html, body, form { margin: 0; padding: 0; width: 100%; } #calculate { position: relative; width: 177px; height: 110px; background: transparent url(/images/alphabox/embed_functions_inside.gif) no-repeat scroll 0 0; } #i { position: relative; left: 18px; top: 44px; width: 133px; border: 0 none; outline: 0; font-size: 11px; } #eq { width: 9px; height: 10px; background: transparent; position: absolute; top: 47px; right: 18px; cursor: pointer; }

 Cosh

 http://functions.wolfram.com/01.20.21.4706.01

 Input Form

 Integrate[(E^(p z) Cosh[d z])/(a + b Sinh[e z] + c Cosh[e z])^2, z] == (1/2) ((E^((-d + e + p) z) ((-a) (a + Sqrt[a^2 + b^2 - c^2]) Hypergeometric2F1[(-d + e + p)/e, 1, 2 + (-d + p)/e, ((b + c) E^(e z))/(-a + Sqrt[a^2 + b^2 - c^2])] + a (a - Sqrt[a^2 + b^2 - c^2]) Hypergeometric2F1[(-d + e + p)/e, 1, 2 + (-d + p)/e, -(((b + c) E^(e z))/(a + Sqrt[a^2 + b^2 - c^2]))] + a^2 Hypergeometric2F1[(-d + e + p)/e, 2, 2 + (-d + p)/e, ((b + c) E^(e z))/(-a + Sqrt[a^2 + b^2 - c^2])] + b^2 Hypergeometric2F1[(-d + e + p)/e, 2, 2 + (-d + p)/e, ((b + c) E^(e z))/(-a + Sqrt[a^2 + b^2 - c^2])] - c^2 Hypergeometric2F1[(-d + e + p)/e, 2, 2 + (-d + p)/e, ((b + c) E^(e z))/(-a + Sqrt[a^2 + b^2 - c^2])] + a Sqrt[a^2 + b^2 - c^2] Hypergeometric2F1[(-d + e + p)/e, 2, 2 + (-d + p)/e, ((b + c) E^(e z))/(-a + Sqrt[a^2 + b^2 - c^2])] - a^2 Hypergeometric2F1[(-d + e + p)/e, 2, 2 + (-d + p)/e, -(((b + c) E^(e z))/(a + Sqrt[a^2 + b^2 - c^2]))] - b^2 Hypergeometric2F1[(-d + e + p)/e, 2, 2 + (-d + p)/e, -(((b + c) E^(e z))/(a + Sqrt[a^2 + b^2 - c^2]))] + c^2 Hypergeometric2F1[(-d + e + p)/e, 2, 2 + (-d + p)/e, -(((b + c) E^(e z))/(a + Sqrt[a^2 + b^2 - c^2]))] + a Sqrt[a^2 + b^2 - c^2] Hypergeometric2F1[(-d + e + p)/e, 2, 2 + (-d + p)/e, -(((b + c) E^(e z))/(a + Sqrt[a^2 + b^2 - c^2]))]))/ ((b - c) (a^2 + b^2 - c^2)^(3/2) (-d + e + p)) + (E^((d + e + p) z) ((-a) (a + Sqrt[a^2 + b^2 - c^2]) Hypergeometric2F1[(d + e + p)/e, 1, 2 + (d + p)/e, ((b + c) E^(e z))/(-a + Sqrt[a^2 + b^2 - c^2])] + a (a - Sqrt[a^2 + b^2 - c^2]) Hypergeometric2F1[(d + e + p)/e, 1, 2 + (d + p)/e, -(((b + c) E^(e z))/(a + Sqrt[a^2 + b^2 - c^2]))] + a^2 Hypergeometric2F1[(d + e + p)/e, 2, 2 + (d + p)/e, ((b + c) E^(e z))/(-a + Sqrt[a^2 + b^2 - c^2])] + b^2 Hypergeometric2F1[(d + e + p)/e, 2, 2 + (d + p)/e, ((b + c) E^(e z))/(-a + Sqrt[a^2 + b^2 - c^2])] - c^2 Hypergeometric2F1[(d + e + p)/e, 2, 2 + (d + p)/e, ((b + c) E^(e z))/(-a + Sqrt[a^2 + b^2 - c^2])] + a Sqrt[a^2 + b^2 - c^2] Hypergeometric2F1[(d + e + p)/e, 2, 2 + (d + p)/e, ((b + c) E^(e z))/(-a + Sqrt[a^2 + b^2 - c^2])] - a^2 Hypergeometric2F1[(d + e + p)/e, 2, 2 + (d + p)/e, -(((b + c) E^(e z))/(a + Sqrt[a^2 + b^2 - c^2]))] - b^2 Hypergeometric2F1[(d + e + p)/e, 2, 2 + (d + p)/e, -(((b + c) E^(e z))/(a + Sqrt[a^2 + b^2 - c^2]))] + c^2 Hypergeometric2F1[(d + e + p)/e, 2, 2 + (d + p)/e, -(((b + c) E^(e z))/(a + Sqrt[a^2 + b^2 - c^2]))] + a Sqrt[a^2 + b^2 - c^2] Hypergeometric2F1[(d + e + p)/e, 2, 2 + (d + p)/e, -(((b + c) E^(e z))/(a + Sqrt[a^2 + b^2 - c^2]))]))/ ((b - c) (a^2 + b^2 - c^2)^(3/2) (d + e + p)))

