|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/01.20.21.4414.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Integrate[(a Sinh[e z]^2 + b Cosh[e z]^2)^(5/2), z] ==
(Sqrt[2] (a + b) (-a + b + (a + b) Cosh[2 e z])
(11 (-a + b) + 3 (a + b) Cosh[2 e z]) Sinh[2 e z] +
(8 (1 + Cosh[e z]) Sqrt[(-a + b + (a + b) Cosh[2 e z])/(1 + Cosh[e z])^2]
(-((I (-8 a^3 + 7 a^2 b - 7 a b^2 + 8 b^3) EllipticF[
I ArcSinh[Sqrt[(2 a + b - 2 Sqrt[a] Sqrt[a + b])/b] Tanh[(e z)/2]],
(2 a + b + 2 Sqrt[a] Sqrt[a + b])/(2 a + b - 2 Sqrt[a]
Sqrt[a + b])] Sqrt[1 + (b Tanh[(e z)/2]^2)/(2 a + b -
2 Sqrt[a] Sqrt[a + b])] Sqrt[1 + (b Tanh[(e z)/2]^2)/
(2 a + b + 2 Sqrt[a] Sqrt[a + b])])/
Sqrt[(2 a + b - 2 Sqrt[a] Sqrt[a + b])/b]) +
(1/(a + b)) ((8 a^3 + a^2 b + a b^2 + 8 b^3)
((-I) b Sqrt[(2 a + b - 2 Sqrt[a] Sqrt[a + b])/b]
EllipticE[I ArcSinh[Sqrt[(2 a + b - 2 Sqrt[a] Sqrt[a + b])/b]
Tanh[(e z)/2]], (2 a + b + 2 Sqrt[a] Sqrt[a + b])/
(2 a + b - 2 Sqrt[a] Sqrt[a + b])]
Sqrt[1 + (b Tanh[(e z)/2]^2)/(2 a + b - 2 Sqrt[a] Sqrt[a + b])]
Sqrt[1 + (b Tanh[(e z)/2]^2)/(2 a + b + 2 Sqrt[a] Sqrt[a + b])] +
((-(-2 a - b + 2 Sqrt[a] Sqrt[a + b])) (-a + b +
(a + b) Cosh[2 e z]) Sech[(e z)/2]^2 Tanh[(e z)/2] +
2 I b (a + b - 2 Sqrt[a] Sqrt[a + b])
Sqrt[(2 a + b - 2 Sqrt[a] Sqrt[a + b])/b] EllipticF[
I ArcSinh[Sqrt[(2 a + b - 2 Sqrt[a] Sqrt[a + b])/b]
Tanh[(e z)/2]], (2 a + b + 2 Sqrt[a] Sqrt[a + b])/
(2 a + b - 2 Sqrt[a] Sqrt[a + b])]
Sqrt[1 + (b Tanh[(e z)/2]^2)/(2 a + b - 2 Sqrt[a] Sqrt[a + b])]
Sqrt[1 + (b Tanh[(e z)/2]^2)/(2 a + b + 2 Sqrt[a] Sqrt[a + b])])/
(2 (2 a + b - 2 Sqrt[a] Sqrt[a + b]))))))/
Sqrt[4 a Tanh[(e z)/2]^2 + b (1 + Tanh[(e z)/2]^2)^2])/
(120 e Sqrt[-a + b + (a + b) Cosh[2 e z]])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["a", " ", SuperscriptBox[RowBox[List["Sinh", "[", RowBox[List["e", " ", "z"]], "]"]], "2"]]], "+", RowBox[List["b", " ", SuperscriptBox[RowBox[List["Cosh", "[", RowBox[List["e", " ", "z"]], "]"]], "2"]]]]], ")"]], RowBox[List["5", "/", "2"]]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[SqrtBox["2"], " ", RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b", "+", RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["11", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b"]], ")"]]]], "+", RowBox[List["3", " ", RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]], ")"]], " ", RowBox[List["Sinh", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["8", " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["Cosh", "[", RowBox[List["e", " ", "z"]], "]"]]]], ")"]], " ", SqrtBox[FractionBox[RowBox[List[RowBox[List["-", "a"]], "+", "b", "+", RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", RowBox[List["Cosh", "[", RowBox[List["e", " ", "z"]], "]"]]]], ")"]], "2"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "8"]], " ", SuperscriptBox["a", "3"]]], "+", RowBox[List["7", " ", SuperscriptBox["a", "2"], " ", "b"]], "-", RowBox[List["7", " ", "a", " ", SuperscriptBox["b", "2"]]], "+", RowBox[List["8", " ", SuperscriptBox["b", "3"]]]]], ")"]], " ", RowBox[List["EllipticF", "[", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSinh", "[", RowBox[List[SqrtBox[FractionBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]], "b"]], " ", RowBox[List["Tanh", "[", FractionBox[RowBox[List["e", " ", "z"]], "2"], "]"]]]], "]"]]]], ",", FractionBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "+", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]]]]], "]"]], " ", SqrtBox[RowBox[List["1", "+", FractionBox[RowBox[List["b", " ", SuperscriptBox[RowBox[List["Tanh", "[", FractionBox[RowBox[List["e", " ", "z"]], "2"], "]"]], "2"]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]]]]]], " ", SqrtBox[RowBox[List["1", "+", FractionBox[RowBox[List["b", " ", SuperscriptBox[RowBox[List["Tanh", "[", FractionBox[RowBox[List["e", " ", "z"]], "2"], "]"]], "2"]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "+", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]]]]]]]], ")"]], "/", RowBox[List["(", SqrtBox[FractionBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]], "b"]], ")"]]]]]], "+", RowBox[List[FractionBox["1", RowBox[List["a", "+", "b"]]], RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["8", " ", SuperscriptBox["a", "3"]]], "+", RowBox[List[SuperscriptBox["a", "2"], " ", "b"]], "+", RowBox[List["a", " ", SuperscriptBox["b", "2"]]], "+", RowBox[List["8", " ", SuperscriptBox["b", "3"]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b", " ", SqrtBox[FractionBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]], "b"]], " ", RowBox[List["EllipticE", "[", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSinh", "[", RowBox[List[SqrtBox[FractionBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]], "b"]], " ", RowBox[List["Tanh", "[", FractionBox[RowBox[List["e", " ", "z"]], "2"], "]"]]]], "]"]]]], ",", FractionBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "+", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]]]]], "]"]], " ", SqrtBox[RowBox[List["1", "+", FractionBox[RowBox[List["b", " ", SuperscriptBox[RowBox[List["Tanh", "[", FractionBox[RowBox[List["e", " ", "z"]], "2"], "]"]], "2"]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]]]]]], " ", SqrtBox[RowBox[List["1", "+", FractionBox[RowBox[List["b", " ", SuperscriptBox[RowBox[List["Tanh", "[", FractionBox[RowBox[List["e", " ", "z"]], "2"], "]"]], "2"]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "+", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]]]]]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "-", "b", "+", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]], ")"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b", "+", RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Sech", "[", FractionBox[RowBox[List["e", " ", "z"]], "2"], "]"]], "2"], " ", RowBox[List["Tanh", "[", FractionBox[RowBox[List["e", " ", "z"]], "2"], "]"]]]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", RowBox[List["(", RowBox[List["a", "+", "b", "-", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]], ")"]], " ", SqrtBox[FractionBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]], "b"]], " ", RowBox[List["EllipticF", "[", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSinh", "[", RowBox[List[SqrtBox[FractionBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]], "b"]], " ", RowBox[List["Tanh", "[", FractionBox[RowBox[List["e", " ", "z"]], "2"], "]"]]]], "]"]]]], ",", FractionBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "+", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]]]]], "]"]], " ", SqrtBox[RowBox[List["1", "+", FractionBox[RowBox[List["b", " ", SuperscriptBox[RowBox[List["Tanh", "[", FractionBox[RowBox[List["e", " ", "z"]], "2"], "]"]], "2"]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]]]]]], " ", SqrtBox[RowBox[List["1", "+", FractionBox[RowBox[List["b", " ", SuperscriptBox[RowBox[List["Tanh", "[", FractionBox[RowBox[List["e", " ", "z"]], "2"], "]"]], "2"]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "+", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]]]]]]]]]], ")"]], "/", RowBox[List["(", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]], ")"]]]], ")"]]]]]], ")"]]]], ")"]]]]]], ")"]]]], ")"]], "/", RowBox[List["(", SqrtBox[RowBox[List[RowBox[List["4", " ", "a", " ", SuperscriptBox[RowBox[List["Tanh", "[", FractionBox[RowBox[List["e", " ", "z"]], "2"], "]"]], "2"]]], "+", RowBox[List["b", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox[RowBox[List["Tanh", "[", FractionBox[RowBox[List["e", " ", "z"]], "2"], "]"]], "2"]]], ")"]], "2"]]]]]], ")"]]]]]], ")"]], "/", RowBox[List["(", RowBox[List["120", " ", "e", " ", SqrtBox[RowBox[List[RowBox[List["-", "a"]], "+", "b", "+", RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> ∫ </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> cosh </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> sinh </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> cosh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 11 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> cosh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> sinh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> cosh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mfrac> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> cosh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> cosh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mfrac> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <msup> <mi> a </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <msup> <mi> b </mi> <mn> 3 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mi> a </mi> </msqrt> </mrow> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mi> a </mi> </msqrt> </mrow> <mo> + </mo> <mi> b </mi> </mrow> <mi> b </mi> </mfrac> </msqrt> <mo> ⁢ </mo> <mrow> <mi> F </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> sinh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <msqrt> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mi> a </mi> </msqrt> </mrow> <mo> + </mo> <mi> b </mi> </mrow> <mi> b </mi> </mfrac> </msqrt> <mo> ⁢ </mo> <mrow> <mi> tanh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ❘ </mo> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mi> a </mi> </msqrt> </mrow> <mo> + </mo> <mi> b </mi> </mrow> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mi> a </mi> </msqrt> </mrow> <mo> + </mo> <mi> b </mi> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mrow> <mfrac> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> tanh </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mfrac> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mi> a </mi> </msqrt> </mrow> <mo> + </mo> <mi> b </mi> </mrow> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mfrac> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> tanh </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mfrac> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mi> a </mi> </msqrt> </mrow> <mo> + </mo> <mi> b </mi> </mrow> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mi> a </mi> </msqrt> </mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> cosh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> sech </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mfrac> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> tanh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mi> a </mi> </msqrt> </mrow> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <msqrt> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mi> a </mi> </msqrt> </mrow> <mo> + </mo> <mi> b </mi> </mrow> <mi> b </mi> </mfrac> </msqrt> <mo> ⁢ </mo> <mrow> <mi> E </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> sinh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <msqrt> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mi> a </mi> </msqrt> </mrow> <mo> + </mo> <mi> b </mi> </mrow> <mi> b </mi> </mfrac> </msqrt> <mo> ⁢ </mo> <mrow> <mi> tanh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ❘ </mo> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mi> a </mi> </msqrt> </mrow> <mo> + </mo> <mi> b </mi> </mrow> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mi> a </mi> </msqrt> </mrow> <mo> + </mo> <mi> b </mi> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mrow> <mfrac> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> tanh </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mfrac> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mi> a </mi> </msqrt> </mrow> <mo> + </mo> <mi> b </mi> </mrow> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mfrac> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> tanh </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mfrac> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mi> a </mi> </msqrt> </mrow> <mo> + </mo> <mi> b </mi> </mrow> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 8 </mn> </mrow> <mo> ⁢ </mo> <msup> <mi> a </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 7 </mn> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 7 </mn> <mo> ⁢ </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <msup> <mi> b </mi> <mn> 3 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mtext> </mtext> </mrow> <msqrt> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mi> a </mi> </msqrt> </mrow> <mo> + </mo> <mi> b </mi> </mrow> <mi> b </mi> </mfrac> </msqrt> </mfrac> <mo> ⁢ </mo> <mrow> <mi> F </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> sinh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <msqrt> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mi> a </mi> </msqrt> </mrow> <mo> + </mo> <mi> b </mi> </mrow> <mi> b </mi> </mfrac> </msqrt> <mo> ⁢ </mo> <mrow> <mi> tanh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ❘ </mo> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mi> a </mi> </msqrt> </mrow> <mo> + </mo> <mi> b </mi> </mrow> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mi> a </mi> </msqrt> </mrow> <mo> + </mo> <mi> b </mi> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mrow> <mfrac> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> tanh </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mfrac> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mi> a </mi> </msqrt> </mrow> <mo> + </mo> <mi> b </mi> </mrow> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mfrac> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> tanh </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mfrac> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mi> a </mi> </msqrt> </mrow> <mo> + </mo> <mi> b </mi> </mrow> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <msqrt> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> tanh </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mfrac> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> tanh </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mfrac> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mn> 120 </mn> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> cosh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <cosh /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <ci> a </ci> <apply> <power /> <apply> <sinh /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 5 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <ci> b </ci> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <apply> <cosh /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 11 </cn> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <apply> <cosh /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <sinh /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <plus /> <apply> <cosh /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <ci> b </ci> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <apply> <cosh /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <cosh /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> b </ci> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <ci> b </ci> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <ci> b </ci> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> EllipticF </ci> <apply> <times /> <imaginaryi /> <apply> <arcsinh /> <apply> <times /> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <ci> b </ci> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <tanh /> <apply> <times /> <ci> e </ci> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <ci> b </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <tanh /> <apply> <times /> <ci> e </ci> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <tanh /> <apply> <times /> <ci> e </ci> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <ci> b </ci> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <apply> <cosh /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <sech /> <apply> <times /> <ci> e </ci> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <tanh /> <apply> <times /> <ci> e </ci> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <ci> b </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> b </ci> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <ci> b </ci> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> EllipticE </ci> <apply> <times /> <imaginaryi /> <apply> <arcsinh /> <apply> <times /> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <ci> b </ci> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <tanh /> <apply> <times /> <ci> e </ci> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <ci> b </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <tanh /> <apply> <times /> <ci> e </ci> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <tanh /> <apply> <times /> <ci> e </ci> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <imaginaryi /> <apply> <plus /> <apply> <times /> <cn type='integer'> -8 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 7 </cn> <ci> b </ci> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 7 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <ci> a </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <ci> b </ci> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> EllipticF </ci> <apply> <times /> <imaginaryi /> <apply> <arcsinh /> <apply> <times /> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <ci> b </ci> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <tanh /> <apply> <times /> <ci> e </ci> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <ci> b </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <tanh /> <apply> <times /> <ci> e </ci> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <tanh /> <apply> <times /> <ci> e </ci> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> <apply> <power /> <apply> <tanh /> <apply> <times /> <ci> e </ci> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <tanh /> <apply> <times /> <ci> e </ci> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 120 </cn> <ci> e </ci> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <ci> b </ci> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <apply> <cosh /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["a_", " ", SuperscriptBox[RowBox[List["Sinh", "[", RowBox[List["e_", " ", "z_"]], "]"]], "2"]]], "+", RowBox[List["b_", " ", SuperscriptBox[RowBox[List["Cosh", "[", RowBox[List["e_", " ", "z_"]], "]"]], "2"]]]]], ")"]], RowBox[List["5", "/", "2"]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List[SqrtBox["2"], " ", RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b", "+", RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["11", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b"]], ")"]]]], "+", RowBox[List["3", " ", RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]], ")"]], " ", RowBox[List["Sinh", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]], "+", FractionBox[RowBox[List["8", " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["Cosh", "[", RowBox[List["e", " ", "z"]], "]"]]]], ")"]], " ", SqrtBox[FractionBox[RowBox[List[RowBox[List["-", "a"]], "+", "b", "+", RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", RowBox[List["Cosh", "[", RowBox[List["e", " ", "z"]], "]"]]]], ")"]], "2"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "8"]], " ", SuperscriptBox["a", "3"]]], "+", RowBox[List["7", " ", SuperscriptBox["a", "2"], " ", "b"]], "-", RowBox[List["7", " ", "a", " ", SuperscriptBox["b", "2"]]], "+", RowBox[List["8", " ", SuperscriptBox["b", "3"]]]]], ")"]], " ", RowBox[List["EllipticF", "[", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSinh", "[", RowBox[List[SqrtBox[FractionBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]], "b"]], " ", RowBox[List["Tanh", "[", FractionBox[RowBox[List["e", " ", "z"]], "2"], "]"]]]], "]"]]]], ",", FractionBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "+", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]]]]], "]"]], " ", SqrtBox[RowBox[List["1", "+", FractionBox[RowBox[List["b", " ", SuperscriptBox[RowBox[List["Tanh", "[", FractionBox[RowBox[List["e", " ", "z"]], "2"], "]"]], "2"]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]]]]]], " ", SqrtBox[RowBox[List["1", "+", FractionBox[RowBox[List["b", " ", SuperscriptBox[RowBox[List["Tanh", "[", FractionBox[RowBox[List["e", " ", "z"]], "2"], "]"]], "2"]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "+", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]]]]]]]], SqrtBox[FractionBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]], "b"]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["8", " ", SuperscriptBox["a", "3"]]], "+", RowBox[List[SuperscriptBox["a", "2"], " ", "b"]], "+", RowBox[List["a", " ", SuperscriptBox["b", "2"]]], "+", RowBox[List["8", " ", SuperscriptBox["b", "3"]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b", " ", SqrtBox[FractionBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]], "b"]], " ", RowBox[List["EllipticE", "[", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSinh", "[", RowBox[List[SqrtBox[FractionBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]], "b"]], " ", RowBox[List["Tanh", "[", FractionBox[RowBox[List["e", " ", "z"]], "2"], "]"]]]], "]"]]]], ",", FractionBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "+", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]]]]], "]"]], " ", SqrtBox[RowBox[List["1", "+", FractionBox[RowBox[List["b", " ", SuperscriptBox[RowBox[List["Tanh", "[", FractionBox[RowBox[List["e", " ", "z"]], "2"], "]"]], "2"]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]]]]]], " ", SqrtBox[RowBox[List["1", "+", FractionBox[RowBox[List["b", " ", SuperscriptBox[RowBox[List["Tanh", "[", FractionBox[RowBox[List["e", " ", "z"]], "2"], "]"]], "2"]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "+", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]]]]]]]], "+", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "-", "b", "+", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]], ")"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b", "+", RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Sech", "[", FractionBox[RowBox[List["e", " ", "z"]], "2"], "]"]], "2"], " ", RowBox[List["Tanh", "[", FractionBox[RowBox[List["e", " ", "z"]], "2"], "]"]]]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", RowBox[List["(", RowBox[List["a", "+", "b", "-", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]], ")"]], " ", SqrtBox[FractionBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]], "b"]], " ", RowBox[List["EllipticF", "[", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSinh", "[", RowBox[List[SqrtBox[FractionBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]], "b"]], " ", RowBox[List["Tanh", "[", FractionBox[RowBox[List["e", " ", "z"]], "2"], "]"]]]], "]"]]]], ",", FractionBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "+", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]]]]], "]"]], " ", SqrtBox[RowBox[List["1", "+", FractionBox[RowBox[List["b", " ", SuperscriptBox[RowBox[List["Tanh", "[", FractionBox[RowBox[List["e", " ", "z"]], "2"], "]"]], "2"]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]]]]]], " ", SqrtBox[RowBox[List["1", "+", FractionBox[RowBox[List["b", " ", SuperscriptBox[RowBox[List["Tanh", "[", FractionBox[RowBox[List["e", " ", "z"]], "2"], "]"]], "2"]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "+", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]]]]]]]]]], RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]], ")"]]]]]]], ")"]]]], RowBox[List["a", "+", "b"]]]]], ")"]]]], SqrtBox[RowBox[List[RowBox[List["4", " ", "a", " ", SuperscriptBox[RowBox[List["Tanh", "[", FractionBox[RowBox[List["e", " ", "z"]], "2"], "]"]], "2"]]], "+", RowBox[List["b", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox[RowBox[List["Tanh", "[", FractionBox[RowBox[List["e", " ", "z"]], "2"], "]"]], "2"]]], ")"]], "2"]]]]]]]]], RowBox[List["120", " ", "e", " ", SqrtBox[RowBox[List[RowBox[List["-", "a"]], "+", "b", "+", RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|