| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/01.20.21.4414.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Integrate[(a Sinh[e z]^2 + b Cosh[e z]^2)^(5/2), z] == 
 (Sqrt[2] (a + b) (-a + b + (a + b) Cosh[2 e z]) 
    (11 (-a + b) + 3 (a + b) Cosh[2 e z]) Sinh[2 e z] + 
   (8 (1 + Cosh[e z]) Sqrt[(-a + b + (a + b) Cosh[2 e z])/(1 + Cosh[e z])^2] 
     (-((I (-8 a^3 + 7 a^2 b - 7 a b^2 + 8 b^3) EllipticF[
          I ArcSinh[Sqrt[(2 a + b - 2 Sqrt[a] Sqrt[a + b])/b] Tanh[(e z)/2]], 
          (2 a + b + 2 Sqrt[a] Sqrt[a + b])/(2 a + b - 2 Sqrt[a] 
             Sqrt[a + b])] Sqrt[1 + (b Tanh[(e z)/2]^2)/(2 a + b - 
             2 Sqrt[a] Sqrt[a + b])] Sqrt[1 + (b Tanh[(e z)/2]^2)/
            (2 a + b + 2 Sqrt[a] Sqrt[a + b])])/
        Sqrt[(2 a + b - 2 Sqrt[a] Sqrt[a + b])/b]) + 
      (1/(a + b)) ((8 a^3 + a^2 b + a b^2 + 8 b^3) 
        ((-I) b Sqrt[(2 a + b - 2 Sqrt[a] Sqrt[a + b])/b] 
          EllipticE[I ArcSinh[Sqrt[(2 a + b - 2 Sqrt[a] Sqrt[a + b])/b] 
              Tanh[(e z)/2]], (2 a + b + 2 Sqrt[a] Sqrt[a + b])/
            (2 a + b - 2 Sqrt[a] Sqrt[a + b])] 
          Sqrt[1 + (b Tanh[(e z)/2]^2)/(2 a + b - 2 Sqrt[a] Sqrt[a + b])] 
          Sqrt[1 + (b Tanh[(e z)/2]^2)/(2 a + b + 2 Sqrt[a] Sqrt[a + b])] + 
         ((-(-2 a - b + 2 Sqrt[a] Sqrt[a + b])) (-a + b + 
             (a + b) Cosh[2 e z]) Sech[(e z)/2]^2 Tanh[(e z)/2] + 
           2 I b (a + b - 2 Sqrt[a] Sqrt[a + b]) 
            Sqrt[(2 a + b - 2 Sqrt[a] Sqrt[a + b])/b] EllipticF[
             I ArcSinh[Sqrt[(2 a + b - 2 Sqrt[a] Sqrt[a + b])/b] 
                Tanh[(e z)/2]], (2 a + b + 2 Sqrt[a] Sqrt[a + b])/
              (2 a + b - 2 Sqrt[a] Sqrt[a + b])] 
            Sqrt[1 + (b Tanh[(e z)/2]^2)/(2 a + b - 2 Sqrt[a] Sqrt[a + b])] 
            Sqrt[1 + (b Tanh[(e z)/2]^2)/(2 a + b + 2 Sqrt[a] Sqrt[a + b])])/
          (2 (2 a + b - 2 Sqrt[a] Sqrt[a + b]))))))/
    Sqrt[4 a Tanh[(e z)/2]^2 + b (1 + Tanh[(e z)/2]^2)^2])/
  (120 e Sqrt[-a + b + (a + b) Cosh[2 e z]]) | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["a", " ", SuperscriptBox[RowBox[List["Sinh", "[", RowBox[List["e", " ", "z"]], "]"]], "2"]]], "+", RowBox[List["b", " ", SuperscriptBox[RowBox[List["Cosh", "[", RowBox[List["e", " ", "z"]], "]"]], "2"]]]]], ")"]], RowBox[List["5", "/", "2"]]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[SqrtBox["2"], " ", RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b", "+", RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["11", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b"]], ")"]]]], "+", RowBox[List["3", " ", RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]], ")"]], " ", RowBox[List["Sinh", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["8", " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["Cosh", "[", RowBox[List["e", " ", "z"]], "]"]]]], ")"]], " ", SqrtBox[FractionBox[RowBox[List[RowBox[List["-", "a"]], "+", "b", "+", RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", RowBox[List["Cosh", "[", RowBox[List["e", " ", "z"]], "]"]]]], ")"]], "2"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "8"]], " ", SuperscriptBox["a", "3"]]], "+", RowBox[List["7", " ", SuperscriptBox["a", "2"], " ", "b"]], "-", RowBox[List["7", " ", "a", " ", SuperscriptBox["b", "2"]]], "+", RowBox[List["8", " ", SuperscriptBox["b", "3"]]]]], ")"]], " ", RowBox[List["EllipticF", "[", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSinh", "[", RowBox[List[SqrtBox[FractionBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]], "b"]], " ", RowBox[List["Tanh", "[", FractionBox[RowBox[List["e", " ", "z"]], "2"], "]"]]]], "]"]]]], ",", FractionBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "+", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]]]]], "]"]], " ", SqrtBox[RowBox[List["1", "+", FractionBox[RowBox[List["b", " ", SuperscriptBox[RowBox[List["Tanh", "[", FractionBox[RowBox[List["e", " ", "z"]], "2"], "]"]], "2"]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]]]]]], " ", SqrtBox[RowBox[List["1", "+", FractionBox[RowBox[List["b", " ", SuperscriptBox[RowBox[List["Tanh", "[", FractionBox[RowBox[List["e", " ", "z"]], "2"], "]"]], "2"]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "+", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]]]]]]]], ")"]], "/", RowBox[List["(", SqrtBox[FractionBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]], "b"]], ")"]]]]]], "+", RowBox[List[FractionBox["1", RowBox[List["a", "+", "b"]]], RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["8", " ", SuperscriptBox["a", "3"]]], "+", RowBox[List[SuperscriptBox["a", "2"], " ", "b"]], "+", RowBox[List["a", " ", SuperscriptBox["b", "2"]]], "+", RowBox[List["8", " ", SuperscriptBox["b", "3"]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b", " ", SqrtBox[FractionBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