| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/01.20.21.4843.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Integrate[z^n E^(p Sqrt[z]) Sinh[b z]^m Cosh[c z]^v, z] == 
  ((-I^m) 2^(1 - m - v) Binomial[m, m/2] Binomial[v, v/2] (1 - Mod[m, 2]) 
     (1 - Mod[v, 2]) Gamma[2 (1 + n), (-p) Sqrt[z]])/p^(2 (1 + n)) + 
   I^m 2^(-1 - m - v - 2 n) Binomial[m, m/2] (1 - Mod[m, 2]) 
    Sum[(Binomial[v, s] E^(p^2/(-8 c s + 4 c v)) 
       ((c (-2 s + v))^(2 n) Sum[(-1)^(-h + k) 4^k p^(-h - k + 2 n) 
           (p + 2 c (2 s - v) Sqrt[z])^(h + k) 
           (-((p + 2 c (2 s - v) Sqrt[z])^2/(c (2 s - v))))^
            ((1/2) (-1 - h - k)) Binomial[k, h] Binomial[n, k] 
           (p (p + 2 c (2 s - v) Sqrt[z]) Gamma[(1/2) (1 + h + k), 
              -((p + 2 c (2 s - v) Sqrt[z])^2/(c (8 s - 4 v)))] + 
            2 c (2 s - v) Sqrt[-((p + 2 c (2 s - v) Sqrt[z])^2/
                (c (2 s - v)))] Gamma[(1/2) (2 + h + k), 
              -((p + 2 c (2 s - v) Sqrt[z])^2/(c (8 s - 4 v)))]), {k, 0, n}, 
          {h, 0, k}] + E^(p^2/(4 c s - 2 c v)) (c (2 s - v))^(2 n) 
         Sum[(-1)^(-h + k) 4^k p^(-h - k + 2 n) (p + 2 c (-2 s + v) Sqrt[z])^
            (h + k) (-((p + 2 c (-2 s + v) Sqrt[z])^2/(c (-2 s + v))))^
            ((1/2) (-1 - h - k)) Binomial[k, h] Binomial[n, k] 
           (p (p + 2 c (-2 s + v) Sqrt[z]) Gamma[(1/2) (1 + h + k), 
              (p + 2 c (-2 s + v) Sqrt[z])^2/(c (8 s - 4 v))] + 
            2 c (-2 s + v) Sqrt[(p + 2 c (-2 s + v) Sqrt[z])^2/(c (2 s - v))] 
             Gamma[(1/2) (2 + h + k), (p + 2 c (-2 s + v) Sqrt[z])^2/(c 
                (8 s - 4 v))]), {k, 0, n}, {h, 0, k}]))/
      ((c (2 s - v))^(2 n) (c (-2 s + v))^(2 (1 + n))), 
     {s, 0, Floor[(1/2) (-1 + v)]}] - 2^(-1 - m - v - 2 n) Binomial[v, v/2] 
    (1 - Mod[v, 2]) Sum[(-1)^u Binomial[m, u] E^(p^2/(-4 b m + 8 b u)) 
      ((-b^2) (m - 2 u)^2)^(-1 - 2 n) ((-1)^m E^(p^2/(2 b m - 4 b u)) 
        (b (m - 2 u))^(2 n) Sum[(-1)^(-h + k) 4^k p^(-h - k + 2 n) 
          (p - 2 b (m - 2 u) Sqrt[z])^(h + k) ((p - 2 b (m - 2 u) Sqrt[z])^2/
            (b (m - 2 u)))^((1/2) (-1 - h - k)) Binomial[k, h] Binomial[n, k] 
          (p (p - 2 b (m - 2 u) Sqrt[z]) Gamma[(1/2) (1 + h + k), 
             (p - 2 b (m - 2 u) Sqrt[z])^2/(4 b (m - 2 u))] - 
           2 b (m - 2 u) Sqrt[(p - 2 b (m - 2 u) Sqrt[z])^2/(b (m - 2 u))] 
            Gamma[(1/2) (2 + h + k), (p - 2 b (m - 2 u) Sqrt[z])^2/
              (4 b (m - 2 u))]), {k, 0, n}, {h, 0, k}] + 
       ((-b) (m - 2 u))^(2 n) Sum[(-1)^(-h + k) 4^k p^(-h - k + 2 n) 
          (p + 2 b (m - 2 u) Sqrt[z])^(h + k) 
          (-((p + 2 b (m - 2 u) Sqrt[z])^2/(b (m - 2 u))))^
           ((1/2) (-1 - h - k)) Binomial[k, h] Binomial[n, k] 
          (p (p + 2 b (m - 2 u) Sqrt[z]) Gamma[(1/2) (1 + h + k), 
             -((p + 2 b (m - 2 u) Sqrt[z])^2/(4 b (m - 2 u)))] + 
           2 b (m - 2 u) Sqrt[-((p + 2 b (m - 2 u) Sqrt[z])^2/(b (m - 2 u)))] 
            Gamma[(1/2) (2 + h + k), -((p + 2 b (m - 2 u) Sqrt[z])^2/(4 b 
                (m - 2 u)))]), {k, 0, n}, {h, 0, k}]), 
     {u, 0, Floor[(1/2) (-1 + m)]}] + 2^(-1 - m - v - 2 n) 
    Sum[Binomial[v, s] Sum[(-1)^u Binomial[m, u] 
        ((E^(p^2/(-4 b m - 8 c s + 8 b u + 4 c v)) 
           Sum[(-1)^(-h + k) 4^k p^(-h - k + 2 n) 
             (p + 2 (b m + 2 c s - 2 b u - c v) Sqrt[z])^(h + k) 
             (-((p + 2 (b m + 2 c s - 2 b u - c v) Sqrt[z])^2/(b m + 2 c s - 
                 2 b u - c v)))^((1/2) (-1 - h - k)) Binomial[k, h] 
             Binomial[n, k] (p (p + 2 (b m + 2 c s - 2 b u - c v) Sqrt[z]) 
               Gamma[(1/2) (1 + h + k), -(p + 2 (b m + 2 c s - 2 b u - c v) 
                     Sqrt[z])^2/(8 c s + 4 b (m - 2 u) - 4 c v)] + 
              2 (b m + 2 c s - 2 b u - c v) Sqrt[-(p + 2 (b m + 2 c s - 
