|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/01.20.21.4647.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Integrate[E^(p z) Sinh[d + c z]^m Cosh[b + a z]^\[Nu], z] ==
(I/2)^m Cosh[b + a z]^\[Nu]
(-((1/(p - a \[Nu])) ((E^(p z) Binomial[m, m/2] Hypergeometric2F1[
(p - a \[Nu])/(2 a), -\[Nu], (1/2) (2 + p/a - \[Nu]),
-E^(2 (b + a z))] (-1 + Mod[m, 2]))/(1 + E^(2 (b + a z)))^\[Nu])) +
Sum[(-1)^k E^(d (-2 k + m)) Binomial[m, k]
((E^(4 d k - 2 d m + I m Pi + 2 c k z - c m z + p z)
Hypergeometric2F1[-((2 c k - c m + p + a \[Nu])/(2 a)), -\[Nu],
-((2 c k - c m + p + a (-2 + \[Nu]))/(2 a)), -E^(-2 (b + a z))])/
(2 c k - c m + p + a \[Nu]) + (E^((c (-2 k + m) + p) z)
Hypergeometric2F1[-((c (-2 k + m) + p + a \[Nu])/(2 a)), -\[Nu],
-((-2 c k + c m + p + a (-2 + \[Nu]))/(2 a)), -E^(-2 (b + a z))])/
(c (-2 k + m) + p + a \[Nu])), {k, 0, Floor[(1/2) (-1 + m)]}]/
(I^m (1 + E^(-2 (b + a z)))^\[Nu])) /; Element[m, Integers] && m > 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["p", " ", "z"]]], " ", SuperscriptBox[RowBox[List["Sinh", "[", RowBox[List["d", "+", RowBox[List["c", " ", "z"]]]], "]"]], "m"], SuperscriptBox[RowBox[List["Cosh", "[", RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]], "]"]], "\[Nu]"], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[SuperscriptBox[RowBox[List["(", FractionBox["\[ImaginaryI]", "2"], ")"]], "m"], " ", SuperscriptBox[RowBox[List["Cosh", "[", RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]], "]"]], "\[Nu]"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List[FractionBox["1", RowBox[List["p", "-", RowBox[List["a", " ", "\[Nu]"]]]]], RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["p", " ", "z"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]], ")"]]]]]]], ")"]], RowBox[List["-", "\[Nu]"]]], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", FractionBox["m", "2"]]], "]"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["p", "-", RowBox[List["a", " ", "\[Nu]"]]]], RowBox[List["2", " ", "a"]]], ",", RowBox[List["-", "\[Nu]"]], ",", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "+", FractionBox["p", "a"], "-", "\[Nu]"]], ")"]]]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]], ")"]]]]]]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["Mod", "[", RowBox[List["m", ",", "2"]], "]"]]]], ")"]]]], ")"]]]]]], "+", RowBox[List[SuperscriptBox["\[ImaginaryI]", RowBox[List["-", "m"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]], ")"]]]]]]], ")"]], RowBox[List["-", "\[Nu]"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["d", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["4", " ", "d", " ", "k"]], "-", RowBox[List["2", " ", "d", " ", "m"]], "+", RowBox[List["\[ImaginaryI]", " ", "m", " ", "\[Pi]"]], "+", RowBox[List["2", " ", "c", " ", "k", " ", "z"]], "-", RowBox[List["c", " ", "m", " ", "z"]], "+", RowBox[List["p", " ", "z"]]]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["2", " ", "c", " ", "k"]], "-", RowBox[List["c", " ", "m"]], "+", "p", "+", RowBox[List["a", " ", "\[Nu]"]]]], RowBox[List["2", " ", "a"]]]]], ",", RowBox[List["-", "\[Nu]"]], ",", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["2", " ", "c", " ", "k"]], "-", RowBox[List["c", " ", "m"]], "+", "p", "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", "\[Nu]"]], ")"]]]]]], RowBox[List["2", " ", "a"]]]]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]], ")"]]]]]]]]], "]"]]]], ")"]], "/", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "c", " ", "k"]], "-", RowBox[List["c", " ", "m"]], "+", "p", "+", RowBox[List["a", " ", "\[Nu]"]]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", "p", "+", RowBox[List["a", " ", "\[Nu]"]]]], RowBox[List["2", " ", "a"]]]]], ",", RowBox[List["-", "\[Nu]"]], ",", RowBox[List["-", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "c", " ", "k"]], "+", RowBox[List["c", " ", "m"]], "+", "p", "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", "\[Nu]"]], ")"]]]]]], RowBox[List["2", " ", "a"]]]]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]], ")"]]]]]]]]], "]"]]]], ")"]], "/", RowBox[List["(", RowBox[List[RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", "p", "+", RowBox[List["a", " ", "\[Nu]"]]]], ")"]]]]]], ")"]]]]]]]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List["m", "\[Element]", "Integers"]], "\[And]", RowBox[List["m", ">", "0"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mo> ∫ </mo> <mrow> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mi> p </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <msup> <mi> sinh </mi> <mi> m </mi> </msup> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> cosh </mi> <mi> ν </mi> </msup> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mfrac> <mi> ⅈ </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> m </mi> </msup> <mo> ⁢ </mo> <mrow> <msup> <mi> cosh </mi> <mi> ν </mi> </msup> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mi> p </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msup> <mi> ⅇ </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> ν </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <semantics> <mrow> <mi> m </mi> <mo> ⁢ </mo> <mi> mod </mi> <mo> ⁢ </mo> <mn> 2 </mn> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <rem /> <ci> $CellContext`m </ci> <cn type='integer'> 2 </cn> </apply> </annotation-xml> </semantics> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> p </mi> <mo> - </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> ν </mi> </mrow> </mrow> </mfrac> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> m </mi> </mtd> </mtr> <mtr> <mtd> <mfrac> <mi> m </mi> <mn> 2 </mn> </mfrac> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["m", Identity]], List[TagBox[FractionBox["m", "2"], Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mi> p </mi> <mo> - </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> ν </mi> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> </mfrac> <mo> , </mo> <mrow> <mo> - </mo> <mi> ν </mi> </mrow> </mrow> <mo> ; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mi> p </mi> <mi> a </mi> </mfrac> <mo> - </mo> <mi> ν </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <msup> <mi> ⅇ </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List["p", "-", RowBox[List["a", " ", "\[Nu]"]]]], RowBox[List["2", " ", "a"]]], Hypergeometric2F1], ",", TagBox[RowBox[List["-", "\[Nu]"]], Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[FractionBox["p", "a"], "-", "\[Nu]", "+", "2"]], ")"]]]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]], ")"]]]]]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <msup> <mi> ⅈ </mi> <mrow> <mo> - </mo> <mi> m </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> ν </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mo> ⌊ </mo> <mfrac> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> ⌋ </mo> </mrow> </munderover> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> ⁢ </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> m </mi> </mtd> </mtr> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["m", Identity]], List[TagBox["k", Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> d </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> d </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> m </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mi> p </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> m </mi> <mo> ⁢ </mo> <mi> π </mi> </mrow> </mrow> </msup> <mtext> </mtext> </mrow> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> + </mo> <mi> p </mi> <mo> + </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> ν </mi> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> + </mo> <mi> p </mi> <mo> + </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> ν </mi> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> </mfrac> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mi> ν </mi> </mrow> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> + </mo> <mi> p </mi> <mo> + </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> ν </mi> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> </mfrac> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["2", " ", "c", " ", "k"]], "-", RowBox[List["c", " ", "m"]], "+", "p", "+", RowBox[List["a", " ", "\[Nu]"]]]], RowBox[List["2", " ", "a"]]]]], Hypergeometric2F1], ",", TagBox[RowBox[List["-", "\[Nu]"]], Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["2", " ", "c", " ", "k"]], "-", RowBox[List["c", " ", "m"]], "+", "p", "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List["\[Nu]", "-", "2"]], ")"]]]]]], RowBox[List["2", " ", "a"]]]]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]], ")"]]]]]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> <mtext> </mtext> </mrow> <mrow> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> p </mi> <mo> + </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> ν </mi> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> p </mi> <mo> + </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> ν </mi> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> </mfrac> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mi> ν </mi> </mrow> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> + </mo> <mi> p </mi> <mo> + </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> ν </mi> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> </mfrac> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["c", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "k"]]]], ")"]]]], "+", "p", "+", RowBox[List["a", " ", "\[Nu]"]]]], RowBox[List["2", " ", "a"]]]]], Hypergeometric2F1], ",", TagBox[RowBox[List["-", "\[Nu]"]], Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[RowBox[List["-", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "c", " ", "k"]], "+", RowBox[List["c", " ", "m"]], "+", "p", "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List["\[Nu]", "-", "2"]], ")"]]]]]], RowBox[List["2", " ", "a"]]]]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]], ")"]]]]]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> m </mi> <mo> ∈ </mo> <msup> <mi> ℕ </mi> <mo> + </mo> </msup> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <ci> p </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <sinh /> <apply> <plus /> <ci> d </ci> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> <ci> m </ci> </apply> <apply> <power /> <apply> <cosh /> <apply> <plus /> <ci> b </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> </apply> <ci> ν </ci> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <times /> <imaginaryi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <ci> m </ci> </apply> <apply> <power /> <apply> <cosh /> <apply> <plus /> <ci> b </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> </apply> <ci> ν </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <ci> p </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> b </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> </apply> <apply> <plus /> <apply> <rem /> <ci> $CellContext`m </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> a </ci> <ci> ν </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> Binomial </ci> <ci> m </ci> <apply> <times /> <ci> m </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> Hypergeometric2F1 </ci> <apply> <times /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> a </ci> <ci> ν </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <times /> <ci> p </ci> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> b </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <imaginaryi /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -2 </cn> <apply> <plus /> <ci> b </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <floor /> <apply> <times /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <ci> d </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> <apply> <ci> Binomial </ci> <ci> m </ci> <ci> k </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> d </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> d </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <ci> m </ci> <ci> z </ci> </apply> </apply> <apply> <times /> <ci> p </ci> <ci> z </ci> </apply> <apply> <times /> <imaginaryi /> <ci> m </ci> <pi /> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <ci> m </ci> </apply> </apply> <ci> p </ci> <apply> <times /> <ci> a </ci> <ci> ν </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Hypergeometric2F1 </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <ci> m </ci> </apply> </apply> <ci> p </ci> <apply> <times /> <ci> a </ci> <ci> ν </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <ci> m </ci> </apply> </apply> <ci> p </ci> <apply> <times /> <ci> a </ci> <apply> <plus /> <ci> ν </ci> <cn type='integer'> -2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -2 </cn> <apply> <plus /> <ci> b </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> c </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> <ci> p </ci> </apply> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> c </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> <ci> p </ci> <apply> <times /> <ci> a </ci> <ci> ν </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Hypergeometric2F1 </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> c </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> <ci> p </ci> <apply> <times /> <ci> a </ci> <ci> ν </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> c </ci> <ci> k </ci> </apply> <apply> <times /> <ci> c </ci> <ci> m </ci> </apply> <ci> p </ci> <apply> <times /> <ci> a </ci> <apply> <plus /> <ci> ν </ci> <cn type='integer'> -2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -2 </cn> <apply> <plus /> <ci> b </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <ci> m </ci> <apply> <ci> SuperPlus </ci> <ci> ℕ </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["p_", " ", "z_"]]], " ", SuperscriptBox[RowBox[List["Sinh", "[", RowBox[List["d_", "+", RowBox[List["c_", " ", "z_"]]]], "]"]], "m_"], " ", SuperscriptBox[RowBox[List["Cosh", "[", RowBox[List["b_", "+", RowBox[List["a_", " ", "z_"]]]], "]"]], "\[Nu]_"]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", FractionBox["\[ImaginaryI]", "2"], ")"]], "m"], " ", SuperscriptBox[RowBox[List["Cosh", "[", RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]], "]"]], "\[Nu]"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["p", " ", "z"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]], ")"]]]]]]], ")"]], RowBox[List["-", "\[Nu]"]]], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", FractionBox["m", "2"]]], "]"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["p", "-", RowBox[List["a", " ", "\[Nu]"]]]], RowBox[List["2", " ", "a"]]], ",", RowBox[List["-", "\[Nu]"]], ",", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "+", FractionBox["p", "a"], "-", "\[Nu]"]], ")"]]]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]], ")"]]]]]]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["Mod", "[", RowBox[List["m", ",", "2"]], "]"]]]], ")"]]]], RowBox[List["p", "-", RowBox[List["a", " ", "\[Nu]"]]]]]]], "+", RowBox[List[SuperscriptBox["\[ImaginaryI]", RowBox[List["-", "m"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]], ")"]]]]]]], ")"]], RowBox[List["-", "\[Nu]"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["d", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["4", " ", "d", " ", "k"]], "-", RowBox[List["2", " ", "d", " ", "m"]], "+", RowBox[List["\[ImaginaryI]", " ", "m", " ", "\[Pi]"]], "+", RowBox[List["2", " ", "c", " ", "k", " ", "z"]], "-", RowBox[List["c", " ", "m", " ", "z"]], "+", RowBox[List["p", " ", "z"]]]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["2", " ", "c", " ", "k"]], "-", RowBox[List["c", " ", "m"]], "+", "p", "+", RowBox[List["a", " ", "\[Nu]"]]]], RowBox[List["2", " ", "a"]]]]], ",", RowBox[List["-", "\[Nu]"]], ",", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["2", " ", "c", " ", "k"]], "-", RowBox[List["c", " ", "m"]], "+", "p", "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", "\[Nu]"]], ")"]]]]]], RowBox[List["2", " ", "a"]]]]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]], ")"]]]]]]]]], "]"]]]], RowBox[List[RowBox[List["2", " ", "c", " ", "k"]], "-", RowBox[List["c", " ", "m"]], "+", "p", "+", RowBox[List["a", " ", "\[Nu]"]]]]], "+", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", "p", "+", RowBox[List["a", " ", "\[Nu]"]]]], RowBox[List["2", " ", "a"]]]]], ",", RowBox[List["-", "\[Nu]"]], ",", RowBox[List["-", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "c", " ", "k"]], "+", RowBox[List["c", " ", "m"]], "+", "p", "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", "\[Nu]"]], ")"]]]]]], RowBox[List["2", " ", "a"]]]]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]], ")"]]]]]]]]], "]"]]]], RowBox[List[RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", "p", "+", RowBox[List["a", " ", "\[Nu]"]]]]]]], ")"]]]]]]]]]], ")"]]]], "/;", RowBox[List[RowBox[List["m", "\[Element]", "Integers"]], "&&", RowBox[List["m", ">", "0"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|