|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/01.20.21.4406.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Integrate[Sqrt[a + b Sinh[e z] + c Cosh[e z]], z] ==
(b (b^2 - c^2) Sqrt[1 - c^2/b^2] AppellF1[-(1/2), -(1/2), -(1/2), 1/2,
(a + c Cosh[e z] + b Sinh[e z])/(a + Sqrt[1 - b^2/c^2] c),
(a + c Cosh[e z] + b Sinh[e z])/(a - Sqrt[1 - b^2/c^2] c)]
Sinh[e z + ArcTanh[b/c]] +
Sqrt[((b^2 - c (a Sqrt[1 - b^2/c^2] + c)) (1 + Cosh[e z + ArcTanh[b/c]]))/
(a^2 + b^2 - c^2)] Sqrt[(1/(a^2 + b^2 - c^2))
(b^2 + a Sqrt[1 - b^2/c^2] c - c^2 + c (-a + Sqrt[1 - b^2/c^2] c)
Cosh[e z] - b (a - Sqrt[1 - b^2/c^2] c) Sinh[e z])]
(Sqrt[1 - c^2/b^2] (2 Sqrt[1 - b^2/c^2] c^3 Cosh[e z] +
2 c (b^2 - c^2) Cosh[e z + ArcTanh[b/c]] +
b (2 Sqrt[1 - b^2/c^2] c^2 Sinh[e z] + (-b^2 + c^2)
Sinh[e z + ArcTanh[b/c]])) + 2 a Sqrt[1 - b^2/c^2] c
AppellF1[1/2, 1/2, 1/2, 3/2, (a + c Cosh[e z] + b Sinh[e z])/
(a + I b Sqrt[1 - c^2/b^2]), (a + c Cosh[e z] + b Sinh[e z])/
(a - I b Sqrt[1 - c^2/b^2])] Sech[e z + ArcTanh[c/b]]
(a + c Cosh[e z] + b Sinh[e z])
Sqrt[-((1/(a^2 + b^2 - c^2)) (-b^2 + c^2 - I a b Sqrt[1 - c^2/b^2] +
c (a - I b Sqrt[1 - c^2/b^2]) Cosh[e z] +
b (a - I b Sqrt[1 - c^2/b^2]) Sinh[e z]))]
Sqrt[(1/(a^2 + b^2 - c^2)) ((b^2 - c^2 - I a b Sqrt[1 - c^2/b^2])
(Cosh[(1/2) (e z + ArcTanh[c/b])] -
I Sinh[(1/2) (e z + ArcTanh[c/b])])^2)]))/
(b Sqrt[1 - b^2/c^2] c Sqrt[1 - c^2/b^2] e
Sqrt[(Sqrt[1 - b^2/c^2] c (1 + Cosh[e z + ArcTanh[b/c]]))/
(-a + Sqrt[1 - b^2/c^2] c)]
Sqrt[(Sqrt[1 - b^2/c^2] c - c Cosh[e z] - b Sinh[e z])/
(a + Sqrt[1 - b^2/c^2] c)] Sqrt[a + c Cosh[e z] + b Sinh[e z]])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Sinh", "[", RowBox[List["e", " ", "z"]], "]"]]]], "+", RowBox[List["c", " ", RowBox[List["Cosh", "[", RowBox[List["e", " ", "z"]], "]"]]]]]]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["b", " ", RowBox[List["(", RowBox[List[SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]], ")"]], " ", SqrtBox[RowBox[List["1", "-", FractionBox[SuperscriptBox["c", "2"], SuperscriptBox["b", "2"]]]]], " ", RowBox[List["AppellF1", "[", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], ",", RowBox[List["-", FractionBox["1", "2"]]], ",", RowBox[List["-", FractionBox["1", "2"]]], ",", FractionBox["1", "2"], ",", FractionBox[RowBox[List["a", "+", RowBox[List["c", " ", RowBox[List["Cosh", "[", RowBox[List["e", " ", "z"]], "]"]]]], "+", RowBox[List["b", " ", RowBox[List["Sinh", "[", RowBox[List["e", " ", "z"]], "]"]]]]]], RowBox[List["a", "+", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox[SuperscriptBox["b", "2"], SuperscriptBox["c", "2"]]]]], " ", "c"]]]]], ",", FractionBox[RowBox[List["a", "+", RowBox[List["c", " ", RowBox[List["Cosh", "[", RowBox[List["e", " ", "z"]], "]"]]]], "+", RowBox[List["b", " ", RowBox[List["Sinh", "[", RowBox[List["e", " ", "z"]], "]"]]]]]], RowBox[List["a", "-", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox[SuperscriptBox["b", "2"], SuperscriptBox["c", "2"]]]]], " ", "c"]]]]]]], "]"]], " ", RowBox[List["Sinh", "[", RowBox[List[RowBox[List["e", " ", "z"]], "+", RowBox[List["ArcTanh", "[", FractionBox["b", "c"], "]"]]]], "]"]]]], "+", RowBox[List[SqrtBox[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["a", " ", SqrtBox[RowBox[List["1", "-", FractionBox[SuperscriptBox["b", "2"], SuperscriptBox["c", "2"]]]]]]], "+", "c"]], ")"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["Cosh", "[", RowBox[List[RowBox[List["e", " ", "z"]], "+", RowBox[List["ArcTanh", "[", FractionBox["b", "c"], "]"]]]], "]"]]]], ")"]]]], RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]], " ", RowBox[List["\[Sqrt]", RowBox[List["(", RowBox[List[FractionBox["1", RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]], RowBox[List["(", RowBox[List[SuperscriptBox["b", "2"], "+", RowBox[List["a", " ", SqrtBox[RowBox[List["1", "-", FractionBox[SuperscriptBox["b", "2"], SuperscriptBox["c", "2"]]]]], " ", "c"]], "-", SuperscriptBox["c", "2"], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox[SuperscriptBox["b", "2"], SuperscriptBox["c", "2"]]]]], " ", "c"]]]], ")"]], " ", RowBox[List["Cosh", "[", RowBox[List["e", " ", "z"]], "]"]]]], "-", RowBox[List["b", " ", RowBox[List["(", RowBox[List["a", "-", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox[SuperscriptBox["b", "2"], SuperscriptBox["c", "2"]]]]], " ", "c"]]]], ")"]], " ", RowBox[List["Sinh", "[", RowBox[List["e", " ", "z"]], "]"]]]]]], ")"]]]], ")"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox[SuperscriptBox["c", "2"], SuperscriptBox["b", "2"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SqrtBox[RowBox[List["1", "-", FractionBox[SuperscriptBox["b", "2"], SuperscriptBox["c", "2"]]]]], " ", SuperscriptBox["c", "3"], " ", RowBox[List["Cosh", "[", RowBox[List["e", " ", "z"]], "]"]]]], "+", RowBox[List["2", " ", "c", " ", RowBox[List["(", RowBox[List[SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]], ")"]], " ", RowBox[List["Cosh", "[", RowBox[List[RowBox[List["e", " ", "z"]], "+", RowBox[List["ArcTanh", "[", FractionBox["b", "c"], "]"]]]], "]"]]]], "+", RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SqrtBox[RowBox[List["1", "-", FractionBox[SuperscriptBox["b", "2"], SuperscriptBox["c", "2"]]]]], " ", SuperscriptBox["c", "2"], " ", RowBox[List["Sinh", "[", RowBox[List["e", " ", "z"]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", SuperscriptBox["c", "2"]]], ")"]], " ", RowBox[List["Sinh", "[", RowBox[List[RowBox[List["e", " ", "z"]], "+", RowBox[List["ArcTanh", "[", FractionBox["b", "c"], "]"]]]], "]"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List["2", " ", "a", " ", SqrtBox[RowBox[List["1", "-", FractionBox[SuperscriptBox["b", "2"], SuperscriptBox["c", "2"]]]]], " ", "c", " ", RowBox[List["AppellF1", "[", RowBox[List[FractionBox["1", "2"], ",", FractionBox["1", "2"], ",", FractionBox["1", "2"], ",", FractionBox["3", "2"], ",", FractionBox[RowBox[List["a", "+", RowBox[List["c", " ", RowBox[List["Cosh", "[", RowBox[List["e", " ", "z"]], "]"]]]], "+", RowBox[List["b", " ", RowBox[List["Sinh", "[", RowBox[List["e", " ", "z"]], "]"]]]]]], RowBox[List["a", "+", RowBox[List["\[ImaginaryI]", " ", "b", " ", SqrtBox[RowBox[List["1", "-", FractionBox[SuperscriptBox["c", "2"], SuperscriptBox["b", "2"]]]]]]]]]], ",", FractionBox[RowBox[List["a", "+", RowBox[List["c", " ", RowBox[List["Cosh", "[", RowBox[List["e", " ", "z"]], "]"]]]], "+", RowBox[List["b", " ", RowBox[List["Sinh", "[", RowBox[List["e", " ", "z"]], "]"]]]]]], RowBox[List["a", "-", RowBox[List["\[ImaginaryI]", " ", "b", " ", SqrtBox[RowBox[List["1", "-", FractionBox[SuperscriptBox["c", "2"], SuperscriptBox["b", "2"]]]]]]]]]]]], "]"]], " ", RowBox[List["Sech", "[", RowBox[List[RowBox[List["e", " ", "z"]], "+", RowBox[List["ArcTanh", "[", FractionBox["c", "b"], "]"]]]], "]"]], " ", RowBox[List["(", RowBox[List["a", "+", RowBox[List["c", " ", RowBox[List["Cosh", "[", RowBox[List["e", " ", "z"]], "]"]]]], "+", RowBox[List["b", " ", RowBox[List["Sinh", "[", RowBox[List["e", " ", "z"]], "]"]]]]]], ")"]], " ", RowBox[List["\[Sqrt]", RowBox[List["(", RowBox[List["-", RowBox[List[FractionBox["1", RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]], RowBox[List["(", RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", SuperscriptBox["c", "2"], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", "b", " ", SqrtBox[RowBox[List["1", "-", FractionBox[SuperscriptBox["c", "2"], SuperscriptBox["b", "2"]]]]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List["a", "-", RowBox[List["\[ImaginaryI]", " ", "b", " ", SqrtBox[RowBox[List["1", "-", FractionBox[SuperscriptBox["c", "2"], SuperscriptBox["b", "2"]]]]]]]]], ")"]], " ", RowBox[List["Cosh", "[", RowBox[List["e", " ", "z"]], "]"]]]], "+", RowBox[List["b", " ", RowBox[List["(", RowBox[List["a", "-", RowBox[List["\[ImaginaryI]", " ", "b", " ", SqrtBox[RowBox[List["1", "-", FractionBox[SuperscriptBox["c", "2"], SuperscriptBox["b", "2"]]]]]]]]], ")"]], " ", RowBox[List["Sinh", "[", RowBox[List["e", " ", "z"]], "]"]]]]]], ")"]]]]]], ")"]]]], " ", RowBox[List["\[Sqrt]", RowBox[List["(", RowBox[List[FractionBox["1", RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]], RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", "b", " ", SqrtBox[RowBox[List["1", "-", FractionBox[SuperscriptBox["c", "2"], SuperscriptBox["b", "2"]]]]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["Cosh", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["e", " ", "z"]], "+", RowBox[List["ArcTanh", "[", FractionBox["c", "b"], "]"]]]], ")"]]]], "]"]], "-", RowBox[List["\[ImaginaryI]", " ", RowBox[List["Sinh", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["e", " ", "z"]], "+", RowBox[List["ArcTanh", "[", FractionBox["c", "b"], "]"]]]], ")"]]]], "]"]]]]]], ")"]], "2"]]], ")"]]]], ")"]]]]]]]], ")"]]]]]], ")"]], "/", RowBox[List["(", RowBox[List["b", " ", SqrtBox[RowBox[List["1", "-", FractionBox[SuperscriptBox["b", "2"], SuperscriptBox["c", "2"]]]]], " ", "c", " ", SqrtBox[RowBox[List["1", "-", FractionBox[SuperscriptBox["c", "2"], SuperscriptBox["b", "2"]]]]], " ", "e", " ", SqrtBox[FractionBox[RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox[SuperscriptBox["b", "2"], SuperscriptBox["c", "2"]]]]], " ", "c", " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["Cosh", "[", RowBox[List[RowBox[List["e", " ", "z"]], "+", RowBox[List["ArcTanh", "[", FractionBox["b", "c"], "]"]]]], "]"]]]], ")"]]]], RowBox[List[RowBox[List["-", "a"]], "+", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox[SuperscriptBox["b", "2"], SuperscriptBox["c", "2"]]]]], " ", "c"]]]]]], " ", SqrtBox[FractionBox[RowBox[List[RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox[SuperscriptBox["b", "2"], SuperscriptBox["c", "2"]]]]], " ", "c"]], "-", RowBox[List["c", " ", RowBox[List["Cosh", "[", RowBox[List["e", " ", "z"]], "]"]]]], "-", RowBox[List["b", " ", RowBox[List["Sinh", "[", RowBox[List["e", " ", "z"]], "]"]]]]]], RowBox[List["a", "+", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox[SuperscriptBox["b", "2"], SuperscriptBox["c", "2"]]]]], " ", "c"]]]]]], " ", SqrtBox[RowBox[List["a", "+", RowBox[List["c", " ", RowBox[List["Cosh", "[", RowBox[List["e", " ", "z"]], "]"]]]], "+", RowBox[List["b", " ", RowBox[List["Sinh", "[", RowBox[List["e", " ", "z"]], "]"]]]]]]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> ∫ </mo> <mrow> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mi> sinh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mi> cosh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <msup> <mi> c </mi> <mn> 2 </mn> </msup> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <semantics> <msub> <mi> F </mi> <mn> 1 </mn> </msub> <annotation-xml encoding='MathML-Content'> <ci> AppellF1 </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ; </mo> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mi> cosh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mi> sinh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mrow> </mfrac> </mrow> <mo> , </mo> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mi> cosh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mi> sinh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mi> a </mi> <mo> - </mo> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> sinh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <msup> <mi> tanh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mi> b </mi> <mi> c </mi> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msqrt> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> cosh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <msup> <mi> tanh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mi> b </mi> <mi> c </mi> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> </msqrt> <mo> ⁢ </mo> <mrow> <mo> √ </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> sinh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> - </mo> <msup> <mi> c </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> cosh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mrow> <semantics> <msub> <mi> F </mi> <mn> 1 </mn> </msub> <annotation-xml encoding='MathML-Content'> <ci> AppellF1 </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ; </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ; </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> ; </mo> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mi> cosh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mi> sinh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <msup> <mi> c </mi> <mn> 2 </mn> </msup> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mo> , </mo> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mi> cosh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mi> sinh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mi> a </mi> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <msup> <mi> c </mi> <mn> 2 </mn> </msup> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> sech </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <msup> <mi> tanh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mi> c </mi> <mi> b </mi> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> √ </mo> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <msup> <mi> c </mi> <mn> 2 </mn> </msup> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> sinh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <msup> <mi> c </mi> <mn> 2 </mn> </msup> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> + </mo> <msup> <mi> c </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <msup> <mi> c </mi> <mn> 2 </mn> </msup> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> cosh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ⁢ </mo> <mrow> <mo> √ </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <msup> <mi> c </mi> <mn> 2 </mn> </msup> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> - </mo> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> cosh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <msup> <mi> tanh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mi> c </mi> <mi> b </mi> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mi> sinh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <msup> <mi> tanh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mi> c </mi> <mi> b </mi> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mi> cosh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mi> sinh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <msup> <mi> c </mi> <mn> 2 </mn> </msup> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <mi> cosh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> c </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> cosh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <msup> <mi> tanh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mi> b </mi> <mi> c </mi> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <mi> sinh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <msup> <mi> c </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> sinh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <msup> <mi> tanh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mi> b </mi> <mi> c </mi> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <msup> <mi> c </mi> <mn> 2 </mn> </msup> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <msqrt> <mfrac> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> cosh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <msup> <mi> tanh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mi> b </mi> <mi> c </mi> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> - </mo> <mi> a </mi> </mrow> </mfrac> </msqrt> <mo> ⁢ </mo> <msqrt> <mfrac> <mrow> <mrow> <mrow> <mo> - </mo> <mrow> <mi> cosh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> + </mo> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> - </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mi> sinh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mrow> </mfrac> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mi> cosh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mi> sinh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <sinh /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <ci> c </ci> <apply> <cosh /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> AppellF1 </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> c </ci> <apply> <cosh /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <ci> b </ci> <apply> <sinh /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> c </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> c </ci> <apply> <cosh /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <ci> b </ci> <apply> <sinh /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> c </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <sinh /> <apply> <plus /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> <apply> <arctanh /> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> c </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> a </ci> </apply> <ci> c </ci> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <cosh /> <apply> <plus /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> <apply> <arctanh /> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> c </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <root /> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> c </ci> </apply> </apply> </apply> <apply> <sinh /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> <ci> b </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <ci> a </ci> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> c </ci> </apply> <apply> <times /> <ci> c </ci> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <apply> <cosh /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> c </ci> <apply> <ci> AppellF1 </ci> <cn type='rational'> 1 <sep /> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> <cn type='rational'> 3 <sep /> 2 </cn> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> c </ci> <apply> <cosh /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <ci> b </ci> <apply> <sinh /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <imaginaryi /> <ci> b </ci> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> c </ci> <apply> <cosh /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <ci> b </ci> <apply> <sinh /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> b </ci> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <sech /> <apply> <plus /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> <apply> <arctanh /> <apply> <times /> <ci> c </ci> <apply> <power /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <root /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> b </ci> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <sinh /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> a </ci> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> b </ci> </apply> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <ci> c </ci> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> b </ci> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <cosh /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <root /> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> a </ci> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> b </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <cosh /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> <apply> <arctanh /> <apply> <times /> <ci> c </ci> <apply> <power /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <sinh /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> <apply> <arctanh /> <apply> <times /> <ci> c </ci> <apply> <power /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> c </ci> <apply> <cosh /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <ci> b </ci> <apply> <sinh /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <cosh /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <cosh /> <apply> <plus /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> <apply> <arctanh /> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> c </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <ci> c </ci> </apply> <apply> <times /> <ci> b </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <sinh /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <sinh /> <apply> <plus /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> <apply> <arctanh /> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> c </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> c </ci> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> e </ci> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> c </ci> <apply> <plus /> <apply> <cosh /> <apply> <plus /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> <apply> <arctanh /> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> c </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <cosh /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> <ci> c </ci> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <sinh /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> c </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> c </ci> <apply> <cosh /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <ci> b </ci> <apply> <sinh /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[SqrtBox[RowBox[List["a_", "+", RowBox[List["b_", " ", RowBox[List["Sinh", "[", RowBox[List["e_", " ", "z_"]], "]"]]]], "+", RowBox[List["c_", " ", RowBox[List["Cosh", "[", RowBox[List["e_", " ", "z_"]], "]"]]]]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List["b", " ", RowBox[List["(", RowBox[List[SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]], ")"]], " ", SqrtBox[RowBox[List["1", "-", FractionBox[SuperscriptBox["c", "2"], SuperscriptBox["b", "2"]]]]], " ", RowBox[List["AppellF1", "[", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], ",", RowBox[List["-", FractionBox["1", "2"]]], ",", RowBox[List["-", FractionBox["1", "2"]]], ",", FractionBox["1", "2"], ",", FractionBox[RowBox[List["a", "+", RowBox[List["c", " ", RowBox[List["Cosh", "[", RowBox[List["e", " ", "z"]], "]"]]]], "+", RowBox[List["b", " ", RowBox[List["Sinh", "[", RowBox[List["e", " ", "z"]], "]"]]]]]], RowBox[List["a", "+", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox[SuperscriptBox["b", "2"], SuperscriptBox["c", "2"]]]]], " ", "c"]]]]], ",", FractionBox[RowBox[List["a", "+", RowBox[List["c", " ", RowBox[List["Cosh", "[", RowBox[List["e", " ", "z"]], "]"]]]], "+", RowBox[List["b", " ", RowBox[List["Sinh", "[", RowBox[List["e", " ", "z"]], "]"]]]]]], RowBox[List["a", "-", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox[SuperscriptBox["b", "2"], SuperscriptBox["c", "2"]]]]], " ", "c"]]]]]]], "]"]], " ", RowBox[List["Sinh", "[", RowBox[List[RowBox[List["e", " ", "z"]], "+", RowBox[List["ArcTanh", "[", FractionBox["b", "c"], "]"]]]], "]"]]]], "+", RowBox[List[SqrtBox[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["a", " ", SqrtBox[RowBox[List["1", "-", FractionBox[SuperscriptBox["b", "2"], SuperscriptBox["c", "2"]]]]]]], "+", "c"]], ")"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["Cosh", "[", RowBox[List[RowBox[List["e", " ", "z"]], "+", RowBox[List["ArcTanh", "[", FractionBox["b", "c"], "]"]]]], "]"]]]], ")"]]]], RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]], " ", SqrtBox[FractionBox[RowBox[List[SuperscriptBox["b", "2"], "+", RowBox[List["a", " ", SqrtBox[RowBox[List["1", "-", FractionBox[SuperscriptBox["b", "2"], SuperscriptBox["c", "2"]]]]], " ", "c"]], "-", SuperscriptBox["c", "2"], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox[SuperscriptBox["b", "2"], SuperscriptBox["c", "2"]]]]], " ", "c"]]]], ")"]], " ", RowBox[List["Cosh", "[", RowBox[List["e", " ", "z"]], "]"]]]], "-", RowBox[List["b", " ", RowBox[List["(", RowBox[List["a", "-", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox[SuperscriptBox["b", "2"], SuperscriptBox["c", "2"]]]]], " ", "c"]]]], ")"]], " ", RowBox[List["Sinh", "[", RowBox[List["e", " ", "z"]], "]"]]]]]], RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox[SuperscriptBox["c", "2"], SuperscriptBox["b", "2"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SqrtBox[RowBox[List["1", "-", FractionBox[SuperscriptBox["b", "2"], SuperscriptBox["c", "2"]]]]], " ", SuperscriptBox["c", "3"], " ", RowBox[List["Cosh", "[", RowBox[List["e", " ", "z"]], "]"]]]], "+", RowBox[List["2", " ", "c", " ", RowBox[List["(", RowBox[List[SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]], ")"]], " ", RowBox[List["Cosh", "[", RowBox[List[RowBox[List["e", " ", "z"]], "+", RowBox[List["ArcTanh", "[", FractionBox["b", "c"], "]"]]]], "]"]]]], "+", RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SqrtBox[RowBox[List["1", "-", FractionBox[SuperscriptBox["b", "2"], SuperscriptBox["c", "2"]]]]], " ", SuperscriptBox["c", "2"], " ", RowBox[List["Sinh", "[", RowBox[List["e", " ", "z"]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", SuperscriptBox["c", "2"]]], ")"]], " ", RowBox[List["Sinh", "[", RowBox[List[RowBox[List["e", " ", "z"]], "+", RowBox[List["ArcTanh", "[", FractionBox["b", "c"], "]"]]]], "]"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List["2", " ", "a", " ", SqrtBox[RowBox[List["1", "-", FractionBox[SuperscriptBox["b", "2"], SuperscriptBox["c", "2"]]]]], " ", "c", " ", RowBox[List["AppellF1", "[", RowBox[List[FractionBox["1", "2"], ",", FractionBox["1", "2"], ",", FractionBox["1", "2"], ",", FractionBox["3", "2"], ",", FractionBox[RowBox[List["a", "+", RowBox[List["c", " ", RowBox[List["Cosh", "[", RowBox[List["e", " ", "z"]], "]"]]]], "+", RowBox[List["b", " ", RowBox[List["Sinh", "[", RowBox[List["e", " ", "z"]], "]"]]]]]], RowBox[List["a", "+", RowBox[List["\[ImaginaryI]", " ", "b", " ", SqrtBox[RowBox[List["1", "-", FractionBox[SuperscriptBox["c", "2"], SuperscriptBox["b", "2"]]]]]]]]]], ",", FractionBox[RowBox[List["a", "+", RowBox[List["c", " ", RowBox[List["Cosh", "[", RowBox[List["e", " ", "z"]], "]"]]]], "+", RowBox[List["b", " ", RowBox[List["Sinh", "[", RowBox[List["e", " ", "z"]], "]"]]]]]], RowBox[List["a", "-", RowBox[List["\[ImaginaryI]", " ", "b", " ", SqrtBox[RowBox[List["1", "-", FractionBox[SuperscriptBox["c", "2"], SuperscriptBox["b", "2"]]]]]]]]]]]], "]"]], " ", RowBox[List["Sech", "[", RowBox[List[RowBox[List["e", " ", "z"]], "+", RowBox[List["ArcTanh", "[", FractionBox["c", "b"], "]"]]]], "]"]], " ", RowBox[List["(", RowBox[List["a", "+", RowBox[List["c", " ", RowBox[List["Cosh", "[", RowBox[List["e", " ", "z"]], "]"]]]], "+", RowBox[List["b", " ", RowBox[List["Sinh", "[", RowBox[List["e", " ", "z"]], "]"]]]]]], ")"]], " ", SqrtBox[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", SuperscriptBox["c", "2"], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", "b", " ", SqrtBox[RowBox[List["1", "-", FractionBox[SuperscriptBox["c", "2"], SuperscriptBox["b", "2"]]]]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List["a", "-", RowBox[List["\[ImaginaryI]", " ", "b", " ", SqrtBox[RowBox[List["1", "-", FractionBox[SuperscriptBox["c", "2"], SuperscriptBox["b", "2"]]]]]]]]], ")"]], " ", RowBox[List["Cosh", "[", RowBox[List["e", " ", "z"]], "]"]]]], "+", RowBox[List["b", " ", RowBox[List["(", RowBox[List["a", "-", RowBox[List["\[ImaginaryI]", " ", "b", " ", SqrtBox[RowBox[List["1", "-", FractionBox[SuperscriptBox["c", "2"], SuperscriptBox["b", "2"]]]]]]]]], ")"]], " ", RowBox[List["Sinh", "[", RowBox[List["e", " ", "z"]], "]"]]]]]], RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]], " ", SqrtBox[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", "b", " ", SqrtBox[RowBox[List["1", "-", FractionBox[SuperscriptBox["c", "2"], SuperscriptBox["b", "2"]]]]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["Cosh", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["e", " ", "z"]], "+", RowBox[List["ArcTanh", "[", FractionBox["c", "b"], "]"]]]], ")"]]]], "]"]], "-", RowBox[List["\[ImaginaryI]", " ", RowBox[List["Sinh", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["e", " ", "z"]], "+", RowBox[List["ArcTanh", "[", FractionBox["c", "b"], "]"]]]], ")"]]]], "]"]]]]]], ")"]], "2"]]], RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]]]], ")"]]]]]], RowBox[List["b", " ", SqrtBox[RowBox[List["1", "-", FractionBox[SuperscriptBox["b", "2"], SuperscriptBox["c", "2"]]]]], " ", "c", " ", SqrtBox[RowBox[List["1", "-", FractionBox[SuperscriptBox["c", "2"], SuperscriptBox["b", "2"]]]]], " ", "e", " ", SqrtBox[FractionBox[RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox[SuperscriptBox["b", "2"], SuperscriptBox["c", "2"]]]]], " ", "c", " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["Cosh", "[", RowBox[List[RowBox[List["e", " ", "z"]], "+", RowBox[List["ArcTanh", "[", FractionBox["b", "c"], "]"]]]], "]"]]]], ")"]]]], RowBox[List[RowBox[List["-", "a"]], "+", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox[SuperscriptBox["b", "2"], SuperscriptBox["c", "2"]]]]], " ", "c"]]]]]], " ", SqrtBox[FractionBox[RowBox[List[RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox[SuperscriptBox["b", "2"], SuperscriptBox["c", "2"]]]]], " ", "c"]], "-", RowBox[List["c", " ", RowBox[List["Cosh", "[", RowBox[List["e", " ", "z"]], "]"]]]], "-", RowBox[List["b", " ", RowBox[List["Sinh", "[", RowBox[List["e", " ", "z"]], "]"]]]]]], RowBox[List["a", "+", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox[SuperscriptBox["b", "2"], SuperscriptBox["c", "2"]]]]], " ", "c"]]]]]], " ", SqrtBox[RowBox[List["a", "+", RowBox[List["c", " ", RowBox[List["Cosh", "[", RowBox[List["e", " ", "z"]], "]"]]]], "+", RowBox[List["b", " ", RowBox[List["Sinh", "[", RowBox[List["e", " ", "z"]], "]"]]]]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|