn> </list> <apply> <power /> <apply> <cosh /> <apply> <plus /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> <apply> <arctanh /> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <sinh /> <apply> <plus /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> <apply> <arctanh /> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <sinh /> <apply> <plus /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> <apply> <arctanh /> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <cosh /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <apply> <cosh /> <apply> <plus /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> <apply> <arctanh /> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <ci> a </ci> <apply> <sinh /> <apply> <plus /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> <apply> <arctanh /> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <ci> a </ci> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> b </ci> <ci> e </ci> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <cosh /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <ci> a </ci> <apply> <sinh /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <sinh /> <apply> <plus /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> <apply> <arctanh /> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[FractionBox["1", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["a_", " ", RowBox[List["Sinh", "[", RowBox[List["e_", " ", "z_"]], "]"]]]], "+", RowBox[List["b_", " ", RowBox[List["Cosh", "[", RowBox[List["e_", " ", "z_"]], "]"]]]]]], ")"]], RowBox[List["3", "/", "2"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List["a", " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], ",", RowBox[List["-", FractionBox["1", "4"]]]]], "}"]], ",", RowBox[List["{", FractionBox["3", "4"], "}"]], ",", SuperscriptBox[RowBox[List["Cosh", "[", RowBox[List[RowBox[List["e", " ", "z"]], "+", RowBox[List["ArcTanh", "[", FractionBox["a", "b"], "]"]]]], "]"]], "2"]]], "]"]], " ", RowBox[List["Sinh", "[", RowBox[List[RowBox[List["e", " ", "z"]], "+", RowBox[List["ArcTanh", "[", FractionBox["a", "b"], "]"]]]], "]"]]]], "-", RowBox[List[SqrtBox[RowBox[List["-", SuperscriptBox[RowBox[List["Sinh", "[", RowBox[List[RowBox[List["e", " ", "z"]], "+", RowBox[List["ArcTanh", "[", FractionBox["a", "b"], "]"]]]], "]"]], "2"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SqrtBox[RowBox[List["1", "-", FractionBox[SuperscriptBox["a", "2"], SuperscriptBox["b", "2"]]]]], " ", "b", " ", RowBox[List["Cosh", "[", RowBox[List["e", " ", "z"]], "]"]]]], "-", RowBox[List["2", " ", "b", " ", RowBox[List["Cosh", "[", RowBox[List[RowBox[List["e", " ", "z"]], "+", RowBox[List["ArcTanh", "[", FractionBox["a", "b"], "]"]]]], "]"]]]], "+", RowBox[List["a", " ", RowBox[List["Sinh", "[", RowBox[List[RowBox[List["e", " ", "z"]], "+", RowBox[List["ArcTanh", "[", FractionBox["a", "b"], "]"]]]], "]"]]]]]], ")"]]]]]], RowBox[List["a", " ", SqrtBox[RowBox[List["1", "-", FractionBox[SuperscriptBox["a", "2"], SuperscriptBox["b", "2"]]]]], " ", "b", " ", "e", " ", SqrtBox[RowBox[List[RowBox[List["b", " ", RowBox[List["Cosh", "[", RowBox[List["e", " ", "z"]], "]"]]]], "+", RowBox[List["a", " ", RowBox[List["Sinh", "[", RowBox[List["e", " ", "z"]], "]"]]]]]]], " ", SqrtBox[RowBox[List["-", SuperscriptBox[RowBox[List["Sinh", "[", RowBox[List[RowBox[List["e", " ", "z"]], "+", RowBox[List["ArcTanh", "[", FractionBox["a", "b"], "]"]]]], "]"]], "2"]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18