                      2 b u - c v) Sqrt[z])^2/(b m + 2 c s - 2 b u - c v)] 
               Gamma[(1/2) (2 + h + k), -(p + 2 (b m + 2 c s - 2 b u - c v) 
                     Sqrt[z])^2/(8 c s + 4 b (m - 2 u) - 4 c v)]), {k, 0, n}, 
            {h, 0, k}])/(b m + 2 c s - 2 b u - c v)^(2 (1 + n)) + 
         ((-1)^m E^(p^2/(4 b m - 8 c s - 8 b u + 4 c v)) 
           Sum[(-1)^(-h + k) 4^k p^(-h - k + 2 n) 
             (p - 2 (b m - 2 c s - 2 b u + c v) Sqrt[z])^(h + k) 
             ((p - 2 (b m - 2 c s - 2 b u + c v) Sqrt[z])^2/(b m - 2 c s - 
                2 b u + c v))^((1/2) (-1 - h - k)) Binomial[k, h] 
             Binomial[n, k] (p (p - 2 (b m - 2 c s - 2 b u + c v) Sqrt[z]) 
               Gamma[(1/2) (1 + h + k), (p - 2 (b m - 2 c s - 2 b u + c v) 
                    Sqrt[z])^2/(4 (b m - 2 c s - 2 b u + c v))] - 
              2 (b m - 2 c s - 2 b u + c v) Sqrt[(p - 2 (b m - 2 c s - 
                     2 b u + c v) Sqrt[z])^2/(b m - 2 c s - 2 b u + c v)] 
               Gamma[(1/2) (2 + h + k), (p - 2 (b m - 2 c s - 2 b u + c v) 
                    Sqrt[z])^2/(4 (b m - 2 c s - 2 b u + c v))]), {k, 0, n}, 
            {h, 0, k}])/((-b) m + 2 c s + 2 b u - c v)^(2 (1 + n)) + 
         (E^(p^2/(-4 b m + 8 c s + 8 b u - 4 c v)) 
           Sum[(-1)^(-h + k) 4^k p^(-h - k + 2 n) 
             (p + 2 (b m - 2 c s - 2 b u + c v) Sqrt[z])^(h + k) 
             (-((p + 2 (b m - 2 c s - 2 b u + c v) Sqrt[z])^2/(b m - 2 c s - 
                 2 b u + c v)))^((1/2) (-1 - h - k)) Binomial[k, h] 
             Binomial[n, k] (p (p + 2 (b m - 2 c s - 2 b u + c v) Sqrt[z]) 
               Gamma[(1/2) (1 + h + k), -(p + 2 (b m - 2 c s - 2 b u + c v) 
                     Sqrt[z])^2/(4 (b m - 2 c s - 2 b u + c v))] + 
              2 (b m - 2 c s - 2 b u + c v) Sqrt[-(p + 2 (b m - 2 c s - 
                      2 b u + c v) Sqrt[z])^2/(b m - 2 c s - 2 b u + c v)] 
               Gamma[(1/2) (2 + h + k), -(p + 2 (b m - 2 c s - 2 b u + c v) 
                     Sqrt[z])^2/(4 (b m - 2 c s - 2 b u + c v))]), {k, 0, n}, 
            {h, 0, k}])/(b m - 2 c s - 2 b u + c v)^(2 (1 + n)) + 
         ((-1)^m E^(p^2/(4 b m + 8 c s - 8 b u - 4 c v)) 
           Sum[(-1)^(-h + k) 4^k p^(-h - k + 2 n) (p + 2 ((-b) m - 2 c s + 
                 2 b u + c v) Sqrt[z])^(h + k) 
             ((p + 2 ((-b) m - 2 c s + 2 b u + c v) Sqrt[z])^2/(b m + 2 c s - 
                2 b u - c v))^((1/2) (-1 - h - k)) Binomial[k, h] 
             Binomial[n, k] (p (p + 2 ((-b) m - 2 c s + 2 b u + c v) Sqrt[z]) 
               Gamma[(1/2) (1 + h + k), (p + 2 ((-b) m - 2 c s + 2 b u + c v) 
                    Sqrt[z])^2/(4 b m + 8 c s - 8 b u - 4 c v)] + 
              2 ((-b) m - 2 c s + 2 b u + c v) Sqrt[
                (p + 2 ((-b) m - 2 c s + 2 b u + c v) Sqrt[z])^2/
                 (b m + 2 c s - 2 b u - c v)] Gamma[(1/2) (2 + h + k), 
                (p + 2 ((-b) m - 2 c s + 2 b u + c v) Sqrt[z])^2/
                 (4 b m + 8 c s - 8 b u - 4 c v)]), {k, 0, n}, {h, 0, k}])/
          ((-b) m - 2 c s + 2 b u + c v)^(2 (1 + n))), 
       {u, 0, Floor[(1/2) (-1 + m)]}], {s, 0, Floor[(1/2) (-1 + v)]}] /; 
 Element[m, Integers] && m > 0 && Element[v, Integers] && v > 0 && 
