| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/01.20.21.4710.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Integrate[(E^(p z) Sinh[d z])/(a Sinh[e z]^2 + b Cosh[e z]^2)^2, z] == 
 (1/2) ((I E^((-d + 2 e + p) z) ((Sqrt[a] + I Sqrt[b])^2 (a - b) 
       Hypergeometric2F1[1 + (-d + p)/(2 e), 1, 2 + (-d + p)/(2 e), 
        ((a + b) E^(2 e z))/(Sqrt[a] - I Sqrt[b])^2] - 
      (Sqrt[a] - I Sqrt[b])^2 (a - b) Hypergeometric2F1[1 + (-d + p)/(2 e), 
        1, 2 + (-d + p)/(2 e), ((a + b) E^(2 e z))/(Sqrt[a] + I Sqrt[b])^2] - 
      2 I Sqrt[a] Sqrt[b] ((Sqrt[a] + I Sqrt[b])^2 Hypergeometric2F1[
          1 + (-d + p)/(2 e), 2, 2 + (-d + p)/(2 e), ((a + b) E^(2 e z))/
           (Sqrt[a] - I Sqrt[b])^2] + (Sqrt[a] - I Sqrt[b])^2 
         Hypergeometric2F1[1 + (-d + p)/(2 e), 2, 2 + (-d + p)/(2 e), 
          ((a + b) E^(2 e z))/(Sqrt[a] + I Sqrt[b])^2])))/
    (2 a^(3/2) b^(3/2) (a + b) (-d + 2 e + p)) - 
   (I E^((d + 2 e + p) z) ((Sqrt[a] + I Sqrt[b])^2 (a - b) 
       Hypergeometric2F1[1 + (d + p)/(2 e), 1, 2 + (d + p)/(2 e), 
        ((a + b) E^(2 e z))/(Sqrt[a] - I Sqrt[b])^2] - 
      (Sqrt[a] - I Sqrt[b])^2 (a - b) Hypergeometric2F1[1 + (d + p)/(2 e), 1, 
        2 + (d + p)/(2 e), ((a + b) E^(2 e z))/(Sqrt[a] + I Sqrt[b])^2] - 
      2 I Sqrt[a] Sqrt[b] ((Sqrt[a] + I Sqrt[b])^2 Hypergeometric2F1[
          1 + (d + p)/(2 e), 2, 2 + (d + p)/(2 e), ((a + b) E^(2 e z))/
           (Sqrt[a] - I Sqrt[b])^2] + (Sqrt[a] - I Sqrt[b])^2 
         Hypergeometric2F1[1 + (d + p)/(2 e), 2, 2 + (d + p)/(2 e), 
          ((a + b) E^(2 e z))/(Sqrt[a] + I Sqrt[b])^2])))/
    (2 a^(3/2) b^(3/2) (a + b) (d + 2 e + p))) | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["p", " ", "z"]]], RowBox[List["Sinh", "[", RowBox[List["d", " ", "z"]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["a", " ", SuperscriptBox[RowBox[List["Sinh", "[", RowBox[List["e", " ", "z"]], "]"]], "2"]]], "+", RowBox[List["b", " ", SuperscriptBox[RowBox[List["Cosh", "[", RowBox[List["e", " ", "z"]], "]"]], "2"]]]]], ")"]], "2"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "d"]], "+", RowBox[List["2", " ", "e"]], "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[SqrtBox["a"], "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox["b"]]]]], ")"]], "2"], " ", RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "p"]], RowBox[List["2", " ", "e"]]]]], ",", "1", ",", RowBox[List["2", "+", FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "p"]], RowBox[List["2", " ", "e"]]]]], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "e", " ", "z"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List[SqrtBox["a"], "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox["b"]]]]], ")"]], "2"]]]], "]"]]]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[SqrtBox["a"], "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox["b"]]]]], ")"]], "2"], " ", RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "p"]], RowBox[List["2", " ", "e"]]]]], ",", "1", ",", RowBox[List["2", "+", FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "p"]], RowBox[List["2", " ", "e"]]]]], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "e", " ", "z"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List[SqrtBox["a"], "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox["b"]]]]], ")"]], "2"]]]], "]"]]]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", SqrtBox["a"], " ", SqrtBox["b"], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[SqrtBox["a"], "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox["b"]]]]], ")"]], "2"], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "p"]], RowBox[List["2", " ", "e"]]]]], ",", "2", ",", RowBox[List["2", "+", FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "p"]], RowBox[List["2", " ", "e"]]]]], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "e", " ", "z"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List[SqrtBox["a"], "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox["b"]]]]], ")"]], "2"]]]], "]"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[SqrtBox["a"], "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox["b"]]]]], ")"]], "2"], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "p"]], RowBox[List["2", " ", "e"]]]]], ",", "2", ",", RowBox[List["2", "+", FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "p"]], RowBox[List["2", " ", "e"]]]]], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "e", " ", "z"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List[SqrtBox["a"], "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox["b"]]]]], ")"]], "2"]]]], "]"]]]]]], ")"]]]]]], ")"]]]], ")"]], "/", RowBox[List["(", RowBox[List["2", " ", SuperscriptBox["a", RowBox[List["3", "/", "2"]]], " ", SuperscriptBox["b", RowBox[List["3", "/", "2"]]], " ", RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "d"]], "+", RowBox[List["2", " ", "e"]], "+", "p"]], ")"]]]], ")"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["d", "+", RowBox[List["2", " ", "e"]], "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[SqrtBox["a"], "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox["b"]]]]], ")"]], "2"], " ", RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List["d", "+", "p"]], RowBox[List["2", " ", "e"]]]]], ",", "1", ",", RowBox[List["2", "+", FractionBox[RowBox[List["d", "+", "p"]], RowBox[List["2", " ", "e"]]]]], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "e", " ", "z"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List[SqrtBox["a"], "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox["b"]]]]], ")"]], "2"]]]], "]"]]]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[SqrtBox["a"], "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox["b"]]]]], ")"]], "2"], " ", RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List["d", "+", "p"]], RowBox[List["2", " ", "e"]]]]], ",", "1", ",", RowBox[List["2", "+", FractionBox[RowBox[List["d", "+", "p"]], RowBox[List["2", " ", "e"]]]]], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "e", " ", "z"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List[SqrtBox["a"], "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox["b"]]]]], ")"]], "2"]]]], "]"]]]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", SqrtBox["a"], " ", SqrtBox["b"], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[SqrtBox["a"], "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox["b"]]]]], ")"]], "2"], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List["d", "+", "p"]], RowBox[List["2", " ", "e"]]]]], ",", "2", ",", RowBox[List["2", "+", FractionBox[RowBox[List["d", "+", "p"]], RowBox[List["2", " ", "e"]]]]], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "e", " ", "z"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List[SqrtBox["a"], "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox["b"]]]]], ")"]], "2"]]]], "]"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[SqrtBox["a"], "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox["b"]]]]], ")"]], "2"], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List["d", "+", "p"]], RowBox[List["2", " ", "e"]]]]], ",", "2", ",", RowBox[List["2", "+", FractionBox[RowBox[List["d", "+", "p"]], RowBox[List["2", " ", "e"]]]]], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "e", " ", "z"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List[SqrtBox["a"], "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox["b"]]]]], ")"]], "2"]]]], "]"]]]]]], ")"]]]]]], ")"]]]], ")"]], "/", RowBox[List["(", RowBox[List["2", " ", SuperscriptBox["a", RowBox[List["3", "/", "2"]]], " ", SuperscriptBox["b", RowBox[List["3", "/", "2"]]], " ", RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["2", " ", "e"]], "+", "p"]], ")"]]]], ")"]]]]]], ")"]]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mo> ∫ </mo>  <mrow>  <mfrac>  <mrow>  <msup>  <mi> ⅇ </mi>  <mrow>  <mi> p </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mi> sinh </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> d </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> a </mi>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> sinh </mi>  <mn> 2 </mn>  </msup>  <mo> ( </mo>  <mrow>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> cosh </mi>  <mn> 2 </mn>  </msup>  <mo> ( </mo>  <mrow>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ⅆ </mo>  <mi> z </mi>  </mrow>  </mrow>  </mrow>  <mo> ⩵ </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> d </mi>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> e </mi>  </mrow>  <mo> + </mo>  <mi> p </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> - </mo>  <mi> b </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 2 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mfrac>  <mrow>  <mi> p </mi>  <mo> - </mo>  <mi> d </mi>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> e </mi>  </mrow>  </mfrac>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> , </mo>  <mn> 1 </mn>  </mrow>  <mo> ; </mo>  <mrow>  <mfrac>  <mrow>  <mi> p </mi>  <mo> - </mo>  <mi> d </mi>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> e </mi>  </mrow>  </mfrac>  <mo> + </mo>  <mn> 2 </mn>  </mrow>  <mo> ; </mo>  <mfrac>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> b </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <msqrt>  <mi> a </mi>  </msqrt>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <msqrt>  <mi> b </mi>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[FractionBox[RowBox[List["p", "-", "d"]], RowBox[List["2", " ", "e"]]], "+", "1"]], Hypergeometric2F1], ",", TagBox["1", Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[RowBox[List[FractionBox[RowBox[List["p", "-", "d"]], RowBox[List["2", " ", "e"]]], "+", "2"]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "e", " ", "z"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List[SqrtBox["a"], "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox["b"]]]]], ")"]], "2"]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation>  </semantics>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <msqrt>  <mi> a </mi>  </msqrt>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <msqrt>  <mi> b </mi>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <msqrt>  <mi> a </mi>  </msqrt>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <msqrt>  <mi> b </mi>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> - </mo>  <mi> b </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 2 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mfrac>  <mrow>  <mi> p </mi>  <mo> - </mo>  <mi> d </mi>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> e </mi>  </mrow>  </mfrac>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> , </mo>  <mn> 1 </mn>  </mrow>  <mo> ; </mo>  <mrow>  <mfrac>  <mrow>  <mi> p </mi>  <mo> - </mo>  <mi> d </mi>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> e </mi>  </mrow>  </mfrac>  <mo> + </mo>  <mn> 2 </mn>  </mrow>  <mo> ; </mo>  <mfrac>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> b </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <msqrt>  <mi> a </mi>  </msqrt>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <msqrt>  <mi> b </mi>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[FractionBox[RowBox[List["p", "-", "d"]], RowBox[List["2", " ", "e"]]], "+", "1"]], Hypergeometric2F1], ",", TagBox["1", Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[RowBox[List[FractionBox[RowBox[List["p", "-", "d"]], RowBox[List["2", " ", "e"]]], "+", "2"]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "e", " ", "z"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List[SqrtBox["a"], "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox["b"]]]]], ")"]], "2"]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation>  </semantics>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <msqrt>  <mi> a </mi>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mi> b </mi>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 2 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mfrac>  <mrow>  <mi> p </mi>  <mo> - </mo>  <mi> d </mi>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> e </mi>  </mrow>  </mfrac>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> , </mo>  <mn> 2 </mn>  </mrow>  <mo> ; </mo>  <mrow>  <mfrac>  <mrow>  <mi> p </mi>  <mo> - </mo>  <mi> d </mi>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> e </mi>  </mrow>  </mfrac>  <mo> + </mo>  <mn> 2 </mn>  </mrow>  <mo> ; </mo>  <mfrac>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> b </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <msqrt>  <mi> a </mi>  </msqrt>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <msqrt>  <mi> b </mi>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[FractionBox[RowBox[List["p", "-", "d"]], RowBox[List["2", " ", "e"]]], "+", "1"]], Hypergeometric2F1], ",", TagBox["2", Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[RowBox[List[FractionBox[RowBox[List["p", "-", "d"]], RowBox[List["2", " ", "e"]]], "+", "2"]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "e", " ", "z"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List[SqrtBox["a"], "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox["b"]]]]], ")"]], "2"]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation>  </semantics>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <msqrt>  <mi> a </mi>  </msqrt>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <msqrt>  <mi> b </mi>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <msqrt>  <mi> a </mi>  </msqrt>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <msqrt>  <mi> b </mi>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 2 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mfrac>  <mrow>  <mi> p </mi>  <mo> - </mo>  <mi> d </mi>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> e </mi>  </mrow>  </mfrac>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> , </mo>  <mn> 2 </mn>  </mrow>  <mo> ; </mo>  <mrow>  <mfrac>  <mrow>  <mi> p </mi>  <mo> - </mo>  <mi> d </mi>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> e </mi>  </mrow>  </mfrac>  <mo> + </mo>  <mn> 2 </mn>  </mrow>  <mo> ; </mo>  <mfrac>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> b </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <msqrt>  <mi> a </mi>  </msqrt>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <msqrt>  <mi> b </mi>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[FractionBox[RowBox[List["p", "-", "d"]], RowBox[List["2", " ", "e"]]], "+", "1"]], Hypergeometric2F1], ",", TagBox["2", Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[RowBox[List[FractionBox[RowBox[List["p", "-", "d"]], RowBox[List["2", " ", "e"]]], "+", "2"]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "e", " ", "z"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List[SqrtBox["a"], "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox["b"]]]]], ")"]], "2"]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation>  </semantics>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> / </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msup>  <mi> a </mi>  <mrow>  <mn> 3 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> b </mi>  <mrow>  <mn> 3 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> b </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> d </mi>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> e </mi>  </mrow>  <mo> + </mo>  <mi> p </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msup>  <mi> a </mi>  <mrow>  <mn> 3 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> b </mi>  <mrow>  <mn> 3 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> b </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> d </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> e </mi>  </mrow>  <mo> + </mo>  <mi> p </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> d </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> e </mi>  </mrow>  <mo> + </mo>  <mi> p </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> - </mo>  <mi> b </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 2 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mfrac>  <mrow>  <mi> d </mi>  <mo> + </mo>  <mi> p </mi>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> e </mi>  </mrow>  </mfrac>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> , </mo>  <mn> 1 </mn>  </mrow>  <mo> ; </mo>  <mrow>  <mfrac>  <mrow>  <mi> d </mi>  <mo> + </mo>  <mi> p </mi>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> e </mi>  </mrow>  </mfrac>  <mo> + </mo>  <mn> 2 </mn>  </mrow>  <mo> ; </mo>  <mfrac>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> b </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <msqrt>  <mi> a </mi>  </msqrt>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <msqrt>  <mi> b </mi>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[FractionBox[RowBox[List["d", "+", "p"]], RowBox[List["2", " ", "e"]]], "+", "1"]], Hypergeometric2F1], ",", TagBox["1", Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[RowBox[List[FractionBox[RowBox[List["d", "+", "p"]], RowBox[List["2", " ", "e"]]], "+", "2"]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "e", " ", "z"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List[SqrtBox["a"], "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox["b"]]]]], ")"]], "2"]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation>  </semantics>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <msqrt>  <mi> a </mi>  </msqrt>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <msqrt>  <mi> b </mi>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <msqrt>  <mi> a </mi>  </msqrt>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <msqrt>  <mi> b </mi>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> - </mo>  <mi> b </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 2 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mfrac>  <mrow>  <mi> d </mi>  <mo> + </mo>  <mi> p </mi>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> e </mi>  </mrow>  </mfrac>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> , </mo>  <mn> 1 </mn>  </mrow>  <mo> ; </mo>  <mrow>  <mfrac>  <mrow>  <mi> d </mi>  <mo> + </mo>  <mi> p </mi>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> e </mi>  </mrow>  </mfrac>  <mo> + </mo>  <mn> 2 </mn>  </mrow>  <mo> ; </mo>  <mfrac>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> b </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <msqrt>  <mi> a </mi>  </msqrt>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <msqrt>  <mi> b </mi>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[FractionBox[RowBox[List["d", "+", "p"]], RowBox[List["2", " ", "e"]]], "+", "1"]], Hypergeometric2F1], ",", TagBox["1", Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[RowBox[List[FractionBox[RowBox[List["d", "+", "p"]], RowBox[List["2", " ", "e"]]], "+", "2"]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "e", " ", "z"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List[SqrtBox["a"], "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox["b"]]]]], ")"]], "2"]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation>  </semantics>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <msqrt>  <mi> a </mi>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mi> b </mi>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 2 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mfrac>  <mrow>  <mi> d </mi>  <mo> + </mo>  <mi> p </mi>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> e </mi>  </mrow>  </mfrac>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> , </mo>  <mn> 2 </mn>  </mrow>  <mo> ; </mo>  <mrow>  <mfrac>  <mrow>  <mi> d </mi>  <mo> + </mo>  <mi> p </mi>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> e </mi>  </mrow>  </mfrac>  <mo> + </mo>  <mn> 2 </mn>  </mrow>  <mo> ; </mo>  <mfrac>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> b </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <msqrt>  <mi> a </mi>  </msqrt>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <msqrt>  <mi> b </mi>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[FractionBox[RowBox[List["d", "+", "p"]], RowBox[List["2", " ", "e"]]], "+", "1"]], Hypergeometric2F1], ",", TagBox["2", Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[RowBox[List[FractionBox[RowBox[List["d", "+", "p"]], RowBox[List["2", " ", "e"]]], "+", "2"]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "e", " ", "z"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List[SqrtBox["a"], "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox["b"]]]]], ")"]], "2"]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation>  </semantics>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <msqrt>  <mi> a </mi>  </msqrt>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <msqrt>  <mi> b </mi>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <msqrt>  <mi> a </mi>  </msqrt>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <msqrt>  <mi> b </mi>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 2 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mfrac>  <mrow>  <mi> d </mi>  <mo> + </mo>  <mi> p </mi>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> e </mi>  </mrow>  </mfrac>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> , </mo>  <mn> 2 </mn>  </mrow>  <mo> ; </mo>  <mrow>  <mfrac>  <mrow>  <mi> d </mi>  <mo> + </mo>  <mi> p </mi>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> e </mi>  </mrow>  </mfrac>  <mo> + </mo>  <mn> 2 </mn>  </mrow>  <mo> ; </mo>  <mfrac>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> b </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <msqrt>  <mi> a </mi>  </msqrt>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <msqrt>  <mi> b </mi>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[FractionBox[RowBox[List["d", "+", "p"]], RowBox[List["2", " ", "e"]]], "+", "1"]], Hypergeometric2F1], ",", TagBox["2", Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[RowBox[List[FractionBox[RowBox[List["d", "+", "p"]], RowBox[List["2", " ", "e"]]], "+", "2"]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "e", " ", "z"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List[SqrtBox["a"], "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox["b"]]]]], ")"]], "2"]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation>  </semantics>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <eq />  <apply>  <int />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <times />  <apply>  <power />  <exponentiale />  <apply>  <times />  <ci> p </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <sinh />  <apply>  <times />  <ci> d </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <ci> a </ci>  <apply>  <power />  <apply>  <sinh />  <apply>  <times />  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <ci> b </ci>  <apply>  <power />  <apply>  <cosh />  <apply>  <times />  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='rational'> 1 <sep /> 2 </cn>  <apply>  <plus />  <apply>  <times />  <apply>  <times />  <imaginaryi />  <apply>  <power />  <exponentiale />  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> d </ci>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> e </ci>  </apply>  <ci> p </ci>  </apply>  <ci> z </ci>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <ci> a </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> b </ci>  </apply>  </apply>  <apply>  <ci> Hypergeometric2F1 </ci>  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <ci> p </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> d </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> e </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <cn type='integer'> 1 </cn>  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <ci> p </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> d </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> e </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <times />  <apply>  <plus />  <ci> a </ci>  <ci> b </ci>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> a </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <apply>  <power />  <ci> b </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> a </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <times />  <imaginaryi />  <apply>  <power />  <ci> b </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> a </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <apply>  <power />  <ci> b </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <plus />  <ci> a </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> b </ci>  </apply>  </apply>  <apply>  <ci> Hypergeometric2F1 </ci>  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <ci> p </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> d </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> e </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <cn type='integer'> 1 </cn>  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <ci> p </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> d </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> e </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <times />  <apply>  <plus />  <ci> a </ci>  <ci> b </ci>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> a </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <times />  <imaginaryi />  <apply>  <power />  <ci> b </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <apply>  <power />  <ci> a </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <ci> b </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <ci> Hypergeometric2F1 </ci>  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <ci> p </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> d </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> e </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <ci> p </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> d </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> e </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <times />  <apply>  <plus />  <ci> a </ci>  <ci> b </ci>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> a </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <apply>  <power />  <ci> b </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> a </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <times />  <imaginaryi />  <apply>  <power />  <ci> b </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> a </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <apply>  <power />  <ci> b </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <ci> Hypergeometric2F1 </ci>  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <ci> p </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> d </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> e </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <ci> p </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> d </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> e </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <times />  <apply>  <plus />  <ci> a </ci>  <ci> b </ci>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> a </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <times />  <imaginaryi />  <apply>  <power />  <ci> b </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <ci> a </ci>  <cn type='rational'> 3 <sep /> 2 </cn>  </apply>  <apply>  <power />  <ci> b </ci>  <cn type='rational'> 3 <sep /> 2 </cn>  </apply>  <apply>  <plus />  <ci> a </ci>  <ci> b </ci>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> d </ci>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> e </ci>  </apply>  <ci> p </ci>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <ci> a </ci>  <cn type='rational'> 3 <sep /> 2 </cn>  </apply>  <apply>  <power />  <ci> b </ci>  <cn type='rational'> 3 <sep /> 2 </cn>  </apply>  <apply>  <plus />  <ci> a </ci>  <ci> b </ci>  </apply>  <apply>  <plus />  <ci> d </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> e </ci>  </apply>  <ci> p </ci>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <imaginaryi />  <apply>  <power />  <exponentiale />  <apply>  <times />  <apply>  <plus />  <ci> d </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> e </ci>  </apply>  <ci> p </ci>  </apply>  <ci> z </ci>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <ci> a </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> b </ci>  </apply>  </apply>  <apply>  <ci> Hypergeometric2F1 </ci>  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <ci> d </ci>  <ci> p </ci>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> e </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <cn type='integer'> 1 </cn>  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <ci> d </ci>  <ci> p </ci>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> e </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <times />  <apply>  <plus />  <ci> a </ci>  <ci> b </ci>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> a </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <apply>  <power />  <ci> b </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> a </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <times />  <imaginaryi />  <apply>  <power />  <ci> b </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> a </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <apply>  <power />  <ci> b </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <plus />  <ci> a </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> b </ci>  </apply>  </apply>  <apply>  <ci> Hypergeometric2F1 </ci>  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <ci> d </ci>  <ci> p </ci>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> e </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <cn type='integer'> 1 </cn>  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <ci> d </ci>  <ci> p </ci>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> e </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <times />  <apply>  <plus />  <ci> a </ci>  <ci> b </ci>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> a </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <times />  <imaginaryi />  <apply>  <power />  <ci> b </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <apply>  <power />  <ci> a </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <ci> b </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <ci> Hypergeometric2F1 </ci>  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <ci> d </ci>  <ci> p </ci>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> e </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <ci> d </ci>  <ci> p </ci>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> e </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <times />  <apply>  <plus />  <ci> a </ci>  <ci> b </ci>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> a </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <apply>  <power />  <ci> b </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> a </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <times />  <imaginaryi />  <apply>  <power />  <ci> b </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> a </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <apply>  <power />  <ci> b </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <ci> Hypergeometric2F1 </ci>  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <ci> d </ci>  <ci> p </ci>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> e </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <ci> d </ci>  <ci> p </ci>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> e </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <times />  <apply>  <plus />  <ci> a </ci>  <ci> b </ci>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> a </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <times />  <imaginaryi />  <apply>  <power />  <ci> b </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["p_", " ", "z_"]]], " ", RowBox[List["Sinh", "[", RowBox[List["d_", " ", "z_"]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["a_", " ", SuperscriptBox[RowBox[List["Sinh", "[", RowBox[List["e_", " ", "z_"]], "]"]], "2"]]], "+", RowBox[List["b_", " ", SuperscriptBox[RowBox[List["Cosh", "[", RowBox[List["e_", " ", "z_"]], "]"]], "2"]]]]], ")"]], "2"]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "d"]], "+", RowBox[List["2", " ", "e"]], "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[SqrtBox["a"], "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox["b"]]]]], ")"]], "2"], " ", RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "p"]], RowBox[List["2", " ", "e"]]]]], ",", "1", ",", RowBox[List["2", "+", FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "p"]], RowBox[List["2", " ", "e"]]]]], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "e", " ", "z"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List[SqrtBox["a"], "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox["b"]]]]], ")"]], "2"]]]], "]"]]]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[SqrtBox["a"], "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox["b"]]]]], ")"]], "2"], " ", RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "p"]], RowBox[List["2", " ", "e"]]]]], ",", "1", ",", RowBox[List["2", "+", FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "p"]], RowBox[List["2", " ", "e"]]]]], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "e", " ", "z"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List[SqrtBox["a"], "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox["b"]]]]], ")"]], "2"]]]], "]"]]]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", SqrtBox["a"], " ", SqrtBox["b"], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[SqrtBox["a"], "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox["b"]]]]], ")"]], "2"], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "p"]], RowBox[List["2", " ", "e"]]]]], ",", "2", ",", RowBox[List["2", "+", FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "p"]], RowBox[List["2", " ", "e"]]]]], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "e", " ", "z"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List[SqrtBox["a"], "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox["b"]]]]], ")"]], "2"]]]], "]"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[SqrtBox["a"], "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox["b"]]]]], ")"]], "2"], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "p"]], RowBox[List["2", " ", "e"]]]]], ",", "2", ",", RowBox[List["2", "+", FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "p"]], RowBox[List["2", " ", "e"]]]]], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "e", " ", "z"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List[SqrtBox["a"], "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox["b"]]]]], ")"]], "2"]]]], "]"]]]]]], ")"]]]]]], ")"]]]], RowBox[List["2", " ", SuperscriptBox["a", RowBox[List["3", "/", "2"]]], " ", SuperscriptBox["b", RowBox[List["3", "/", "2"]]], " ", RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "d"]], "+", RowBox[List["2", " ", "e"]], "+", "p"]], ")"]]]]], "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["d", "+", RowBox[List["2", " ", "e"]], "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[SqrtBox["a"], "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox["b"]]]]], ")"]], "2"], " ", RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List["d", "+", "p"]], RowBox[List["2", " ", "e"]]]]], ",", "1", ",", RowBox[List["2", "+", FractionBox[RowBox[List["d", "+", "p"]], RowBox[List["2", " ", "e"]]]]], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "e", " ", "z"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List[SqrtBox["a"], "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox["b"]]]]], ")"]], "2"]]]], "]"]]]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[SqrtBox["a"], "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox["b"]]]]], ")"]], "2"], " ", RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List["d", "+", "p"]], RowBox[List["2", " ", "e"]]]]], ",", "1", ",", RowBox[List["2", "+", FractionBox[RowBox[List["d", "+", "p"]], RowBox[List["2", " ", "e"]]]]], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "e", " ", "z"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List[SqrtBox["a"], "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox["b"]]]]], ")"]], "2"]]]], "]"]]]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", SqrtBox["a"], " ", SqrtBox["b"], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[SqrtBox["a"], "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox["b"]]]]], ")"]], "2"], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List["d", "+", "p"]], RowBox[List["2", " ", "e"]]]]], ",", "2", ",", RowBox[List["2", "+", FractionBox[RowBox[List["d", "+", "p"]], RowBox[List["2", " ", "e"]]]]], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "e", " ", "z"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List[SqrtBox["a"], "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox["b"]]]]], ")"]], "2"]]]], "]"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[SqrtBox["a"], "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox["b"]]]]], ")"]], "2"], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List["d", "+", "p"]], RowBox[List["2", " ", "e"]]]]], ",", "2", ",", RowBox[List["2", "+", FractionBox[RowBox[List["d", "+", "p"]], RowBox[List["2", " ", "e"]]]]], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "e", " ", "z"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List[SqrtBox["a"], "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox["b"]]]]], ")"]], "2"]]]], "]"]]]]]], ")"]]]]]], ")"]]]], RowBox[List["2", " ", SuperscriptBox["a", RowBox[List["3", "/", "2"]]], " ", SuperscriptBox["b", RowBox[List["3", "/", "2"]]], " ", RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["2", " ", "e"]], "+", "p"]], ")"]]]]]]], ")"]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 
 
 | 
 |