  
| 
 | 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   http://functions.wolfram.com/01.20.21.4410.01
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
 | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
    Integrate[Cosh[e z]/Sqrt[a + b Sinh[e z] + c Cosh[e z]], z] == 
 ((2 (a + c Cosh[e z] + b Sinh[e z]))/b + 
   (c ((-(b^2 - 2 c^2)) Cosh[e z] + c (2 a + b Sinh[e z])))/(b^3 - b c^2) - 
   (AppellF1[-(1/2), -(1/2), -(1/2), 1/2, (a + c Cosh[e z] + b Sinh[e z])/
       (a + Sqrt[1 - b^2/c^2] c), (a + c Cosh[e z] + b Sinh[e z])/
       (a - Sqrt[1 - b^2/c^2] c)] Sinh[e z + ArcTanh[b/c]])/
    (Sqrt[1 - b^2/c^2] Sqrt[(Sqrt[1 - b^2/c^2] c 
        (1 + Cosh[e z + ArcTanh[b/c]]))/(-a + Sqrt[1 - b^2/c^2] c)] 
     Sqrt[(Sqrt[1 - b^2/c^2] c - c Cosh[e z] - b Sinh[e z])/
       (a + Sqrt[1 - b^2/c^2] c)]))/(e Sqrt[a + c Cosh[e z] + b Sinh[e z]]) 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List["Cosh", "[", RowBox[List["e", " ", "z"]], "]"]], SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Sinh", "[", RowBox[List["e", " ", "z"]], "]"]]]], "+", RowBox[List["c", " ", RowBox[List["Cosh", "[", RowBox[List["e", " ", "z"]], "]"]]]]]]]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List[FractionBox[RowBox[List["2", " ", RowBox[List["(", RowBox[List["a", "+", RowBox[List["c", " ", RowBox[List["Cosh", "[", RowBox[List["e", " ", "z"]], "]"]]]], "+", RowBox[List["b", " ", RowBox[List["Sinh", "[", RowBox[List["e", " ", "z"]], "]"]]]]]], ")"]]]], "b"], "+", FractionBox[RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["2", " ", SuperscriptBox["c", "2"]]]]], ")"]]]], " ", RowBox[List["Cosh", "[", RowBox[List["e", " ", "z"]], "]"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a"]], "+", RowBox[List["b", " ", RowBox[List["Sinh", "[", RowBox[List["e", " ", "z"]], "]"]]]]]], ")"]]]]]], ")"]]]], RowBox[List[SuperscriptBox["b", "3"], "-", RowBox[List["b", " ", SuperscriptBox["c", "2"]]]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["AppellF1", "[", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], ",", RowBox[List["-", FractionBox["1", "2"]]], ",", RowBox[List["-", FractionBox["1", "2"]]], ",", FractionBox["1", "2"], ",", FractionBox[RowBox[List["a", "+", RowBox[List["c", " ", RowBox[List["Cosh", "[", RowBox[List["e", " ", "z"]], "]"]]]], "+", RowBox[List["b", " ", RowBox[List["Sinh", "[", RowBox[List["e", " ", "z"]], "]"]]]]]], RowBox[List["a", "+", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox[SuperscriptBox["b", "2"], SuperscriptBox["c", "2"]]]]], " ", "c"]]]]], ",", FractionBox[RowBox[List["a", "+", RowBox[List["c", " ", RowBox[List["Cosh", "[", RowBox[List["e", " ", "z"]], "]"]]]], "+", RowBox[List["b", " ", RowBox[List["Sinh", "[", RowBox[List["e", " ", "z"]], "]"]]]]]], RowBox[List["a", "-", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox[SuperscriptBox["b", "2"], SuperscriptBox["c", "2"]]]]], " ", "c"]]]]]]], "]"]], " ", RowBox[List["Sinh", "[", RowBox[List[RowBox[List["e", " ", "z"]], "+", RowBox[List["ArcTanh", "[", FractionBox["b", "c"], "]"]]]], "]"]]]], ")"]], "/", RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox[SuperscriptBox["b", "2"], SuperscriptBox["c", "2"]]]]], " ", SqrtBox[FractionBox[RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox[SuperscriptBox["b", "2"], SuperscriptBox["c", "2"]]]]], " ", "c", " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["Cosh", "[", RowBox[List[RowBox[List["e", " ", "z"]], "+", RowBox[List["ArcTanh", "[", FractionBox["b", "c"], "]"]]]], "]"]]]], ")"]]]], RowBox[List[RowBox[List["-", "a"]], "+", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox[SuperscriptBox["b", "2"], SuperscriptBox["c", "2"]]]]], " ", "c"]]]]]], " ", SqrtBox[FractionBox[RowBox[List[RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox[SuperscriptBox["b", "2"], SuperscriptBox["c", "2"]]]]], " ", "c"]], "-", RowBox[List["c", " ", RowBox[List["Cosh", "[", RowBox[List["e", " ", "z"]], "]"]]]], "-", RowBox[List["b", " ", RowBox[List["Sinh", "[", RowBox[List["e", " ", "z"]], "]"]]]]]], RowBox[List["a", "+", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox[SuperscriptBox["b", "2"], SuperscriptBox["c", "2"]]]]], " ", "c"]]]]]]]], ")"]]]]]], ")"]], "/", RowBox[List["(", RowBox[List["e", " ", SqrtBox[RowBox[List["a", "+", RowBox[List["c", " ", RowBox[List["Cosh", "[", RowBox[List["e", " ", "z"]], "]"]]]], "+", RowBox[List["b", " ", RowBox[List["Sinh", "[", RowBox[List["e", " ", "z"]], "]"]]]]]]]]], ")"]]]]]]]] 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
 