  Element[n, Integers] && n >= 0 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["z", "n"], SuperscriptBox["\[ExponentialE]", RowBox[List["p", " ", SqrtBox["z"]]]], " ", SuperscriptBox[RowBox[List["Sinh", "[", RowBox[List["b", " ", "z"]], "]"]], "m"], " ", SuperscriptBox[RowBox[List["Cosh", "[", RowBox[List["c", " ", "z"]], "]"]], "v"], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox["\[ImaginaryI]", "m"]]], " ", SuperscriptBox["2", RowBox[List["1", "-", "m", "-", "v"]]], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", FractionBox["m", "2"]]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List["v", ",", FractionBox["v", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["m", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["v", ",", "2"]], "]"]]]], ")"]], SuperscriptBox["p", RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]]]]], RowBox[List["Gamma", "[", RowBox[List[RowBox[List["2", " ", RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]]]], ",", RowBox[List[RowBox[List["-", "p"]], " ", SqrtBox["z"]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox["\[ImaginaryI]", "m"], " ", SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", "m", "-", "v", "-", RowBox[List["2", "n"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", FractionBox["m", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["m", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["s", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "v"]], ")"]]]], "]"]]], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["v", ",", "s"]], "]"]], " ", SuperscriptBox["\[ExponentialE]", FractionBox[SuperscriptBox["p", "2"], RowBox[List[RowBox[List[RowBox[List["-", "8"]], " ", "c", " ", "s"]], "+", RowBox[List["4", " ", "c", " ", "v"]]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "s"]], "-", "v"]], ")"]]]], ")"]], RowBox[List[RowBox[List["-", "2"]], " ", "n"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]], ")"]], RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]], ")"]], RowBox[List["2", " ", "n"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "n"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["h", "=", "0"]], "k"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["-", "h"]], "+", "k"]]], " ", SuperscriptBox["4", "k"], " ", SuperscriptBox["p", RowBox[List[RowBox[List["-", "h"]], "-", "k", "+", RowBox[List["2", " ", "n"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "s"]], "-", "v"]], ")"]], " ", SqrtBox["z"]]]]], ")"]], RowBox[List["h", "+", "k"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "s"]], "-", "v"]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "s"]], "-", "v"]], ")"]]]]]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "h", "-", "k"]], ")"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["k", ",", "h"]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List["n", ",", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["p", " ", RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "s"]], "-", "v"]], ")"]], " ", SqrtBox["z"]]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "+", "h", "+", "k"]], ")"]]]], ",", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "s"]], "-", "v"]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["8", " ", "s"]], "-", RowBox[List["4", " ", "v"]]]], ")"]]]]]]]]], "]"]]]], "+", RowBox[List["2", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "s"]], "-", "v"]], ")"]], " ", SqrtBox[RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "s"]], "-", "v"]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "s"]], "-", "v"]], ")"]]]]]]]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "+", "h", "+", "k"]], ")"]]]], ",", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "s"]], "-", "v"]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["8", " ", "s"]], "-", RowBox[List["4", " ", "v"]]]], ")"]]]]]]]]], "]"]]]]]], ")"]]]]]]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox[SuperscriptBox["p", "2"], RowBox[List[RowBox[List["4", " ", "c", " ", "s"]], "-", RowBox[List["2", " ", "c", " ", "v"]]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "s"]], "-", "v"]], ")"]]]], ")"]], RowBox[List["2", " ", "n"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "n"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["h", "=", "0"]], "k"