Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Cosh






Mathematica Notation

Traditional Notation









Elementary Functions > Cosh[z] > Integration > Indefinite integration > Involving functions of the direct function, hyperbolic and a power functions > Involving powers of the direct function, hyperbolic and a power functions > Involving powers of sinh and power > Involving zalpha-1 sinhm(b zr+e) coshv(c zr+g)





http://functions.wolfram.com/01.20.21.4570.01









  


  










Input Form





Integrate[z^n Sinh[b Sqrt[z] + e]^m Cosh[c Sqrt[z] + g]^v, z] == 2^(-m - v) ((1/(1 + n)) ((z^(1 + n) Binomial[m, m/2] Binomial[v, v/2] (-1 + Mod[m, 2]) (-1 + Mod[v, 2]))/I^m) + 2 b^(-2 - 2 n) Binomial[v, v/2] (-1 + Mod[v, 2]) Sum[((-1)^k E^(2 e k - e m) Binomial[m, k] (E^(-4 e k + 2 e m) Gamma[2 (1 + n), b (2 k - m) Sqrt[z]] + (-1)^m Gamma[2 (1 + n), b (-2 k + m) Sqrt[z]]))/ (-2 k + m)^(2 (1 + n)), {k, 0, Floor[(1/2) (-1 + m)]}] + (2 c^(-2 - 2 n) Binomial[m, m/2] (-1 + Mod[m, 2]) Sum[(Binomial[v, s] (E^(g (-2 s + v)) Gamma[2 (1 + n), c (2 s - v) Sqrt[z]] + E^(2 g s - g v) Gamma[2 (1 + n), c (-2 s + v) Sqrt[z]]))/(-2 s + v)^(2 (1 + n)), {s, 0, Floor[(1/2) (-1 + v)]}])/I^m - 2 z^(1 + n) Sum[(-1)^k Binomial[m, k] Sum[Binomial[v, s] ((E^(e (-2 k + m) + g (-2 s + v)) Gamma[2 (1 + n), (2 b k - b m + 2 c s - c v) Sqrt[z]])/ ((2 b k - b m + 2 c s - c v) Sqrt[z])^(2 (1 + n)) + ((-1)^m E^(2 e k - e m - 2 g s + g v) Gamma[2 (1 + n), (-2 b k + b m + 2 c s - c v) Sqrt[z]])/ ((-2 b k + b m + 2 c s - c v) Sqrt[z])^(2 (1 + n)) + (E^(-2 e k + e m + 2 g s - g v) Gamma[2 (1 + n), (2 b k - b m - 2 c s + c v) Sqrt[z]])/ ((2 b k - b m - 2 c s + c v) Sqrt[z])^(2 (1 + n)) + ((-1)^m E^(2 e k - e m + 2 g s - g v) Gamma[2 (1 + n), (b (-2 k + m) + c (-2 s + v)) Sqrt[z]])/ ((b (-2 k + m) + c (-2 s + v)) Sqrt[z])^(2 (1 + n))), {s, 0, Floor[(1/2) (-1 + v)]}], {k, 0, Floor[(1/2) (-1 + m)]}]) /; Element[n, Integers] && n >= 0 && Element[m, Integers] && m > 0 && Element[v, Integers] && v > 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["z", "n"], SuperscriptBox[RowBox[List["Sinh", "[", RowBox[List[RowBox[List["b", " ", SqrtBox["z"]]], "+", "e"]], "]"]], "m"], SuperscriptBox[RowBox[List["Cosh", "[", RowBox[List[RowBox[List["c", " ", SqrtBox["z"]]], "+", "g"]], "]"]], "v"], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "m"]], "-", "v"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[FractionBox["1", RowBox[List["1", "+", "n"]]], RowBox[List["(", RowBox[List[SuperscriptBox["z", RowBox[List["1", "+", "n"]]], " ", SuperscriptBox["\[ImaginaryI]", RowBox[List["-", "m"]]], RowBox[List["Binomial", "[", RowBox[List["m", ",", FractionBox["m", "2"]]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List["v", ",", FractionBox["v", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["Mod", "[", RowBox[List["m", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["Mod", "[", RowBox[List["v", ",", "2"]], "]"]]]], ")"]]]], ")"]]]], "+", RowBox[List["2", " ", SuperscriptBox["b", RowBox[List[RowBox[List["-", "2"]], "-", RowBox[List["2", " ", "n"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["v", ",", FractionBox["v", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["Mod", "[", RowBox[List["v", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["2", " ", "e", " ", "k"]], "-", RowBox[List["e", " ", "m"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]], RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", "e", " ", "k"]], "+", RowBox[List["2", " ", "e", " ", "m"]]]]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["2", " ", RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]]]], ",", RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]], " ", SqrtBox["z"]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "m"], RowBox[List["Gamma", "[", RowBox[List[RowBox[List["2", " ", RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]]]], ",", RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]], " ", SqrtBox["z"]]]]], "]"]]]]]], ")"]]]]]]]], "+", RowBox[List["2", " ", SuperscriptBox["\[ImaginaryI]", RowBox[List["-", "m"]]], SuperscriptBox["c", RowBox[List[RowBox[List["-", "2"]], "-", RowBox[List["2", " ", "n"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", FractionBox["m", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["Mod", "[", RowBox[List["m", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["s", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "v"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]], RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["v", ",", "s"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["g", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["2", " ", RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]]]], ",", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "s"]], "-", "v"]], ")"]], " ", SqrtBox["z"]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["2", " ", "g", " ", "s"]], "-", RowBox[List["g", " ", "v"]]]]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["2", " ", RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]]]], ",", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]], " ", SqrtBox["z"]]]]], "]"]]]]]], ")"]]]]]]]], "-", RowBox[List["2", " ", SuperscriptBox["z", RowBox[List["1", "+", "n"