Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Cosh






Mathematica Notation

Traditional Notation









Elementary Functions > Cosh[z] > Integration > Indefinite integration > Involving functions of the direct function, hyperbolic and trigonometric functions > Involving algebraic functions of the direct function, hyperbolic and trigonometric functions > Involving sin and sinh > Involving sin(e z)sinh(d z)(a+b cosh(c z))beta





http://functions.wolfram.com/01.20.21.4786.01









  


  










Input Form





Integrate[Sin[e z] Sinh[d z] (a + b Cosh[c z])^\[Beta], z] == (1/4) I (-((1/(-d - I e - c \[Beta])) ((E^((-d - I e) z) (a + ((1/2) b (1 + E^(2 c z)))/E^(c z))^\[Beta] AppellF1[(-d - I e - c \[Beta])/c, -\[Beta], -\[Beta], 1 + (-d - I e - c \[Beta])/c, -((2 b E^(c z))/ (2 a + Sqrt[4 a^2 - 4 b^2])), (2 b E^(c z))/ (-2 a + Sqrt[4 a^2 - 4 b^2])])/ ((1 - (2 b E^(c z))/(-2 a + Sqrt[4 a^2 - 4 b^2]))^\[Beta] (1 + (2 b E^(c z))/(2 a + Sqrt[4 a^2 - 4 b^2]))^\[Beta]))) + (1/(d - I e - c \[Beta])) ((E^((d - I e) z) (a + ((1/2) b (1 + E^(2 c z)))/E^(c z))^\[Beta] AppellF1[(d - I e - c \[Beta])/c, -\[Beta], -\[Beta], 1 + (d - I e - c \[Beta])/c, -((2 b E^(c z))/ (2 a + Sqrt[4 a^2 - 4 b^2])), (2 b E^(c z))/ (-2 a + Sqrt[4 a^2 - 4 b^2])])/ ((1 - (2 b E^(c z))/(-2 a + Sqrt[4 a^2 - 4 b^2]))^\[Beta] (1 + (2 b E^(c z))/(2 a + Sqrt[4 a^2 - 4 b^2]))^\[Beta])) + (1/(-d + I e - c \[Beta])) ((E^((-d + I e) z) (a + ((1/2) b (1 + E^(2 c z)))/E^(c z))^\[Beta] AppellF1[(-d + I e - c \[Beta])/c, -\[Beta], -\[Beta], 1 + (-d + I e - c \[Beta])/c, -((2 b E^(c z))/(2 a + Sqrt[4 a^2 - 4 b^2])), (2 b E^(c z))/(-2 a + Sqrt[4 a^2 - 4 b^2])])/ ((1 - (2 b E^(c z))/(-2 a + Sqrt[4 a^2 - 4 b^2]))^\[Beta] (1 + (2 b E^(c z))/(2 a + Sqrt[4 a^2 - 4 b^2]))^\[Beta])) - (1/(d + I e - c \[Beta])) ((E^((d + I e) z) (a + ((1/2) b (1 + E^(2 c z)))/E^(c z))^\[Beta] AppellF1[(d + I e - c \[Beta])/c, -\[Beta], -\[Beta], 1 + (d + I e - c \[Beta])/c, -((2 b E^(c z))/ (2 a + Sqrt[4 a^2 - 4 b^2])), (2 b E^(c z))/ (-2 a + Sqrt[4 a^2 - 4 b^2])])/ ((1 - (2 b E^(c z))/(-2 a + Sqrt[4 a^2 - 4 b^2]))^\[Beta] (1 + (2 b E^(c z))/(2 a + Sqrt[4 a^2 - 4 b^2]))^\[Beta])))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[RowBox[List["Sin", "[", RowBox[List["e", " ", "z"]], "]"]], RowBox[List["Sinh", "[", RowBox[List["d", " ", "z"]], "]"]], SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Cosh", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], ")"]], "\[Beta]"], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List[FractionBox["1", RowBox[List[RowBox[List["-", "d"]], "-", RowBox[List["\[ImaginaryI]", " ", "e"]], "-", RowBox[List["c", " ", "\[Beta]"]]]]], RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "d"]], "-", RowBox[List["\[ImaginaryI]", " ", "e"]]]], ")"]], " ", "z"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", FractionBox[RowBox[List["2", " ", "b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "+", SqrtBox[RowBox[List[RowBox[List["4", " ", SuperscriptBox["a", "2"]]], "-", RowBox[List["4", " ", SuperscriptBox["b", "2"]]]]]]]]]]], ")"]], RowBox[List["-", "\[Beta]"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List["2", " ", "b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", SqrtBox[RowBox[List[RowBox[List["4", " ", SuperscriptBox["a", "2"]]], "-", RowBox[List["4", " ", SuperscriptBox["b", "2"]]]]]]]]]]], ")"]], RowBox[List["-", "\[Beta]"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", RowBox[List[FractionBox["1", "2"], " ", "b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "c"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]], ")"]]]]]], ")"]], "\[Beta]"], " ", RowBox[List["AppellF1", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["-", "d"]], "-", RowBox[List["\[ImaginaryI]", " ", "e"]], "-", RowBox[List["c", " ", "\[Beta]"]]]], "c"], ",", RowBox[List["-", "\[Beta]"]], ",", RowBox[List["-", "\[Beta]"]], ",", RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["-", "d"]], "-", RowBox[List["\[ImaginaryI]", " ", "e"]], "-", RowBox[List["c", " ", "\[Beta]"]]]], "c"]]], ",", RowBox[List["-", FractionBox[RowBox[List["2", " ", "b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", SqrtBox[RowBox[List[RowBox[List["4", " ", SuperscriptBox["a", "2"]]], "-", RowBox[List["4", " ", SuperscriptBox["b", "2"]]]]]]]]]]], ",", FractionBox[RowBox[List["2", " ", "b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "+", SqrtBox[RowBox[List[RowBox[List["4", " ", SuperscriptBox["a", "2"]]], "-", RowBox[List["4", " ", SuperscriptBox["b", "2"]]]]]]]]]]], "]"]]]], ")"]]]]]], "+", RowBox[List[FractionBox["1", RowBox[List["