 Standard Form

 Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["p", " ", "z"]]], RowBox[List["Cosh", "[", RowBox[List["d", " ", "z"]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Sinh", "[", RowBox[List["e", " ", "z"]], "]"]]]], "+", RowBox[List["c", " ", RowBox[List["Cosh", "[", RowBox[List["e", " ", "z"]], "]"]]]]]], ")"]], "2"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "d"]], "+", "e", "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "a"]], " ", RowBox[List["(", RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "e", "+", "p"]], "e"], ",", "1", ",", RowBox[List["2", "+", FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "p"]], "e"]]], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["e", " ", "z"]]]]], RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]]]], "]"]]]], "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List["a", "-", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "e", "+", "p"]], "e"], ",", "1", ",", RowBox[List["2", "+", FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "p"]], "e"]]], ",", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["e", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox["a", "2"], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "e", "+", "p"]], "e"], ",", "2", ",", RowBox[List["2", "+", FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "p"]], "e"]]], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["e", " ", "z"]]]]], RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox["b", "2"], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "e", "+", "p"]], "e"], ",", "2", ",", RowBox[List["2", "+", FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "p"]], "e"]]], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["e", " ", "z"]]]]], RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]]]], "]"]]]], "-", RowBox[List[SuperscriptBox["c", "2"], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "e", "+", "p"]], "e"], ",", "2", ",", RowBox[List["2", "+", FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "p"]], "e"]]], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["e", " ", "z"]]]]], RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]]]], "]"]]]], "+", RowBox[List["a", " ", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "e", "+", "p"]], "e"], ",", "2", ",", RowBox[List["2", "+", FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "p"]], "e"]]], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["e", " ", "z"]]]]], RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]]]], "]"]]]], "-", RowBox[List[SuperscriptBox["a", "2"], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "e", "+", "p"]], "e"], ",", "2", ",", RowBox[List["2", "+", FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "p"]], "e"]]], ",", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["e", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]]]]]], "]"]]]], "-", RowBox[List[SuperscriptBox["b", "2"], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "e", "+", "p"]], "e"], ",", "2", ",", RowBox[List["2", "+", FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "p"]], "e"]]], ",", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["e", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox["c", "2"], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "e", "+", "p"]], "e"], ",", "2", ",", RowBox[List["2", "+", FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "p"]], "e"]]], ",", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["e", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]]]]]], "]"]]]], "+", RowBox[List["a", " ", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "e", "+", "p"]], "e"], ",", "2", ",", RowBox[List["2", "+", FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "p"]], "e"]]], ",", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["e", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]]]]]], "]"]]]]]], ")"]]]], ")"]], "/", RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["b", "-", "c"]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]], ")"]], RowBox[List["3", "/", "2"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "d"]], "+", "e", "+", "p"]], ")"]]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["d", "+", "e", "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "a"]], " ", RowBox[List["(", RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["d", "+", "e", "+", "p"]], "e"], ",", "1", ",", RowBox[List["2", "+", FractionBox[RowBox[List["d", "+", "p"]], "e"]]], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["e", " ", "z"]]]]], RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]]]], "]"]]]], "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List["a", "-", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["d", "+", "e", "+", "p"]], "e"], ",", "1", ",", RowBox[List["2", "+", FractionBox[RowBox[List["d", "+", "p"]], "e"]]], ",", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["e", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox["a", "2"], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["d", "+", "e", "+", "p"]], "e"], ",", "2", ",", RowBox[List["2", "+", FractionBox[RowBox[List["d", "+", "p"]], "e"]]], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["e", " ", "z"]]]]], RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox["b", "2"], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["d", "+", "e", "+", "p"]], "e"], ",", "2", ",", RowBox[List["2", "+", FractionBox[RowBox[List["d", "+", "p"]], "e"]]], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["e", " ", "z"]]]]], RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]]]], "]"]]]], "-", RowBox[List[SuperscriptBox["c", "2"], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["d", "+", "e", "+", "p"]], "e"], ",", "2", ",", RowBox[List["2", "+", FractionBox[RowBox[List["d", "+", "p"]], "e"]]], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["e", " ", "z"]]]]], RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]]]], "]"]]]], "+", RowBox[List["a", " ", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["d", "+", "e", "+", "p"]], "e"], ",", "2", ",", RowBox[List["2", "+", FractionBox[RowBox[List["d", "+", "p"]], "e"]]], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["e", " ", "z"]]]]], RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]]]], "]"]]]], "-", RowBox[List[SuperscriptBox["a", "2"], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["d", "+", "e", "+", "p"]], "e"], ",", "2", ",", RowBox[List["2", "+", FractionBox[RowBox[List["d", "+", "p"]], "e"]]], ",", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["e", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]]]]]], "]"]]]], "-", RowBox[List[SuperscriptBox["b", "2"], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["d", "+", "e", "+", "p"]], "e"], ",", "2", ",", RowBox[List["2", "+", FractionBox[RowBox[List["d", "+", "p"]], "e"]]], ",", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["e", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox["c", "2"], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["d", "+", "e", "+", "p"]], "e"], ",", "2", ",", RowBox[List["2", "+", FractionBox[RowBox[List["d", "+", "p"]], "e"]]], ",", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["e", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]]]]]], "]"]]]], "+", RowBox[List["a", " ", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["d", "+", "e", "+", "p"]], "e"], ",", "2", ",", RowBox[List["2", "+", FractionBox[RowBox[List["d", "+", "p"]], "e"]]], ",", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["e", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]]]]]], "]"]]]]]], ")"]]]], ")"]], "/", RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["b", "-", "c"]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]], ")"]], RowBox[List["3", "/", "2"]]], " ", RowBox[List["(", RowBox[List["d", "+", "e", "+", "p"]], ")"]]]], ")"]]]]]], ")"]]]]]]]]