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", "k"]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["s", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "v"]], ")"]]]], "]"]]], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["v", ",", "s"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["e", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List["g", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "b", " ", "k"]], "-", RowBox[List["b", " ", "m"]], "+", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]], ")"]], RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]]]]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["2", " ", RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]]]], ",", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "b", " ", "k"]], "-", RowBox[List["b", " ", "m"]], "+", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "m"], SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["2", " ", "e", " ", "k"]], "-", RowBox[List["e", " ", "m"]], "-", RowBox[List["2", " ", "g", " ", "s"]], "+", RowBox[List["g", " ", "v"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "b", " ", "k"]], "+", RowBox[List["b", " ", "m"]], "+", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]], ")"]], RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]]]]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["2", " ", RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]]]], ",", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "b", " ", "k"]], "+", RowBox[List["b", " ", "m"]], "+", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "e", " ", "k"]], "+", RowBox[List["e", " ", "m"]], "+", RowBox[List["2", " ", "g", " ", "s"]], "-", RowBox[List["g", " ", "v"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "b", " ", "k"]], "-", RowBox[List["b", " ", "m"]], "-", RowBox[List["2", " ", "c", " ", "s"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]], ")"]], RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]]]]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["2", " ", RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]]]], ",", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "b", " ", "k"]], "-", RowBox[List["b", " ", "m"]], "-", RowBox[List["2", " ", "c", " ", "s"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "m"], SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["2", " ", "e", " ", "k"]], "-", RowBox[List["e", " ", "m"]], "+", RowBox[List["2", " ", "g", " ", "s"]], "-", RowBox[List["g", " ", "v"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]]]], ")"]], " ", SqrtBox["z"]]], ")"]], RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]]]]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["2", " ", RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]]]], ",", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]]]], ")"]], " ", SqrtBox["z"]]]]], "]"]]]]]], ")"]]]]]]]]]]]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]], "\[And]", RowBox[List["m", "\[Element]", "Integers"]], "\[And]", RowBox[List["m", ">", "0"]], "\[And]", RowBox[List["v", "\[Element]", "Integers"]], "\[And]", RowBox[List["v", ">", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mrow> <msup> <mi> z </mi> <mi> n </mi> </msup> <mo> &#8290; </mo> <mrow> <msup> <mi> sinh </mi> <mi> m </mi> </msup> <mo> ( </mo> <mrow> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> + </mo> <mi> e </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> cosh </mi> <mi> v </mi> </msup> <mo> ( </mo> <mrow> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> &#8290; </mo> <mi> c </mi> </mrow> <mo> + </mo> <mi> g </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <msup> <mn> 2 </mn> <mrow> <mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> - </mo> <mi> v </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <msup> <mi> z </mi> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> &#8520; </mi> <mrow> <mo> - </mo> <mi> m </mi> </mrow> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> m </mi> </mtd> </mtr> <mtr> <mtd> <mfrac> <mi> m </mi> <mn> 2 </mn> </mfrac> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;m&quot;, Identity]], List[TagBox[FractionBox[&quot;m&quot;, &quot;2&quot;], Identity]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> v </mi> </mtd> </mtr> <mtr> <mtd> <mfrac> <mi> v </mi> <mn> 2 </mn> </mfrac> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;v&quot;, Identity]], List[TagBox[FractionBox[&quot;v&quot;, &quot;2&quot;], Identity]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <semantics> <mrow> <mi> m </mi> <mo> &#8290; </mo> <mi> mod </mi> <mo> &#8290; </mo> <mn> 2 </mn> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <rem /> <ci> $CellContext`m </ci> <cn type='integer'> 2 </cn> </apply> </annotation-xml> </semantics> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <semantics> <mrow> <mi> v </mi> <mo> &#8290; </mo> <mi> mod </mi> <mo> &#8290; </mo> <mn> 2 </mn> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <rem /> <ci> $CellContext`v </ci> <cn type='integer'> 2 </cn> </apply> </annotation-xml> </semantics> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mi> b </mi> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 2 </mn> </mrow> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> v </mi> </mtd> </mtr> <mtr> <mtd> <mfrac> <mi> v </mi> <mn> 2 </mn> </mfrac> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;v&quot;, Identity]], List[TagBox[FractionBox[&quot;v&quot;, &quot;2&quot;], Identity]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <semantics> <mrow> <mi> v </mi> <mo> &#8290; </mo> <mi> mod </mi> <mo> &#8290; </mo> <mn> 2 </mn> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <rem /> <ci> $CellContext`v </ci> <cn type='integer'> 2 </cn> </apply> </annotation-xml> </semantics> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> &#8971; </mo> </mrow> </munderover> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> e </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> m </mi> </mtd> </mtr> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;m&quot;, Identity]], List[TagBox[&quot;k&quot;, Identity]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> e </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> e </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> m </mi> </msup> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mi> &#8520; </mi> <mrow> <mo> - </mo> <mi> m </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> c </mi> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 2 </mn> </mrow> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> m </mi> </mtd> </mtr> <mtr> <mtd> <mfrac> <mi> m </mi> <mn> 2 </mn> </mfrac> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;m&quot;, Identity]], List[TagBox[FractionBox[&quot;m&quot;, &quot;2&quot;], Identity]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <semantics> <mrow> <mi> m </mi> <mo> &#8290; </mo> <mi> mod </mi> <mo> &#8290; </mo> <mn> 2 </mn> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <rem /> <ci> $CellContext`m </ci> <cn type='integer'> 2 </cn> </apply> </annotation-xml> </semantics> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> s </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> v </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> &#8971; </mo> </mrow> </munderover> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> v </mi> </mtd> </mtr> <mtr> <mtd> <mi> s </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;v&quot;, Identity]], List[TagBox[&quot;s&quot;, Identity]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mi> g </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mi> v </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> g </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mi> g </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> &#8971; </mo> </mrow> </munderover> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> m </mi> </mtd> </mtr> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;m&quot;, Identity]], List[TagBox[&quot;k&quot;, Identity]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> s </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> v </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> &#8971; </mo> </mrow> </munderover> <mrow> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> v </mi> </mtd> </mtr> <mtr> <mtd> <mi> s </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;v&quot;, Identity]], List[TagBox[&quot;s&quot;, Identity]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> e </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> g </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mi> g </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> m </mi> </msup> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> e </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> g </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> + </mo> <mrow> <mi> g </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> g </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> m </mi> </msup> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> e </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> g </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mi> g </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> n </mi> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> <mo> &#8743; </mo> <mrow> <mi> m </mi> <mo> &#8712; </mo> <msup> <mi> &#8469; </mi> <mo> + </mo> </msup> </mrow> <mo> &#8743; </mo> <mrow> <mi> v </mi> <mo> &#8712; </mo> <msup> <mi> &#8469; </mi> <mo> + </mo> </msup> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <ci> z </ci> <ci> n </ci> </apply> <apply> <power /> <apply> <sinh /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> b </ci> </apply> <ci> e </ci> </apply> </apply> <ci> m </ci> </apply> <apply> <power /> <apply> <cosh /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> c </ci> </apply> <ci> g </ci> </apply> </apply> <ci> v </ci> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> v </ci> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <imaginaryi /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> <apply> <ci> Binomial </ci> <ci> m </ci> <apply> <times /> <ci> m </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> Binomial </ci> <ci> v </ci> <apply> <times /> <ci> v </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <rem /> <ci> $CellContext`m </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <apply> <rem /> <ci> $CellContext`v </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> b </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> n </ci> </apply> <cn type='integer'> -2 </cn> </apply> </apply> <apply> <ci> Binomial </ci> <ci> v </ci> <apply> <times /> <ci> v </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <rem /> <ci> $CellContext`v </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <floor /> <apply> <times /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> e </ci> <ci> m </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -2 </cn> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <ci> Binomial </ci> <ci> m </ci> <ci> k </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> e </ci> <ci> k </ci> </apply> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <ci> b </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <ci> b </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <imaginaryi /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> <apply> <power /> <ci> c </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> n </ci> </apply> <cn type='integer'> -2 </cn> </apply> </apply> <apply> <ci> Binomial </ci> <ci> m </ci> <apply> <times /> <ci> m </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <rem /> <ci> $CellContext`m </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <sum /> <bvar> <ci> s </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <floor /> <apply> <times /> <apply> <plus /> <ci> v </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </uplimit> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -2 </cn> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <ci> Binomial </ci> <ci> v </ci> <ci> s </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <ci> g </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <ci> c </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> v </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> g </ci> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> g </ci> <ci> v </ci> </apply> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <ci> c </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <floor /> <apply> <times /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <ci> Binomial </ci> <ci> m </ci> <ci> k </ci> </apply> <apply> <sum /> <bvar> <ci> s </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <floor /> <apply> <times /> <apply> <plus /> <ci> v </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </uplimit> <apply> <times /> <apply> <ci> Binomial </ci> <ci> v </ci> <ci> s </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> e </ci> <ci> k </ci> </apply> <apply> <times /> <ci> e </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> g </ci> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> g </ci> <ci> v </ci> </apply> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -2 </cn> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> e </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> g </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <ci> g </ci> <ci> v </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> b </ci> <ci> k </ci> </apply> <apply> <times /> <ci> b </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -2 </cn> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> b </ci> <ci> k </ci> </apply> <apply> <times /> <ci> b </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <ci> e </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> <apply> <times /> <ci> g </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -2 </cn> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> e </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> g </ci> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> g </ci> <ci> v </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> <apply> <times /> <ci> c </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -2 </cn> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> <apply> <times /> <ci> c </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <in /> <ci> n </ci> <ci> &#8469; </ci> </apply> <apply> <in /> <ci> m </ci> <apply> <ci> SuperPlus </ci> <ci> &#8469; </ci> </apply> </apply> <apply> <in /> <ci> v </ci> <apply> <ci> SuperPlus </ci> <ci> &#8469; </ci> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["z_", "n_"], " ", SuperscriptBox[RowBox[List["Sinh", "[", RowBox[List[RowBox[List["b_", " ", SqrtBox["z_"]]], "+", "e_"]], "]"]], "m_"], " ", SuperscriptBox[RowBox[List["Cosh", "[", RowBox[List[RowBox[List["c_", " ", SqrtBox["z_"]]], "+", "g_"]], "]"]], "v_"]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "m"]], "-", "v"]]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["z", RowBox[List["1", "+", "n"]]], " ", SuperscriptBox["\[ImaginaryI]", RowBox[List["-", "m"]]], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", FractionBox["m", "2"]]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List["v", ",", FractionBox["v", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["Mod", "[", RowBox[List["m", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["Mod", "[", RowBox[List["v", ",", "2"]], "]"]]]], ")"]]]], RowBox[List["1", "+", "n"]]], "+", RowBox[List["2", " ", SuperscriptBox["b", RowBox[List[RowBox[List["-", "2"]], "-", RowBox[List["2", " ", "n"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["v", ",", FractionBox["v", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