d", "-", RowBox[List["\[ImaginaryI]", " ", "e"]], "-", RowBox[List["c", " ", "\[Beta]"]]]]], RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["d", "-", RowBox[List["\[ImaginaryI]", " ", "e"]]]], ")"]], " ", "z"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", FractionBox[RowBox[List["2", " ", "b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "+", SqrtBox[RowBox[List[RowBox[List["4", " ", SuperscriptBox["a", "2"]]], "-", RowBox[List["4", " ", SuperscriptBox["b", "2"]]]]]]]]]]], ")"]], RowBox[List["-", "\[Beta]"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List["2", " ", "b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", SqrtBox[RowBox[List[RowBox[List["4", " ", SuperscriptBox["a", "2"]]], "-", RowBox[List["4", " ", SuperscriptBox["b", "2"]]]]]]]]]]], ")"]], RowBox[List["-", "\[Beta]"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", RowBox[List[FractionBox["1", "2"], " ", "b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "c"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]], ")"]]]]]], ")"]], "\[Beta]"], " ", RowBox[List["AppellF1", "[", RowBox[List[FractionBox[RowBox[List["d", "-", RowBox[List["\[ImaginaryI]", " ", "e"]], "-", RowBox[List["c", " ", "\[Beta]"]]]], "c"], ",", RowBox[List["-", "\[Beta]"]], ",", RowBox[List["-", "\[Beta]"]], ",", RowBox[List["1", "+", FractionBox[RowBox[List["d", "-", RowBox[List["\[ImaginaryI]", " ", "e"]], "-", RowBox[List["c", " ", "\[Beta]"]]]], "c"]]], ",", RowBox[List["-", FractionBox[RowBox[List["2", " ", "b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", SqrtBox[RowBox[List[RowBox[List["4", " ", SuperscriptBox["a", "2"]]], "-", RowBox[List["4", " ", SuperscriptBox["b", "2"]]]]]]]]]]], ",", FractionBox[RowBox[List["2", " ", "b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "+", SqrtBox[RowBox[List[RowBox[List["4", " ", SuperscriptBox["a", "2"]]], "-", RowBox[List["4", " ", SuperscriptBox["b", "2"]]]]]]]]]]], "]"]]]], ")"]]]], "+", RowBox[List[FractionBox["1", RowBox[List[RowBox[List["-", "d"]], "+", RowBox[List["\[ImaginaryI]", " ", "e"]], "-", RowBox[List["c", " ", "\[Beta]"]]]]], RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "d"]], "+", RowBox[List["\[ImaginaryI]", " ", "e"]]]], ")"]], " ", "z"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", FractionBox[RowBox[List["2", " ", "b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "+", SqrtBox[RowBox[List[RowBox[List["4", " ", SuperscriptBox["a", "2"]]], "-", RowBox[List["4", " ", SuperscriptBox["b", "2"]]]]]]]]]]], ")"]], RowBox[List["-", "\[Beta]"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List["2", " ", "b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", SqrtBox[RowBox[List[RowBox[List["4", " ", SuperscriptBox["a", "2"]]], "-", RowBox[List["4", " ", SuperscriptBox["b", "2"]]]]]]]]]]], ")"]], RowBox[List["-", "\[Beta]"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", RowBox[List[FractionBox["1", "2"], " ", "b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "c"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]], ")"]]]]]], ")"]], "\[Beta]"], " ", RowBox[List["AppellF1", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", RowBox[List["\[ImaginaryI]", " ", "e"]], "-", RowBox[List["c", " ", "\[Beta]"]]]], "c"], ",", RowBox[List["-", "\[Beta]"]], ",", RowBox[List["-", "\[Beta]"]], ",", RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", RowBox[List["\[ImaginaryI]", " ", "e"]], "-", RowBox[List["c", " ", "\[Beta]"]]]], "c"]]], ",", RowBox[List["-", FractionBox[RowBox[List["2", " ", "b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", SqrtBox[RowBox[List[RowBox[List["4", " ", SuperscriptBox["a", "2"]]], "-", RowBox[List["4", " ", SuperscriptBox["b", "2"]]]]]]]]]]], ",", FractionBox[RowBox[List["2", " ", "b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "+", SqrtBox[RowBox[List[RowBox[List["4", " ", SuperscriptBox["a", "2"]]], "-", RowBox[List["4", " ", SuperscriptBox["b", "2"]]]]]]]]]]], "]"]]]], ")"]]]], "-", RowBox[List[FractionBox["1", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", "e"]], "-", RowBox[List["c", " ", "\[Beta]"]]]]], RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", "e"]]]], ")"]], " ", "z"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", FractionBox[RowBox[List["2", " ", "b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "+", SqrtBox[RowBox[List[RowBox[List["4", " ", SuperscriptBox["a", "2"]]], "-", RowBox[List["4", " ", SuperscriptBox["b", "2"]]]]]]]]]]], ")"]], RowBox[List["-", "\[Beta]"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List["2", " ", "b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