 MathML Form

 Rule Form

 Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["p_", " ", "z_"]]], " ", RowBox[List["Cosh", "[", RowBox[List["d_", " ", "z_"]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["a_", "+", RowBox[List["b_", " ", RowBox[List["Sinh", "[", RowBox[List["e_", " ", "z_"]], "]"]]]], "+", RowBox[List["c_", " ", RowBox[List["Cosh", "[", RowBox[List["e_", " ", "z_"]], "]"]]]]]], ")"]], "2"]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "d"]], "+", "e", "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "a"]], " ", RowBox[List["(", RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "e", "+", "p"]], "e"], ",", "1", ",", RowBox[List["2", "+", FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "p"]], "e"]]], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["e", " ", "z"]]]]], RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]]]], "]"]]]], "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List["a", "-", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "e", "+", "p"]], "e"], ",", "1", ",", RowBox[List["2", "+", FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "p"]], "e"]]], ",", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["e", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox["a", "2"], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "e", "+", "p"]], "e"], ",", "2", ",", RowBox[List["2", "+", FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "p"]], "e"]]], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["e", " ", "z"]]]]], RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox["b", "2"], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "e", "+", "p"]], "e"], ",", "2", ",", RowBox[List["2", "+", FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "p"]], "e"]]], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["e", " ", "z"]]]]], RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]]]], "]"]]]], "-", RowBox[List[SuperscriptBox["c", "2"], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "e", "+", "p"]], "e"], ",", "2", ",", RowBox[List["2", "+", FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "p"]], "e"]]], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["e", " ", "z"]]]]], RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]]]], "]"]]]], "+", RowBox[List["a", " ", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "e", "+", "p"]], "e"], ",", "2", ",", RowBox[List["2", "+", FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "p"]], "e"]]], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["e", " ", "z"]]]]], RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]]]], "]"]]]], "-", RowBox[List[SuperscriptBox["a", "2"], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "e", "+", "p"]], "e"], ",", "2", ",", RowBox[List["2", "+", FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "p"]], "e"]]], ",", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["e", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]]]]]], "]"]]]], "-", RowBox[List[SuperscriptBox["b", "2"], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "e", "+", "p"]], "e"], ",", "2", ",", RowBox[List["2", "+", FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "p"]], "e"]]], ",", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["e", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox["c", "2"], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "e", "+", "p"]], "e"], ",", "2", ",", RowBox[List["2", "+", FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "p"]], "e"]]], ",", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["e", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]]]]]], "]"]]]], "+", RowBox[List["a", " ", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "e", "+", "p"]], "e"], ",", "2", ",", RowBox[List["2", "+", FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "p"]], "e"]]], ",", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["e", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]]]]]], "]"]]]]]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