]], "b"]], " ", RowBox[List["EllipticE", "[", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSinh", "[", RowBox[List[SqrtBox[FractionBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]], "b"]], " ", RowBox[List["Tanh", "[", FractionBox[RowBox[List["e", " ", "z"]], "2"], "]"]]]], "]"]]]], ",", FractionBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "+", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]]]]], "]"]], " ", SqrtBox[RowBox[List["1", "+", FractionBox[RowBox[List["b", " ", SuperscriptBox[RowBox[List["Tanh", "[", FractionBox[RowBox[List["e", " ", "z"]], "2"], "]"]], "2"]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]]]]]], " ", SqrtBox[RowBox[List["1", "+", FractionBox[RowBox[List["b", " ", SuperscriptBox[RowBox[List["Tanh", "[", FractionBox[RowBox[List["e", " ", "z"]], "2"], "]"]], "2"]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "+", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]]]]]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "-", "b", "+", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]], ")"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b", "+", RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Sech", "[", FractionBox[RowBox[List["e", " ", "z"]], "2"], "]"]], "2"], " ", RowBox[List["Tanh", "[", FractionBox[RowBox[List["e", " ", "z"]], "2"], "]"]]]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", RowBox[List["(", RowBox[List["a", "+", "b", "-", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]], ")"]], " ", SqrtBox[FractionBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]], "b"]], " ", RowBox[List["EllipticF", "[", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSinh", "[", RowBox[List[SqrtBox[FractionBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]], "b"]], " ", RowBox[List["Tanh", "[", FractionBox[RowBox[List["e", " ", "z"]], "2"], "]"]]]], "]"]]]], ",", FractionBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "+", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]]]]], "]"]], " ", SqrtBox[RowBox[List["1", "+", FractionBox[RowBox[List["b", " ", SuperscriptBox[RowBox[List["Tanh", "[", FractionBox[RowBox[List["e", " ", "z"]], "2"], "]"]], "2"]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]]]]]], " ", SqrtBox[RowBox[List["1", "+", FractionBox[RowBox[List["b", " ", SuperscriptBox[RowBox[List["Tanh", "[", FractionBox[RowBox[List["e", " ", "z"]], "2"], "]"]], "2"]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "+", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]]]]]]]]]], ")"]], "/", RowBox[List["(", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]], ")"]]]], ")"]]]]]], ")"]]]], ")"]]]]]], ")"]]]], ")"]], "/", RowBox[List["(", SqrtBox[RowBox[List[RowBox[List["4", " ", "a", " ", SuperscriptBox[RowBox[List["Tanh", "[", FractionBox[RowBox[List["e", " ", "z"]], "2"], "]"]], "2"]]], "+", RowBox[List["b", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox[RowBox[List["Tanh", "[", FractionBox[RowBox[List["e", " ", "z"]], "2"], "]"]], "2"]]], ")"]], "2"]]]]]], ")"]]]]]], ")"]], "/", RowBox[List["(", RowBox[List["120", " ", "e", " ", SqrtBox[RowBox[List[RowBox[List["-", "a"]], "+", "b", "+", RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]]]]], ")"]]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mo> ∫ </mo>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> cosh </mi>  <mn> 2 </mn>  </msup>  <mo> ( </mo>  <mrow>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mi> a </mi>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> sinh </mi>  <mn> 2 </mn>  </msup>  <mo> ( </mo>  <mrow>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 5 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ⅆ </mo>  <mi> z </mi>  </mrow>  </mrow>  </mrow>  <mo> ⩵ </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <msqrt>  <mn> 2 </mn>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> b </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> a </mi>  </mrow>  <mo> + </mo>  <mi> b </mi>  <mo> + </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> b </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> cosh </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 11 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> b </mi>  <mo> - </mo>  <mi> a </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mn> 3 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> b </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> cosh </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> sinh </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 8 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> cosh </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mfrac>  <mrow>  <mrow>  <mo> - </mo>  <mi> a </mi>  </mrow>  <mo> + </mo>  <mi> b </mi>  <mo> + </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> b </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> cosh </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> cosh </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mfrac>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mn> 1 </mn>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> b </mi>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 8 </mn>  <mo> ⁢ </mo>  <msup>  <mi> a </mi>  <mn> 3 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <msup>  <mi> a </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <msup>  <mi> b </mi>  <mn> 2 </mn>  </msup>  <mo> ⁢ </mo>  <mi> a </mi>  </mrow>  <mo> + </mo>  <mrow>  <mn> 8 </mn>  <mo> ⁢ </mo>  <msup>  <mi> b </mi>  <mn> 3 </mn>  </msup>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> b </mi>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mi> a </mi>  </msqrt>  </mrow>  <mo> + </mo>  <mi> b </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mfrac>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> a </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> b </mi>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mi> a </mi>  </msqrt>  </mrow>  <mo> + </mo>  <mi> b </mi>  </mrow>  <mi> b </mi>  </mfrac>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mi> F </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> sinh </mi>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ( </mo>  <mrow>  <msqrt>  <mfrac>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> a </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> b </mi>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mi> a </mi>  </msqrt>  </mrow>  <mo> + </mo>  <mi> b </mi>  </mrow>  <mi> b </mi>  </mfrac>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mi> tanh </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mfrac>  <mrow>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mn> 2 </mn>  </mfrac>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ❘ </mo>  <mfrac>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> a </mi>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> b </mi>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mi> a </mi>  </msqrt>  </mrow>  <mo> + </mo>  <mi> b </mi>  </mrow>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> a </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> b </mi>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mi> a </mi>  </msqrt>  </mrow>  <mo> + </mo>  <mi> b </mi>  </mrow>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mfrac>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> tanh </mi>  <mn> 2 </mn>  </msup>  <mo> ( </mo>  <mfrac>  <mrow>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mn> 2 </mn>  </mfrac>  <mo> ) </mo>  </mrow>  </mrow>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> a </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> b </mi>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mi> a </mi>  </msqrt>  </mrow>  <mo> + </mo>  <mi> b </mi>  </mrow>  </mfrac>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mfrac>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> tanh </mi>  <mn> 2 </mn>  </msup>  <mo> ( </mo>  <mfrac>  <mrow>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mn> 2 </mn>  </mfrac>  <mo> ) </mo>  </mrow>  </mrow>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> a </mi>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> b </mi>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mi> a </mi>  </msqrt>  </mrow>  <mo> + </mo>  <mi> b </mi>  </mrow>  </mfrac>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msqrt>  </mrow>  <mo> - </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  <mo> ⁢ </mo>  <mi> a </mi>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> b </mi>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mi> a </mi>  </msqrt>  </mrow>  <mo> - </mo>  <mi> b </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> a </mi>  </mrow>  <mo> + </mo>  <mi> b </mi>  <mo> + </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> b </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> cosh </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> sech </mi>  <mn> 2 </mn>  </msup>  <mo> ( </mo>  <mfrac>  <mrow>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mn> 2 </mn>  </mfrac>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> tanh </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mfrac>  <mrow>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mn> 2 </mn>  </mfrac>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> / </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> a </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> b </mi>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mi> a </mi>  </msqrt>  </mrow>  <mo> + </mo>  <mi> b </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <msqrt>  <mfrac>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> a </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> b </mi>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mi> a </mi>  </msqrt>  </mrow>  <mo> + </mo>  <mi> b </mi>  </mrow>  <mi> b </mi>  </mfrac>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mi> E </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> sinh </mi>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ( </mo>  <mrow>  <msqrt>  <mfrac>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> a </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> b </mi>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mi> a </mi>  </msqrt>  </mrow>  <mo> + </mo>  <mi> b </mi>  </mrow>  <mi> b </mi>  </mfrac>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mi> tanh </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mfrac>  <mrow>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mn> 2 </mn>  </mfrac>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ❘ </mo>  <mfrac>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> a </mi>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> b </mi>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mi> a </mi>  </msqrt>  </mrow>  <mo> + </mo>  <mi> b </mi>  </mrow>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> a </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> b </mi>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mi> a </mi>  </msqrt>  </mrow>  <mo> + </mo>  <mi> b </mi>  </mrow>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mfrac>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> tanh </mi>  <mn> 2 </mn>  </msup>  <mo> ( </mo>  <mfrac>  <mrow>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mn> 2 </mn>  </mfrac>  <mo> ) </mo>  </mrow>  </mrow>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> a </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> b </mi>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mi> a </mi>  </msqrt>  </mrow>  <mo> + </mo>  <mi> b </mi>  </mrow>  </mfrac>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mfrac>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> tanh </mi>  <mn> 2 </mn>  </msup>  <mo> ( </mo>  <mfrac>  <mrow>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mn> 2 </mn>  </mfrac>  <mo> ) </mo>  </mrow>  </mrow>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> a </mi>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> b </mi>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mi> a </mi>  </msqrt>  </mrow>  <mo> + </mo>  <mi> b </mi>  </mrow>  </mfrac>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mfrac>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mn> 8 </mn>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> a </mi>  <mn> 3 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 7 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <msup>  <mi> a </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 7 </mn>  <mo> ⁢ </mo>  <msup>  <mi> b </mi>  <mn> 2 </mn>  </msup>  <mo> ⁢ </mo>  <mi> a </mi>  </mrow>  <mo> + </mo>  <mrow>  <mn> 8 </mn>  <mo> ⁢ </mo>  <msup>  <mi> b </mi>  <mn> 3 </mn>  </msup>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mtext>   </mtext>  </mrow>  <msqrt>  <mfrac>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> a </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> b </mi>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mi> a </mi>  </msqrt>  </mrow>  <mo> + </mo>  <mi> b </mi>  </mrow>  <mi> b </mi>  </mfrac>  </msqrt>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mi> F </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> sinh </mi>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ( </mo>  <mrow>  <msqrt>  <mfrac>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> a </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> b </mi>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mi> a </mi>  </msqrt>  </mrow>  <mo> + </mo>  <mi> b </mi>  </mrow>  <mi> b </mi>  </mfrac>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mi> tanh </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mfrac>  <mrow>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mn> 2 </mn>  </mfrac>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ❘ </mo>  <mfrac>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> a </mi>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> b </mi>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mi> a </mi>  </msqrt>  </mrow>  <mo> + </mo>  <mi> b </mi>  </mrow>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> a </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> b </mi>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mi> a </mi>  </msqrt>  </mrow>  <mo> + </mo>  <mi> b </mi>  </mrow>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mfrac>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> tanh </mi>  <mn> 2 </mn>  </msup>  <mo> ( </mo>  <mfrac>  <mrow>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mn> 2 </mn>  </mfrac>  <mo> ) </mo>  </mrow>  </mrow>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> a </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> b </mi>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mi> a </mi>  </msqrt>  </mrow>  <mo> + </mo>  <mi> b </mi>  </mrow>  </mfrac>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mfrac>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> tanh </mi>  <mn> 2 </mn>  </msup>  <mo> ( </mo>  <mfrac>  <mrow>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mn> 2 </mn>  </mfrac>  <mo> ) </mo>  </mrow>  </mrow>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> a </mi>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> b </mi>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mi> a </mi>  </msqrt>  </mrow>  <mo> + </mo>  <mi> b </mi>  </mrow>  </mfrac>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> / </mo>  <msqrt>  <mrow>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> tanh </mi>  <mn> 2 </mn>  </msup>  <mo> ( </mo>  <mfrac>  <mrow>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mn> 2 </mn>  </mfrac>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <msup>  <mi> tanh </mi>  <mn> 2 </mn>  </msup>  <mo> ( </mo>  <mfrac>  <mrow>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mn> 2 </mn>  </mfrac>  <mo> ) </mo>  </mrow>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  </mrow>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> / </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 120 </mn>  <mo> ⁢ </mo>  <mi> e </mi>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mrow>  <mo> - </mo>  <mi> a </mi>  </mrow>  <mo> + </mo>  <mi> b </mi>  <mo> + </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> b </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> cosh </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </msqrt>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <eq />  <apply>  <int />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <ci> b </ci>  <apply>  <power />  <apply>  <cosh />  <apply>  <times />  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <ci> a </ci>  <apply>  <power />  <apply>  <sinh />  <apply>  <times />  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 5 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <plus />  <ci> a </ci>  <ci> b </ci>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> a </ci>  </apply>  <ci> b </ci>  <apply>  <times />  <apply>  <plus />  <ci> a </ci>  <ci> b </ci>  </apply>  <apply>  <cosh />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 11 </cn>  <apply>  <plus />  <ci> b </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> a </ci>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 3 </cn>  <apply>  <plus />  <ci> a </ci>  <ci> b </ci>  </apply>  <apply>  <cosh />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <sinh />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <times />  <cn type='integer'> 8 </cn>  <apply>  <plus />  <apply>  <cosh />  <apply>  <times />  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> a </ci>  </apply>  <ci> b </ci>  <apply>  <times />  <apply>  <plus />  <ci> a </ci>  <ci> b </ci>  </apply>  <apply>  <cosh />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <power />  <apply>  <plus />  <apply>  <cosh />  <apply>  <times />  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <plus />  <ci> a </ci>  <ci> b </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 8 </cn>  <apply>  <power />  <ci> a </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  <apply>  <times />  <ci> b </ci>  <apply>  <power />  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  <ci> a </ci>  </apply>  <apply>  <times />  <cn type='integer'> 8 </cn>  <apply>  <power />  <ci> b </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> b </ci>  <apply>  <plus />  <ci> a </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <plus />  <ci> a </ci>  <ci> b </ci>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <ci> a </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <ci> b </ci>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> a </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <plus />  <ci> a </ci>  <ci> b </ci>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <ci> a </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <ci> b </ci>  </apply>  <apply>  <power />  <ci> b </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <ci> EllipticF </ci>  <apply>  <times />  <imaginaryi />  <apply>  <arcsinh />  <apply>  <times />  <apply>  <power />  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> a </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <plus />  <ci> a </ci>  <ci> b </ci>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <ci> a </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <ci> b </ci>  </apply>  <apply>  <power />  <ci> b </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <tanh />  <apply>  <times />  <ci> e </ci>  <ci> z </ci>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> a </ci>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <plus />  <ci> a </ci>  <ci> b </ci>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <ci> a </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <ci> b </ci>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> a </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <plus />  <ci> a </ci>  <ci> b </ci>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <ci> a </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <ci> b </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <ci> b </ci>  <apply>  <power />  <apply>  <tanh />  <apply>  <times />  <ci> e </ci>  <ci> z </ci>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> a </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <plus />  <ci> a </ci>  <ci> b </ci>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <ci> a </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <ci> b </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <ci> b </ci>  <apply>  <power />  <apply>  <tanh />  <apply>  <times />  <ci> e </ci>  <ci> z </ci>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> a </ci>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <plus />  <ci> a </ci>  <ci> b </ci>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <ci> a </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <ci> b </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -2 </cn>  <ci> a </ci>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <plus />  <ci> a </ci>  <ci> b </ci>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <ci> a </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> b </ci>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> a </ci>  </apply>  <ci> b </ci>  <apply>  <times />  <apply>  <plus />  <ci> a </ci>  <ci> b </ci>  </apply>  <apply>  <cosh />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <sech />  <apply>  <times />  <ci> e </ci>  <ci> z </ci>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <tanh />  <apply>  <times />  <ci> e </ci>  <ci> z </ci>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> a </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <plus />  <ci> a </ci>  <ci> b </ci>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <ci> a </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <ci> b </ci>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> b </ci>  <apply>  <power />  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> a </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <plus />  <ci> a </ci>  <ci> b </ci>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <ci> a </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <ci> b </ci>  </apply>  <apply>  <power />  <ci> b </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <ci> EllipticE </ci>  <apply>  <times />  <imaginaryi />  <apply>  <arcsinh />  <apply>  <times />  <apply>  <power />  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> a </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <plus />  <ci> a </ci>  <ci> b </ci>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <ci> a </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <ci> b </ci>  </apply>  <apply>  <power />  <ci> b </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <tanh />  <apply>  <times />  <ci> e </ci>  <ci> z </ci>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> a </ci>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <plus />  <ci> a </ci>  <ci> b </ci>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <ci> a </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <ci> b </ci>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> a </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <plus />  <ci> a </ci>  <ci> b </ci>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <ci> a </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <ci> b </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <ci> b </ci>  <apply>  <power />  <apply>  <tanh />  <apply>  <times />  <ci> e </ci>  <ci> z </ci>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> a </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <plus />  <ci> a </ci>  <ci> b </ci>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <ci> a </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <ci> b </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <ci> b </ci>  <apply>  <power />  <apply>  <tanh />  <apply>  <times />  <ci> e </ci>  <ci> z </ci>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> a </ci>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <plus />  <ci> a </ci>  <ci> b </ci>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <ci> a </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <ci> b </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <times />  <imaginaryi />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -8 </cn>  <apply>  <power />  <ci> a </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 7 </cn>  <ci> b </ci>  <apply>  <power />  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 7 </cn>  <apply>  <power />  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  <ci> a </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 8 </cn>  <apply>  <power />  <ci> b </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <power />  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> a </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <plus />  <ci> a </ci>  <ci> b </ci>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <ci> a </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <ci> b </ci>  </apply>  <apply>  <power />  <ci> b </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <ci> EllipticF </ci>  <apply>  <times />  <imaginaryi />  <apply>  <arcsinh />  <apply>  <times />  <apply>  <power />  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> a </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <plus />  <ci> a </ci>  <ci> b </ci>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <ci> a </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <ci> b </ci>  </apply>  <apply>  <power />  <ci> b </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <tanh />  <apply>  <times />  <ci> e </ci>  <ci> z </ci>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> a </ci>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <plus />  <ci> a </ci>  <ci> b </ci>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <ci> a </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <ci> b </ci>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> a </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <plus />  <ci> a </ci>  <ci> b </ci>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <ci> a </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <ci> b </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <ci> b </ci>  <apply>  <power />  <apply>  <tanh />  <apply>  <times />  <ci> e </ci>  <ci> z </ci>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> a </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <plus />  <ci> a </ci>  <ci> b </ci>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <ci> a </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <ci> b </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <ci> b </ci>  <apply>  <power />  <apply>  <tanh />  <apply>  <times />  <ci> e </ci>  <ci> z </ci>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> a </ci>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <plus />  <ci> a </ci>  <ci> b </ci>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <ci> a </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <ci> b </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> a </ci>  <apply>  <power />  <apply>  <tanh />  <apply>  <times />  <ci> e </ci>  <ci> z </ci>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <ci> b </ci>  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <apply>  <tanh />  <apply>  <times />  <ci> e </ci>  <ci> z </ci>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 120 </cn>  <ci> e </ci>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> a </ci>  </apply>  <ci> b </ci>  <apply>  <times />  <apply>  <plus />  <ci> a </ci>  <ci> b </ci>  </apply>  <apply>  <cosh />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["a_", " ", SuperscriptBox[RowBox[List["Sinh", "[", RowBox[List["e_", " ", "z_"]], "]"]], "2"]]], "+", RowBox[List["b_", " ", SuperscriptBox[RowBox[List["Cosh", "[", RowBox[List["e_", " ", "z_"]], "]"]], "2"]]]]], ")"]], RowBox[List["5", "/", "2"]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List[SqrtBox["2"], " ", RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b", "+", RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["11", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b"]], ")"]]]], "+", RowBox[List["3", " ", RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]], ")"]], " ", RowBox[List["Sinh", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]], "+", FractionBox[RowBox[List["8", " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["Cosh", "[", RowBox[List["e", " ", "z"]], "]"]]]], ")"]], " ", SqrtBox[FractionBox[RowBox[List[RowBox[List["-", "a"]], "+", "b", "+", RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", RowBox[List["Cosh", "[", RowBox[List["e", " ", "z"]], "]"]]]], ")"]], "2"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "8"]], " ", SuperscriptBox["a", "3"]]], "+", RowBox[List["7", " ", SuperscriptBox["a", "2"], " ", "b"]], "-", RowBox[List["7", " ", "a", " ", SuperscriptBox["b", "2"]]], "+", RowBox[List["8", " ", SuperscriptBox["b", "3"]]]]], ")"]], " ", RowBox[List["EllipticF", "[", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSinh", "[", RowBox[List[SqrtBox[FractionBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]], "b"]], " ", RowBox[List["Tanh", "[", FractionBox[RowBox[List["e", " ", "z"]], "2"], "]"]]]], "]"]]]], ",", FractionBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "+", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]]]]], "]"]], " ", SqrtBox[RowBox[List["1", "+", FractionBox[RowBox[List["b", " ", SuperscriptBox[RowBox[List["Tanh", "[", FractionBox[RowBox[List["e", " ", "z"]], "2"], "]"]], "2"]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]]]]]], " ", SqrtBox[RowBox[List["1", "+", FractionBox[RowBox[List["b", " ", SuperscriptBox[RowBox[List["Tanh", "[", FractionBox[RowBox[List["e", " ", "z"]], "2"], "]"]], "2"]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "+", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]]]]]]]], SqrtBox[FractionBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]], "b"]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["8", " ", SuperscriptBox["a", "3"]]], "+", RowBox[List[SuperscriptBox["a", "2"], " ", "b"]], "+", RowBox[List["a", " ", SuperscriptBox["b", "2"]]], "+", RowBox[List["8", " ", SuperscriptBox["b", "3"]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b", " ", SqrtBox[FractionBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]], "b"]], " ", RowBox[List["EllipticE", "[", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSinh", "[", RowBox[List[SqrtBox[FractionBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]], "b"]], " ", RowBox[List["Tanh", "[", FractionBox[RowBox[List["e", " ", "z"]], "2"], "]"]]]], "]"]]]], ",", FractionBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "+", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]]]]], "]"]], " ", SqrtBox[RowBox[List["1", "+", FractionBox[RowBox[List["b", " ", SuperscriptBox[RowBox[List["Tanh", "[", FractionBox[RowBox[List["e", " ", "z"]], "2"], "]"]], "2"]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]]]]]], " ", SqrtBox[RowBox[List["1", "+", FractionBox[RowBox[List["b", " ", SuperscriptBox[RowBox[List["Tanh", "[", FractionBox[RowBox[List["e", " ", "z"]], "2"], "]"]], "2"]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "+", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]]]]]]]], "+", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "-", "b", "+", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]], ")"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b", "+", RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Sech", "[", FractionBox[RowBox[List["e", " ", "z"]], "2"], "]"]], "2"], " ", RowBox[List["Tanh", "[", FractionBox[RowBox[List["e", " ", "z"]], "2"], "]"]]]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", RowBox[List["(", RowBox[List["a", "+", "b", "-", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]], ")"]], " ", SqrtBox[FractionBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]], "b"]], " ", RowBox[List["EllipticF", "[", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSinh", "[", RowBox[List[SqrtBox[FractionBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]], "b"]], " ", RowBox[List["Tanh", "[", FractionBox[RowBox[List["e", " ", "z"]], "2"], "]"]]]], "]"]]]], ",", FractionBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "+", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]]]]], "]"]], " ", SqrtBox[RowBox[List["1", "+", FractionBox[RowBox[List["b", " ", SuperscriptBox[RowBox[List["Tanh", "[", FractionBox[RowBox[List["e", " ", "z"]], "2"], "]"]], "2"]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]]]]]], " ", SqrtBox[RowBox[List["1", "+", FractionBox[RowBox[List["b", " ", SuperscriptBox[RowBox[List["Tanh", "[", FractionBox[RowBox[List["e", " ", "z"]], "2"], "]"]], "2"]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "+", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]]]]]]]]]], RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]], ")"]]]]]]], ")"]]]], RowBox[List["a", "+", "b"]]]]], ")"]]]], SqrtBox[RowBox[List[RowBox[List["4", " ", "a", " ", SuperscriptBox[RowBox[List["Tanh", "[", FractionBox[RowBox[List["e", " ", "z"]], "2"], "]"]], "2"]]], "+", RowBox[List["b", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox[RowBox[List["Tanh", "[", FractionBox[RowBox[List["e", " ", "z"]], "2"], "]"]], "2"]]], ")"]], "2"]]]]]]]]], RowBox[List["120", " ", "e", " ", SqrtBox[RowBox[List[RowBox[List["-", "a"]], "+", "b", "+", RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]]]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 
 
 | 
 |