", SqrtBox[RowBox[List[RowBox[List["4", " ", SuperscriptBox["a", "2"]]], "-", RowBox[List["4", " ", SuperscriptBox["b", "2"]]]]]]]]]]], ")"]], RowBox[List["-", "\[Beta]"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", RowBox[List[FractionBox["1", "2"], " ", "b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "c"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]], ")"]]]]]], ")"]], "\[Beta]"], " ", RowBox[List["AppellF1", "[", RowBox[List[FractionBox[RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", "e"]], "-", RowBox[List["c", " ", "\[Beta]"]]]], "c"], ",", RowBox[List["-", "\[Beta]"]], ",", RowBox[List["-", "\[Beta]"]], ",", RowBox[List["1", "+", FractionBox[RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", "e"]], "-", RowBox[List["c", " ", "\[Beta]"]]]], "c"]]], ",", RowBox[List["-", FractionBox[RowBox[List["2", " ", "b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", SqrtBox[RowBox[List[RowBox[List["4", " ", SuperscriptBox["a", "2"]]], "-", RowBox[List["4", " ", SuperscriptBox["b", "2"]]]]]]]]]]], ",", FractionBox[RowBox[List["2", " ", "b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "+", SqrtBox[RowBox[List[RowBox[List["4", " ", SuperscriptBox["a", "2"]]], "-", RowBox[List["4", " ", SuperscriptBox["b", "2"]]]]]]]]]]], "]"]]]], ")"]]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mtext> </mtext> <mrow> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> d </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mi> &#946; </mi> </msup> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mrow> <mo> - </mo> <mi> d </mi> </mrow> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> e </mi> </mrow> <mtext> </mtext> <mo> - </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> &#946; </mi> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> e </mi> </mrow> <mo> - </mo> <mi> d </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mrow> <msqrt> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </mrow> </msqrt> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> &#946; </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> + </mo> <msqrt> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </mrow> </msqrt> </mrow> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> &#946; </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <mi> c </mi> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msup> <mi> &#8519; </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mi> &#946; </mi> </msup> <mo> &#8290; </mo> <mrow> <semantics> <msub> <mi> F </mi> <mn> 1 </mn> </msub> <annotation-xml encoding='MathML-Content'> <ci> AppellF1 </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mrow> <mo> - </mo> <mi> d </mi> </mrow> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> e </mi> </mrow> <mtext> </mtext> <mo> - </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> &#946; </mi> </mrow> </mrow> <mi> c </mi> </mfrac> <mo> ; </mo> <mrow> <mo> - </mo> <mi> &#946; </mi> </mrow> </mrow> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <mi> &#946; </mi> </mrow> <mo> ; </mo> <mrow> <mfrac> <mrow> <mrow> <mo> - </mo> <mi> d </mi> </mrow> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> e </mi> </mrow> <mtext> </mtext> <mo> - </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> &#946; </mi> </mrow> </mrow> <mi> c </mi> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> + </mo> <msqrt> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </mrow> </msqrt> </mrow> </mfrac> </mrow> </mrow> <mo> , </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mrow> <msqrt> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </mrow> </msqrt> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mi> d </mi> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> e </mi> </mrow> <mtext> </mtext> <mo> - </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> &#946; </mi> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> e </mi> </mrow> </mrow> <mtext> </mtext> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mrow> <msqrt> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </mrow> </msqrt> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> &#946; </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> + </mo> <msqrt> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </mrow> </msqrt> </mrow> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> &#946; </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <mi> c </mi> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msup> <mi> &#8519; </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mi> &#946; </mi> </msup> <mo> &#8290; </mo> <mrow> <semantics> <msub> <mi> F </mi> <mn> 1 </mn> </msub> <annotation-xml encoding='MathML-Content'> <ci> AppellF1 </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mi> d </mi> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> e </mi> </mrow> <mtext> </mtext> <mo> - </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> &#946; </mi> </mrow> </mrow> <mi> c </mi> </mfrac> <mo> ; </mo> <mrow> <mo> - </mo> <mi> &#946; </mi> </mrow> </mrow> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <mi> &#946; </mi> </mrow> <mo> ; </mo> <mrow> <mfrac> <mrow> <mi> d </mi> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> e </mi> </mrow> <mtext> </mtext> <mo> - </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> &#946; </mi> </mrow> </mrow> <mi> c </mi> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> + </mo> <msqrt> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </mrow> </msqrt> </mrow> </mfrac> </mrow> </mrow> <mo> , </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mrow> <msqrt> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </mrow> </msqrt> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mrow> <mo> - </mo> <mi> d </mi> </mrow> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> e </mi> </mrow> <mo> - </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> &#946; </mi> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> d </mi> </mrow> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> e </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mrow> <msqrt> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </mrow> </msqrt> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> &#946; </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> + </mo> <msqrt> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </mrow> </msqrt> </mrow> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> &#946; </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <mi> c </mi> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msup> <mi> &#8519; </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mi> &#946; </mi> </msup> <mo> &#8290; </mo> <mrow> <semantics> <msub> <mi> F </mi> <mn> 1 </mn> </msub> <annotation-xml encoding='MathML-Content'> <ci> AppellF1 </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mrow> <mo> - </mo> <mi> d </mi> </mrow> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> e </mi> </mrow> <mo> - </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> &#946; </mi> </mrow> </mrow> <mi> c </mi> </mfrac> <mo> ; </mo> <mrow> <mo> - </mo> <mi> &#946; </mi> </mrow> </mrow> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <mi> &#946; </mi> </mrow> <mo> ; </mo> <mrow> <mfrac> <mrow> <mrow> <mo> - </mo> <mi> d </mi> </mrow> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> e </mi> </mrow> <mo> - </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> &#946; </mi> </mrow> </mrow> <mi> c </mi> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> + </mo> <msqrt> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </mrow> </msqrt> </mrow> </mfrac> </mrow> </mrow> <mo> , </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mrow> <msqrt> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </mrow> </msqrt> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mi> d </mi> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> e </mi> </mrow> <mo> - </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> &#946; </mi> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> e </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mrow> <msqrt> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </mrow> </msqrt> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> &#946; </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> + </mo> <msqrt> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </mrow> </msqrt> </mrow> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> &#946; </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <mi> c </mi> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msup> <mi> &#8519; </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mi> &#946; </mi> </msup> <mo> &#8290; </mo> <mrow> <semantics> <msub> <mi> F </mi> <mn> 1 </mn> </msub> <annotation-xml encoding='MathML-Content'> <ci> AppellF1 </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mi> d </mi> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> e </mi> </mrow> <mo> - </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> &#946; </mi> </mrow> </mrow> <mi> c </mi> </mfrac> <mo> ; </mo> <mrow> <mo> - </mo> <mi> &#946; </mi> </mrow> </mrow> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <mi> &#946; </mi> </mrow> <mo> ; </mo> <mrow> <mfrac> <mrow> <mi> d </mi> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> e </mi> </mrow> <mo> - </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> &#946; </mi> </mrow> </mrow> <mi> c </mi> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> + </mo> <msqrt> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </mrow> </msqrt> </mrow> </mfrac> </mrow> </mrow> <mo> , </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mrow> <msqrt> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </mrow> </msqrt> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <sin /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> <apply> <sinh /> <apply> <times /> <ci> d </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <cosh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <ci> &#946; </ci> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 4 </cn> <imaginaryi /> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> d </ci> </apply> <apply> <times /> <imaginaryi /> <ci> e </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <ci> &#946; </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> e </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> d </ci> </apply> </apply> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#946; </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <ci> b </ci> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#946; </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <ci> z </ci> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <ci> &#946; </ci> </apply> <apply> <ci> AppellF1 </ci> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> d </ci> </apply> <apply> <times /> <imaginaryi /> <ci> e </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <ci> &#946; </ci> </apply> </apply> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#946; </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#946; </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> d </ci> </apply> <apply> <times /> <imaginaryi /> <ci> e </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <ci> &#946; </ci> </apply> </apply> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <ci> d </ci> <apply> <times /> <imaginaryi /> <ci> e </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <ci> &#946; </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <plus /> <ci> d </ci> <apply> <times /> <imaginaryi /> <ci> e </ci> </apply> </apply> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#946; </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <ci> b </ci> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#946; </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <ci> z </ci> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <ci> &#946; </ci> </apply> <apply> <ci> AppellF1 </ci> <apply> <times /> <apply> <plus /> <ci> d </ci> <apply> <times /> <imaginaryi /> <ci> e </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <ci> &#946; </ci> </apply> </apply> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#946; </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#946; </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> d </ci> <apply> <times /> <imaginaryi /> <ci> e </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <ci> &#946; </ci> </apply> </apply> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> d </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> e </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <ci> &#946; </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> d </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> e </ci> </apply> </apply> </apply> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#946; </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <ci> b </ci> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#946; </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <ci> z </ci> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <ci> &#946; </ci> </apply> <apply> <ci> AppellF1 </ci> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> d </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> e </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <ci> &#946; </ci> </apply> </apply> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#946; </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#946; </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> d </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> e </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <ci> &#946; </ci> </apply> </apply> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> e </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <ci> &#946; </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> e </ci> </apply> </apply> </apply> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#946; </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <ci> b </ci> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#946; </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <ci> z </ci> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <ci> &#946; </ci> </apply> <apply> <ci> AppellF1 </ci> <apply> <times /> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> e </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <ci> &#946; </ci> </apply> </apply> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#946; </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#946; </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> e </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <ci> &#946; </ci> </apply> </apply> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[RowBox[List["Sin", "[", RowBox[List["e_", " ", "z_"]], "]"]], " ", RowBox[List["Sinh", "[", RowBox[List["d_", " ", "z_"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a_", "+", RowBox[List["b_", " ", RowBox[List["Cosh", "[", RowBox[List["c_", " ", "z_"]], "]"]]]]]], ")"]], "\[Beta]_"]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "d"]], "-", RowBox[List["\[ImaginaryI]", " ", "e"]]]], ")"]], " ", "z"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", FractionBox[RowBox[List["2", " ", "b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "+", SqrtBox[RowBox[List[RowBox[List["4", " ", SuperscriptBox["a", "2"]]], "-", RowBox[List["4", " ", SuperscriptBox["b", "2"]]]]]]]]]]], ")"]], RowBox[List["-", "\[Beta]"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List["2", " ", "b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", SqrtBox[RowBox[List[RowBox[List["4", " ", SuperscriptBox["a", "2"]]], "-", RowBox[List["4", " ", SuperscriptBox["b", "2"]]]]]]]]]]], ")"]], RowBox[List["-", "\[Beta]"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", RowBox[List[FractionBox["1", "2"], " ", "b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "c"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]], ")"]]]]]], ")"]], "\[Beta]"], " ", RowBox[List["AppellF1", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["-", "d"]], "-", RowBox[List["\[ImaginaryI]", " ", "e"]], "-", RowBox[List["c", " ", "\[Beta]"]]]], "c"], ",", RowBox[List["-", "\[Beta]"]], ",", RowBox[List["-", "\[Beta]"]], ",", RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["-", "d"]], "-", RowBox[List["\[ImaginaryI]", " ", "e"]], "-", RowBox[List["c", " ", "\[Beta]"]]]], "c"]]], ",", RowBox[List["-", FractionBox[RowBox[List["2", " ", "b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", SqrtBox[RowBox[List[RowBox[List["4", " ", SuperscriptBox["a", "2"]]], "-", RowBox[List["4", " ", SuperscriptBox["b", "2"]]]]]]]]]]], ",", FractionBox[RowBox[List["2", " ", "b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "+", SqrtBox[RowBox[List[RowBox[List["4", " ", SuperscriptBox["a", "2"]]], "-", RowBox[List["4", " ", SuperscriptBox["b", "2"]]]]]]]]]]], "]"]]]], RowBox[List[RowBox[List["-", "d"]], "-", RowBox[List["\[ImaginaryI]", " ", "e"]], "-", RowBox[List["c", " ", "\[Beta]"]]]]]]], "+", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["d", "-", RowBox[List["\[ImaginaryI]", " ", "e"]]]], ")"]], " ", "z"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", FractionBox[RowBox[List["2", " ", "b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "+", SqrtBox[RowBox[List[RowBox[List["4", " ", SuperscriptBox["a", "2"]]], "-", RowBox[List["4", " ", SuperscriptBox["b", "2"]]]]]]]]]]], ")"]], RowBox[List["-", "\[Beta]"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List["2", " ", "b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", SqrtBox[RowBox[List[RowBox[List["4", " ", SuperscriptBox["a", "2"]]], "-", RowBox[List["4", " ", SuperscriptBox["b", "2"]]]]]]]]]]], ")"]], RowBox[List["-", "\[Beta]"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", RowBox[List[FractionBox["1", "2"], " ", "b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "c"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]], ")"]]]]]], ")"]], "\[Beta]"], " ", RowBox[List["AppellF1", "[", RowBox[List[FractionBox[RowBox[List["d", "-", RowBox[List["\[ImaginaryI]", " ", "e"]], "-", RowBox[List["c", " ", "\[Beta]"]]]], "c"], ",", RowBox[List["-", "\[Beta]"]], ",", RowBox[List["-", "\[Beta]"]], ",", RowBox[List["1", "+", FractionBox[RowBox[List["d", "-", RowBox[List["\[ImaginaryI]", " ", "e"