|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/01.20.21.4393.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Integrate[1/Sqrt[(a Sinh[e z] + b Cosh[e z])^3], z] ==
((b Cosh[e z] + a Sinh[e z]) (a HypergeometricPFQ[{-(1/2), -(1/4)}, {3/4},
Cosh[e z + ArcTanh[a/b]]^2] Sinh[e z + ArcTanh[a/b]] -
Sqrt[-Sinh[e z + ArcTanh[a/b]]^2] (2 Sqrt[1 - a^2/b^2] b Cosh[e z] -
2 b Cosh[e z + ArcTanh[a/b]] + a Sinh[e z + ArcTanh[a/b]])))/
(a Sqrt[1 - a^2/b^2] b e Sqrt[(b Cosh[e z] + a Sinh[e z])^3]
Sqrt[-Sinh[e z + ArcTanh[a/b]]^2])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[FractionBox["1", SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["a", " ", RowBox[List["Sinh", "[", RowBox[List["e", " ", "z"]], "]"]]]], "+", RowBox[List["b", " ", RowBox[List["Cosh", "[", RowBox[List["e", " ", "z"]], "]"]]]]]], ")"]], "3"]]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["b", " ", RowBox[List["Cosh", "[", RowBox[List["e", " ", "z"]], "]"]]]], "+", RowBox[List["a", " ", RowBox[List["Sinh", "[", RowBox[List["e", " ", "z"]], "]"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["a", " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], ",", RowBox[List["-", FractionBox["1", "4"]]]]], "}"]], ",", RowBox[List["{", FractionBox["3", "4"], "}"]], ",", SuperscriptBox[RowBox[List["Cosh", "[", RowBox[List[RowBox[List["e", " ", "z"]], "+", RowBox[List["ArcTanh", "[", FractionBox["a", "b"], "]"]]]], "]"]], "2"]]], "]"]], " ", RowBox[List["Sinh", "[", RowBox[List[RowBox[List["e", " ", "z"]], "+", RowBox[List["ArcTanh", "[", FractionBox["a", "b"], "]"]]]], "]"]]]], "-", RowBox[List[SqrtBox[RowBox[List["-", SuperscriptBox[RowBox[List["Sinh", "[", RowBox[List[RowBox[List["e", " ", "z"]], "+", RowBox[List["ArcTanh", "[", FractionBox["a", "b"], "]"]]]], "]"]], "2"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SqrtBox[RowBox[List["1", "-", FractionBox[SuperscriptBox["a", "2"], SuperscriptBox["b", "2"]]]]], " ", "b", " ", RowBox[List["Cosh", "[", RowBox[List["e", " ", "z"]], "]"]]]], "-", RowBox[List["2", " ", "b", " ", RowBox[List["Cosh", "[", RowBox[List[RowBox[List["e", " ", "z"]], "+", RowBox[List["ArcTanh", "[", FractionBox["a", "b"], "]"]]]], "]"]]]], "+", RowBox[List["a", " ", RowBox[List["Sinh", "[", RowBox[List[RowBox[List["e", " ", "z"]], "+", RowBox[List["ArcTanh", "[", FractionBox["a", "b"], "]"]]]], "]"]]]]]], ")"]]]]]], ")"]]]], ")"]], "/", RowBox[List["(", RowBox[List["a", " ", SqrtBox[RowBox[List["1", "-", FractionBox[SuperscriptBox["a", "2"], SuperscriptBox["b", "2"]]]]], " ", "b", " ", "e", " ", SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["b", " ", RowBox[List["Cosh", "[", RowBox[List["e", " ", "z"]], "]"]]]], "+", RowBox[List["a", " ", RowBox[List["Sinh", "[", RowBox[List["e", " ", "z"]], "]"]]]]]], ")"]], "3"]], " ", SqrtBox[RowBox[List["-", SuperscriptBox[RowBox[List["Sinh", "[", RowBox[List[RowBox[List["e", " ", "z"]], "+", RowBox[List["ArcTanh", "[", FractionBox["a", "b"], "]"]]]], "]"]], "2"]]]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> ∫ </mo> <mrow> <mfrac> <mn> 1 </mn> <msqrt> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mrow> <mi> sinh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mi> cosh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> </msqrt> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mi> cosh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mrow> <mi> sinh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> </mrow> </mrow> <mo> ; </mo> <mfrac> <mn> 3 </mn> <mn> 4 </mn> </mfrac> <mo> ; </mo> <mrow> <msup> <mi> cosh </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <msup> <mi> tanh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mi> a </mi> <mi> b </mi> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["-", FractionBox["1", "2"]]], HypergeometricPFQ], ",", TagBox[RowBox[List["-", FractionBox["1", "4"]]], HypergeometricPFQ]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], ";", TagBox[TagBox[TagBox[FractionBox["3", "4"], HypergeometricPFQ], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], ";", TagBox[RowBox[List[SuperscriptBox["cosh", "2"], "(", RowBox[List[RowBox[List["e", " ", "z"]], "+", RowBox[List[SuperscriptBox["tanh", RowBox[List["-", "1"]]], "(", FractionBox["a", "b"], ")"]]]], ")"]], HypergeometricPFQ]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], HypergeometricPFQ] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <mi> sinh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <msup> <mi> tanh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mi> a </mi> <mi> b </mi> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msqrt> <mrow> <mo> - </mo> <mrow> <msup> <mi> sinh </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <msup> <mi> tanh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mi> a </mi> <mi> b </mi> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <mi> cosh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mi> cosh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <msup> <mi> tanh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mi> a </mi> <mi> b </mi> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mrow> <mi> sinh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <msup> <mi> tanh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mi> a </mi> <mi> b </mi> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <msqrt> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mi> cosh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mrow> <mi> sinh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mo> - </mo> <mrow> <msup> <mi> sinh </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <msup> <mi> tanh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mi> a </mi> <mi> b </mi> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> a </ci> <apply> <sinh /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <ci> b </ci> <apply> <cosh /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <cosh /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <ci> a </ci> <apply> <sinh /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <ci> a </ci> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </list> <list> <cn type='rational'> 3 <sep /> 4 </cn> </list> <apply> <power /> <apply> <cosh /> <apply> <plus /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> <apply> <arctanh /> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <sinh /> <apply> <plus /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> <apply> <arctanh /> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <sinh /> <apply> <plus /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> <apply> <arctanh /> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <cosh /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <apply> <cosh /> <apply> <plus /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> <apply> <arctanh /> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <ci> a </ci> <apply> <sinh /> <apply> <plus /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> <apply> <arctanh /> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <ci> a </ci> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> b </ci> <ci> e </ci> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <cosh /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <ci> a </ci> <apply> <sinh /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <sinh /> <apply> <plus /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> <apply> <arctanh /> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[FractionBox["1", SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["a_", " ", RowBox[List["Sinh", "[", RowBox[List["e_", " ", "z_"]], "]"]]]], "+", RowBox[List["b_", " ", RowBox[List["Cosh", "[", RowBox[List["e_", " ", "z_"]], "]"]]]]]], ")"]], "3"]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["b", " ", RowBox[List["Cosh", "[", RowBox[List["e", " ", "z"]], "]"]]]], "+", RowBox[List["a", " ", RowBox[List["Sinh", "[", RowBox[List["e", " ", "z"]], "]"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["a", " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], ",", RowBox[List["-", FractionBox["1", "4"]]]]], "}"]], ",", RowBox[List["{", FractionBox["3", "4"], "}"]], ",", SuperscriptBox[RowBox[List["Cosh", "[", RowBox[List[RowBox[List["e", " ", "z"]], "+", RowBox[List["ArcTanh", "[", FractionBox["a", "b"], "]"]]]], "]"]], "2"]]], "]"]], " ", RowBox[List["Sinh", "[", RowBox[List[RowBox[List["e", " ", "z"]], "+", RowBox[List["ArcTanh", "[", FractionBox["a", "b"], "]"]]]], "]"]]]], "-", RowBox[List[SqrtBox[RowBox[List["-", SuperscriptBox[RowBox[List["Sinh", "[", RowBox[List[RowBox[List["e", " ", "z"]], "+", RowBox[List["ArcTanh", "[", FractionBox["a", "b"], "]"]]]], "]"]], "2"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SqrtBox[RowBox[List["1", "-", FractionBox[SuperscriptBox["a", "2"], SuperscriptBox["b", "2"]]]]], " ", "b", " ", RowBox[List["Cosh", "[", RowBox[List["e", " ", "z"]], "]"]]]], "-", RowBox[List["2", " ", "b", " ", RowBox[List["Cosh", "[", RowBox[List[RowBox[List["e", " ", "z"]], "+", RowBox[List["ArcTanh", "[", FractionBox["a", "b"], "]"]]]], "]"]]]], "+", RowBox[List["a", " ", RowBox[List["Sinh", "[", RowBox[List[RowBox[List["e", " ", "z"]], "+", RowBox[List["ArcTanh", "[", FractionBox["a", "b"], "]"]]]], "]"]]]]]], ")"]]]]]], ")"]]]], RowBox[List["a", " ", SqrtBox[RowBox[List["1", "-", FractionBox[SuperscriptBox["a", "2"], SuperscriptBox["b", "2"]]]]], " ", "b", " ", "e", " ", SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["b", " ", RowBox[List["Cosh", "[", RowBox[List["e", " ", "z"]], "]"]]]], "+", RowBox[List["a", " ", RowBox[List["Sinh", "[", RowBox[List["e", " ", "z"]], "]"]]]]]], ")"]], "3"]], " ", SqrtBox[RowBox[List["-", SuperscriptBox[RowBox[List["Sinh", "[", RowBox[List[RowBox[List["e", " ", "z"]], "+", RowBox[List["ArcTanh", "[", FractionBox["a", "b"], "]"]]]], "]"]], "2"]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|