  | 
   
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mo> ∫ </mo>  <mrow>  <mfrac>  <mrow>  <mi> cosh </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <msqrt>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mi> sinh </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mrow>  <mi> cosh </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </msqrt>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ⅆ </mo>  <mi> z </mi>  </mrow>  </mrow>  </mrow>  <mo> ⩵ </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mfrac>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mrow>  <mi> cosh </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mi> sinh </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mi> b </mi>  </mfrac>  <mo> + </mo>  <mfrac>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> a </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mi> sinh </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <msup>  <mi> b </mi>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msup>  <mi> c </mi>  <mn> 2 </mn>  </msup>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> cosh </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mrow>  <msup>  <mi> b </mi>  <mn> 3 </mn>  </msup>  <mo> - </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <msup>  <mi> c </mi>  <mn> 2 </mn>  </msup>  </mrow>  </mrow>  </mfrac>  <mo> - </mo>  <mrow>  <mrow>  <mrow>  <mi> sinh </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> + </mo>  <mrow>  <msup>  <mi> tanh </mi>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ( </mo>  <mfrac>  <mi> b </mi>  <mi> c </mi>  </mfrac>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> / </mo>  <mrow>  <mo> ( </mo>  <mrow>  <msqrt>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mfrac>  <msup>  <mi> b </mi>  <mn> 2 </mn>  </msup>  <msup>  <mi> c </mi>  <mn> 2 </mn>  </msup>  </mfrac>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mfrac>  <mrow>  <msqrt>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mfrac>  <msup>  <mi> b </mi>  <mn> 2 </mn>  </msup>  <msup>  <mi> c </mi>  <mn> 2 </mn>  </msup>  </mfrac>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> cosh </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> + </mo>  <mrow>  <msup>  <mi> tanh </mi>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ( </mo>  <mfrac>  <mi> b </mi>  <mi> c </mi>  </mfrac>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mrow>  <mrow>  <msqrt>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mfrac>  <msup>  <mi> b </mi>  <mn> 2 </mn>  </msup>  <msup>  <mi> c </mi>  <mn> 2 </mn>  </msup>  </mfrac>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  <mo> - </mo>  <mi> a </mi>  </mrow>  </mfrac>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mfrac>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mrow>  <mi> cosh </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  <mo> + </mo>  <mrow>  <msqrt>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mfrac>  <msup>  <mi> b </mi>  <mn> 2 </mn>  </msup>  <msup>  <mi> c </mi>  <mn> 2 </mn>  </msup>  </mfrac>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mi> sinh </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mfrac>  <msup>  <mi> b </mi>  <mn> 2 </mn>  </msup>  <msup>  <mi> c </mi>  <mn> 2 </mn>  </msup>  </mfrac>  </mrow>  </msqrt>  </mrow>  </mrow>  </mfrac>  </msqrt>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ⁢ </mo>  <mrow>  <semantics>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  <annotation-xml encoding='MathML-Content'>  <ci> AppellF1 </ci>  </annotation-xml>  </semantics>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  <mo> ; </mo>  <mrow>  <mo> - </mo>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  </mrow>  <mo> , </mo>  <mrow>  <mrow>  <mo> - </mo>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  <mo> ; </mo>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> ; </mo>  <mfrac>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mrow>  <mi> cosh </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mi> sinh </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mfrac>  <msup>  <mi> b </mi>  <mn> 2 </mn>  </msup>  <msup>  <mi> c </mi>  <mn> 2 </mn>  </msup>  </mfrac>  </mrow>  </msqrt>  </mrow>  </mrow>  </mfrac>  </mrow>  <mo> , </mo>  <mfrac>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mrow>  <mi> cosh </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mi> sinh </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mrow>  <mi> a </mi>  <mo> - </mo>  <mrow>  <msqrt>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mfrac>  <msup>  <mi> b </mi>  <mn> 2 </mn>  </msup>  <msup>  <mi> c </mi>  <mn> 2 </mn>  </msup>  </mfrac>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mrow>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mtext>   </mtext>  <mo> ) </mo>  </mrow>  <mo> / </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> e </mi>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mrow>  <mi> cosh </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mi> sinh </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </msqrt>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <eq />  <apply>  <int />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <times />  <apply>  <cosh />  <apply>  <times />  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <power />  <apply>  <plus />  <ci> a </ci>  <apply>  <times />  <ci> b </ci>  <apply>  <sinh />  <apply>  <times />  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  <apply>  <times />  <ci> c </ci>  <apply>  <cosh />  <apply>  <times />  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <ci> a </ci>  <apply>  <times />  <ci> c </ci>  <apply>  <cosh />  <apply>  <times />  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  <apply>  <times />  <ci> b </ci>  <apply>  <sinh />  <apply>  <times />  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> b </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <ci> c </ci>  <apply>  <plus />  <apply>  <times />  <ci> c </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> a </ci>  </apply>  <apply>  <times />  <ci> b </ci>  <apply>  <sinh />  <apply>  <times />  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <plus />  <apply>  <power />  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <ci> c </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <cosh />  <apply>  <times />  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> b </ci>  <cn type='integer'> 3 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> b </ci>  <apply>  <power />  <ci> c </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <times />  <apply>  <sinh />  <apply>  <plus />  <apply>  <times />  <ci> e </ci>  <ci> z </ci>  </apply>  <apply>  <arctanh />  <apply>  <times />  <ci> b </ci>  <apply>  <power />  <ci> c </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <power />  <ci> c </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <power />  <ci> c </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <ci> c </ci>  <apply>  <plus />  <apply>  <cosh />  <apply>  <plus />  <apply>  <times />  <ci> e </ci>  <ci> z </ci>  </apply>  <apply>  <arctanh />  <apply>  <times />  <ci> b </ci>  <apply>  <power />  <ci> c </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <power />  <ci> c </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <ci> c </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> a </ci>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <cosh />  <apply>  <times />  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  <ci> c </ci>  </apply>  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <power />  <ci> c </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <ci> c </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> b </ci>  <apply>  <sinh />  <apply>  <times />  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> a </ci>  <apply>  <times />  <ci> c </ci>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <power />  <ci> c </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <ci> AppellF1 </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  <apply>  <times />  <apply>  <plus />  <ci> a </ci>  <apply>  <times />  <ci> c </ci>  <apply>  <cosh />  <apply>  <times />  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  <apply>  <times />  <ci> b </ci>  <apply>  <sinh />  <apply>  <times />  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> a </ci>  <apply>  <times />  <ci> c </ci>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <power />  <ci> c </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <plus />  <ci> a </ci>  <apply>  <times />  <ci> c </ci>  <apply>  <cosh />  <apply>  <times />  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  <apply>  <times />  <ci> b </ci>  <apply>  <sinh />  <apply>  <times />  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> a </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <power />  <ci> c </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <ci> c </ci>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <ci> e </ci>  <apply>  <power />  <apply>  <plus />  <ci> a </ci>  <apply>  <times />  <ci> c </ci>  <apply>  <cosh />  <apply>  <times />  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  <apply>  <times />  <ci> b </ci>  <apply>  <sinh />  <apply>  <times />  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 