]], "-", RowBox[List["c", " ", "\[Beta]"]]]], "c"]]], ",", RowBox[List["-", FractionBox[RowBox[List["2", " ", "b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", SqrtBox[RowBox[List[RowBox[List["4", " ", SuperscriptBox["a", "2"]]], "-", RowBox[List["4", " ", SuperscriptBox["b", "2"]]]]]]]]]]], ",", FractionBox[RowBox[List["2", " ", "b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "+", SqrtBox[RowBox[List[RowBox[List["4", " ", SuperscriptBox["a", "2"]]], "-", RowBox[List["4", " ", SuperscriptBox["b", "2"]]]]]]]]]]], "]"]]]], RowBox[List["d", "-", RowBox[List["\[ImaginaryI]", " ", "e"]], "-", RowBox[List["c", " ", "\[Beta]"]]]]], "+", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "d"]], "+", RowBox[List["\[ImaginaryI]", " ", "e"]]]], ")"]], " ", "z"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", FractionBox[RowBox[List["2", " ", "b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "+", SqrtBox[RowBox[List[RowBox[List["4", " ", SuperscriptBox["a", "2"]]], "-", RowBox[List["4", " ", SuperscriptBox["b", "2"]]]]]]]]]]], ")"]], RowBox[List["-", "\[Beta]"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List["2", " ", "b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", SqrtBox[RowBox[List[RowBox[List["4", " ", SuperscriptBox["a", "2"]]], "-", RowBox[List["4", " ", SuperscriptBox["b", "2"]]]]]]]]]]], ")"]], RowBox[List["-", "\[Beta]"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", RowBox[List[FractionBox["1", "2"], " ", "b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "c"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]], ")"]]]]]], ")"]], "\[Beta]"], " ", RowBox[List["AppellF1", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", RowBox[List["\[ImaginaryI]", " ", "e"]], "-", RowBox[List["c", " ", "\[Beta]"]]]], "c"], ",", RowBox[List["-", "\[Beta]"]], ",", RowBox[List["-", "\[Beta]"]], ",", RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", RowBox[List["\[ImaginaryI]", " ", "e"]], "-", RowBox[List["c", " ", "\[Beta]"]]]], "c"]]], ",", RowBox[List["-", FractionBox[RowBox[List["2", " ", "b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", SqrtBox[RowBox[List[RowBox[List["4", " ", SuperscriptBox["a", "2"]]], "-", RowBox[List["4", " ", SuperscriptBox["b", "2"]]]]]]]]]]], ",", FractionBox[RowBox[List["2", " ", "b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "+", SqrtBox[RowBox[List[RowBox[List["4", " ", SuperscriptBox["a", "2"]]], "-", RowBox[List["4", " ", SuperscriptBox["b", "2"]]]]]]]]]]], "]"]]]], RowBox[List[RowBox[List["-", "d"]], "+", RowBox[List["\[ImaginaryI]", " ", "e"]], "-", RowBox[List["c", " ", "\[Beta]"]]]]], "-", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", "e"]]]], ")"]], " ", "z"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", FractionBox[RowBox[List["2", " ", "b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "+", SqrtBox[RowBox[List[RowBox[List["4", " ", SuperscriptBox["a", "2"]]], "-", RowBox[List["4", " ", SuperscriptBox["b", "2"]]]]]]]]]]], ")"]], RowBox[List["-", "\[Beta]"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List["2", " ", "b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", SqrtBox[RowBox[List[RowBox[List["4", " ", SuperscriptBox["a", "2"]]], "-", RowBox[List["4", " ", SuperscriptBox["b", "2"]]]]]]]]]]], ")"]], RowBox[List["-", "\[Beta]"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", RowBox[List[FractionBox["1", "2"], " ", "b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "c"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]], ")"]]]]]], ")"]], "\[Beta]"], " ", RowBox[List["AppellF1", "[", RowBox[List[FractionBox[RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", "e"]], "-", RowBox[List["c", " ", "\[Beta]"]]]], "c"], ",", RowBox[List["-", "\[Beta]"]], ",", RowBox[List["-", "\[Beta]"]], ",", RowBox[List["1", "+", FractionBox[RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", "e"]], "-", RowBox[List["c", " ", "\[Beta]"]]]], "c"]]], ",", RowBox[List["-", FractionBox[RowBox[List["2", " ", "b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", SqrtBox[RowBox[List[RowBox[List["4", " ", SuperscriptBox["a", "2"]]], "-", RowBox[List["4", " ", SuperscriptBox["b", "2"]]]]]]]]]]], ",", FractionBox[RowBox[List["2", " ", "b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "+", SqrtBox[RowBox[List[RowBox[List["4", " ", SuperscriptBox["a", "2"]]], "-", RowBox[List["4", " ", SuperscriptBox["b", "2"]]]]]]]]]]], "]"]]]], RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", "e"]], "-", RowBox[List["c", " ", "\[Beta]"]]]]]]], ")"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18