List["b", "-", "c"]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]], ")"]], RowBox[List["3", "/", "2"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "d"]], "+", "e", "+", "p"]], ")"]]]]], "+", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["d", "+", "e", "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "a"]], " ", RowBox[List["(", RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["d", "+", "e", "+", "p"]], "e"], ",", "1", ",", RowBox[List["2", "+", FractionBox[RowBox[List["d", "+", "p"]], "e"]]], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["e", " ", "z"]]]]], RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]]]], "]"]]]], "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List["a", "-", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["d", "+", "e", "+", "p"]], "e"], ",", "1", ",", RowBox[List["2", "+", FractionBox[RowBox[List["d", "+", "p"]], "e"]]], ",", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["e", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox["a", "2"], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["d", "+", "e", "+", "p"]], "e"], ",", "2", ",", RowBox[List["2", "+", FractionBox[RowBox[List["d", "+", "p"]], "e"]]], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["e", " ", "z"]]]]], RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox["b", "2"], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["d", "+", "e", "+", "p"]], "e"], ",", "2", ",", RowBox[List["2", "+", FractionBox[RowBox[List["d", "+", "p"]], "e"]]], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["e", " ", "z"]]]]], RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]]]], "]"]]]], "-", RowBox[List[SuperscriptBox["c", "2"], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["d", "+", "e", "+", "p"]], "e"], ",", "2", ",", RowBox[List["2", "+", FractionBox[RowBox[List["d", "+", "p"]], "e"]]], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["e", " ", "z"]]]]], RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]]]], "]"]]]], "+", RowBox[List["a", " ", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["d", "+", "e", "+", "p"]], "e"], ",", "2", ",", RowBox[List["2", "+", FractionBox[RowBox[List["d", "+", "p"]], "e"]]], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["e", " ", "z"]]]]], RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]]]], "]"]]]], "-", RowBox[List[SuperscriptBox["a", "2"], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["d", "+", "e", "+", "p"]], "e"], ",", "2", ",", RowBox[List["2", "+", FractionBox[RowBox[List["d", "+", "p"]], "e"]]], ",", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["e", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]]]]]], "]"]]]], "-", RowBox[List[SuperscriptBox["b", "2"], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["d", "+", "e", "+", "p"]], "e"], ",", "2", ",", RowBox[List["2", "+", FractionBox[RowBox[List["d", "+", "p"]], "e"]]], ",", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["e", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox["c", "2"], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["d", "+", "e", "+", "p"]], "e"], ",", "2", ",", RowBox[List["2", "+", FractionBox[RowBox[List["d", "+", "p"]], "e"]]], ",", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["e", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]]]]]], "]"]]]], "+", RowBox[List["a", " ", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["d", "+", "e", "+", "p"]], "e"], ",", "2", ",", RowBox[List["2", "+", FractionBox[RowBox[List["d", "+", "p"]], "e"]]], ",", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["e", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]]]]]]]]]], "]"]]]]]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List["b", "-", "c"]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"], "-", SuperscriptBox["c", "2"]]], ")"]], RowBox[List["3", "/", "2"]]], " ", RowBox[List["(", RowBox[List["d", "+", "e", "+", "p"]], ")"]]]]]]], ")"]]]]]]]]

 Date Added to functions.wolfram.com (modification date)

 2002-12-18