["Mod", "[", RowBox[List["v", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["2", " ", "e", " ", "k"]], "-", RowBox[List["e", " ", "m"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]], RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", "e", " ", "k"]], "+", RowBox[List["2", " ", "e", " ", "m"]]]]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["2", " ", RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]]]], ",", RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]], " ", SqrtBox["z"]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "m"], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["2", " ", RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]]]], ",", RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]], " ", SqrtBox["z"]]]]], "]"]]]]]], ")"]]]]]]]], "+", RowBox[List["2", " ", SuperscriptBox["\[ImaginaryI]", RowBox[List["-", "m"]]], " ", SuperscriptBox["c", RowBox[List[RowBox[List["-", "2"]], "-", RowBox[List["2", " ", "n"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", FractionBox["m", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["Mod", "[", RowBox[List["m", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["s", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "v"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]], RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["v", ",", "s"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["g", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["2", " ", RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]]]], ",", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "s"]], "-", "v"]], ")"]], " ", SqrtBox["z"]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["2", " ", "g", " ", "s"]], "-", RowBox[List["g", " ", "v"]]]]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["2", " ", RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]]]], ",", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]], " ", SqrtBox["z"]]]]], "]"]]]]]], ")"]]]]]]]], "-", RowBox[List["2", " ", SuperscriptBox["z", RowBox[List["1", "+", "n"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", "k"]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["s", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "v"]], ")"]]]], "]"]]], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["v", ",", "s"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["e", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List["g", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "b", " ", "k"]], "-", RowBox[List["b", " ", "m"]], "+", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]], ")"]], RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]]]]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["2", " ", RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]]]], ",", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "b", " ", "k"]], "-", RowBox[List["b", " ", "m"]], "+", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "m"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["2", " ", "e", " ", "k"]], "-", RowBox[List["e", " ", "m"]], "-", RowBox[List["2", " ", "g", " ", "s"]], "+", RowBox[List["g", " ", "v"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "b", " ", "k"]], "+", RowBox[List["b", " ", "m"]], "+", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]], ")"]], RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]]]]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["2", " ", RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]]]], ",", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "b", " ", "k"]], "+", RowBox[List["b", " ", "m"]], "+", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "e", " ", "k"]], "+", RowBox[List["e", " ", "m"]], "+", RowBox[List["2", " ", "g", " ", "s"]], "-", RowBox[List["g", " ", "v"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "b", " ", "k"]], "-", RowBox[List["b", " ", "m"]], "-", RowBox[List["2", " ", "c", " ", "s"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]], ")"]], RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]]]]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["2", " ", RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]]]], ",", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "b", " ", "k"]], "-", RowBox[List["b", " ", "m"]], "-", RowBox[List["2", " ", "c", " ", "s"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "m"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["2", " ", "e", " ", "k"]], "-", RowBox[List["e", " ", "m"]], "+", RowBox[List["2", " ", "g", " ", "s"]], "-", RowBox[List["g", " ", "v"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]]]], ")"]], " ", SqrtBox["z"]]], ")"]], RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]]]]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["2", " ", RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]]]], ",", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]]]], ")"]], " ", SqrtBox["z"]]]]], "]"]]]]]], ")"]]]]]]]]]]]]]], ")"]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]], "&&", RowBox[List["m", "\[Element]", "Integers"]], "&&", RowBox[List["m", ">", "0"]], "&&", RowBox[List["v", "\[Element]", "Integers"]], "&&", RowBox[List["v", ">", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18