  |   
  |  
  |  
  |   
  |  |  
  |   
  |  
  |  
  |   
  | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List["Cosh", "[", RowBox[List["e_", " ", "z_"]], "]"]], SqrtBox[RowBox[List["a_", "+", RowBox[List["b_", " ", RowBox[List["Sinh", "[", RowBox[List["e_", " ", "z_"]], "]"]]]], "+", RowBox[List["c_", " ", RowBox[List["Cosh", "[", RowBox[List["e_", " ", "z_"]], "]"]]]]]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[FractionBox[RowBox[List["2", " ", RowBox[List["(", RowBox[List["a", "+", RowBox[List["c", " ", RowBox[List["Cosh", "[", RowBox[List["e", " ", "z"]], "]"]]]], "+", RowBox[List["b", " ", RowBox[List["Sinh", "[", RowBox[List["e", " ", "z"]], "]"]]]]]], ")"]]]], "b"], "+", FractionBox[RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["2", " ", SuperscriptBox["c", "2"]]]]], ")"]]]], " ", RowBox[List["Cosh", "[", RowBox[List["e", " ", "z"]], "]"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a"]], "+", RowBox[List["b", " ", RowBox[List["Sinh", "[", RowBox[List["e", " ", "z"]], "]"]]]]]], ")"]]]]]], ")"]]]], RowBox[List[SuperscriptBox["b", "3"], "-", RowBox[List["b", " ", SuperscriptBox["c", "2"]]]]]], "-", FractionBox[RowBox[List[RowBox[List["AppellF1", "[", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], ",", RowBox[List["-", FractionBox["1", "2"]]], ",", RowBox[List["-", FractionBox["1", "2"]]], ",", FractionBox["1", "2"], ",", FractionBox[RowBox[List["a", "+", RowBox[List["c", " ", RowBox[List["Cosh", "[", RowBox[List["e", " ", "z"]], "]"]]]], "+", RowBox[List["b", " ", RowBox[List["Sinh", "[", RowBox[List["e", " ", "z"]], "]"]]]]]], RowBox[List["a", "+", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox[SuperscriptBox["b", "2"], SuperscriptBox["c", "2"]]]]], " ", "c"]]]]], ",", FractionBox[RowBox[List["a", "+", RowBox[List["c", " ", RowBox[List["Cosh", "[", RowBox[List["e", " ", "z"]], "]"]]]], "+", RowBox[List["b", " ", RowBox[List["Sinh", "[", RowBox[List["e", " ", "z"]], "]"]]]]]], RowBox[List["a", "-", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox[SuperscriptBox["b", "2"], SuperscriptBox["c", "2"]]]]], " ", "c"]]]]]]], "]"]], " ", RowBox[List["Sinh", "[", RowBox[List[RowBox[List["e", " ", "z"]], "+", RowBox[List["ArcTanh", "[", FractionBox["b", "c"], "]"]]]], "]"]]]], RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox[SuperscriptBox["b", "2"], SuperscriptBox["c", "2"]]]]], " ", SqrtBox[FractionBox[RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox[SuperscriptBox["b", "2"], SuperscriptBox["c", "2"]]]]], " ", "c", " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["Cosh", "[", RowBox[List[RowBox[List["e", " ", "z"]], "+", RowBox[List["ArcTanh", "[", FractionBox["b", "c"], "]"]]]], "]"]]]], ")"]]]], RowBox[List[RowBox[List["-", "a"]], "+", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox[SuperscriptBox["b", "2"], SuperscriptBox["c", "2"]]]]], " ", "c"]]]]]], " ", SqrtBox[FractionBox[RowBox[List[RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox[SuperscriptBox["b", "2"], SuperscriptBox["c", "2"]]]]], " ", "c"]], "-", RowBox[List["c", " ", RowBox[List["Cosh", "[", RowBox[List["e", " ", "z"]], "]"]]]], "-", RowBox[List["b", " ", RowBox[List["Sinh", "[", RowBox[List["e", " ", "z"]], "]"]]]]]], RowBox[List["a", "+", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox[SuperscriptBox["b", "2"], SuperscriptBox["c", "2"]]]]], " ", "c"]]]]]]]]]]], RowBox[List["e", " ", SqrtBox[RowBox[List["a", "+", RowBox[List["c", " ", RowBox[List["Cosh", "[", RowBox[List["e", " ", "z"]], "]"]]]], "+", RowBox[List["b", " ", RowBox[List["Sinh", "[", RowBox[List["e", " ", "z"]], "]"]]]]]]]]]]]]]]  |  
  |  
  |   
  |  
  |  
  | 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Date Added to functions.wolfram.com (modification date)
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 | 
  | 
  
  
  
 |  
 
 |