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["-", "h"]], "+", "k"]]], " ", SuperscriptBox["4", "k"], " ", SuperscriptBox["p", RowBox[List[RowBox[List["-", "h"]], "-", "k", "+", RowBox[List["2", " ", "n"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]], " ", SqrtBox["z"]]]]], ")"]], RowBox[List["h", "+", "k"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]]]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "h", "-", "k"]], ")"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["k", ",", "h"]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List["n", ",", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["p", " ", RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]], " ", SqrtBox["z"]]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "+", "h", "+", "k"]], ")"]]]], ",", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["8", " ", "s"]], "-", RowBox[List["4", " ", "v"]]]], ")"]]]]]]], "]"]]]], "+", RowBox[List["2", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]], " ", SqrtBox[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "s"]], "-", "v"]], ")"]]]]]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "+", "h", "+", "k"]], ")"]]]], ",", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["8", " ", "s"]], "-", RowBox[List["4", " ", "v"]]]], ")"]]]]]]], "]"]]]]]], ")"]]]]]]]]]]]], ")"]]]]]]]], "-", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", "m", "-", "v", "-", RowBox[List["2", "n"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["v", ",", FractionBox["v", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["v", ",", "2"]], "]"]]]], ")"]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["u", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "u"], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", "u"]], "]"]], "  ", SuperscriptBox["\[ExponentialE]", FractionBox[SuperscriptBox["p", "2"], RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", "b", " ", "m"]], "+", RowBox[List["8", " ", "b", " ", "u"]]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "u"]]]], ")"]], "2"]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["2", " ", "n"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "m"], SuperscriptBox["\[ExponentialE]", FractionBox[SuperscriptBox["p", "2"], RowBox[List[RowBox[List["2", " ", "b", " ", "m"]], "-", RowBox[List["4", " ", "b", " ", "u"]]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "u"]]]], ")"]]]], ")"]], RowBox[List["2", " ", "n"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "n"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["h", "=", "0"]], "k"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["-", "h"]], "+", "k"]]], " ", SuperscriptBox["4", "k"], " ", SuperscriptBox["p", RowBox[List[RowBox[List["-", "h"]], "-", "k", "+", RowBox[List["2", " ", "n"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["p", "-", RowBox[List["2", " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "u"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], RowBox[List["h", "+", "k"]]], " ", SuperscriptBox[RowBox[List["(", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["p", "-", RowBox[List["2", " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "u"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List["b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "u"]]]], ")"]]]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "h", "-", "k"]], ")"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["k", ",", "h"]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List["n", ",", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["p", " ", RowBox[List["(", RowBox[List["p", "-", RowBox[List["2", " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "u"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "+", "h", "+", "k"]], ")"]]]], ",", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["p", "-", RowBox[List["2", " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "u"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List["4", " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "u"]]]], ")"]]]]]]], "]"]]]], "-", RowBox[List["2", " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "u"]]]], ")"]], " ", SqrtBox[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["p", "-", RowBox[List["2", " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "u"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List["b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "u"]]]], ")"]]]]]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "+", "h", "+", "k"]], ")"]]]], ",", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["p", "-", RowBox[List["2", " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "u"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List["4", " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "u"]]]], ")"]]]]]]], "]"]]]]]], ")"]]]]]]]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "u"]]]], ")"]]]], ")"]], RowBox[List["2", " ", "n"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "n"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["h", "=", "0"]], "k"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["-", "h"]], "+", "k"]]], " ", SuperscriptBox["4", "k"], " ", SuperscriptBox["p", RowBox[List[RowBox[List["-", "h"]], "-", "k", "+", RowBox[List["2", " ", "n"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "u"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], RowBox[List["h", "+", "k"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "u"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List["b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "u"]]]], ")"]]]]]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "h", "-", "k"]], ")"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["k", ",", "h"]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List["n", ",", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["p", " ", RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "u"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "+", "h", "+", "k"]], ")"]]]], ",", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "u"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List["4", " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "u"]]]], ")"]]]]]]]]], "]"]]]], "+", RowBox[List["2", " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "u"]]]], ")"]], " ", SqrtBox[RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "u"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List["b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "u"]]]], ")"]]]]]]]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "+", "h", "+", "k"]], ")"]]]], ",", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "u"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List["4", " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "u"]]]], ")"]]]]]]]]], "]"]]]]]], ")"]]]]]]]]]]]], ")"]]]]]]]], " ", "+", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", "m", "-", "v", "-", RowBox[List["2", "n"]]]]], "  ", RowBox[List["Sum", "[", RowBox[List[RowBox[List[RowBox[List["Binomial", "[", RowBox[List["v", ",", "s"]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["u", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "u"], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", "u"]], "]"]], RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox[SuperscriptBox["p", "2"], RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", "b", " ", "m"]], "-", RowBox[List["8", " ", "c", " ", "s"]], "+", RowBox[List["8", " ", "b", " ", "u"]], "+", RowBox[List["4", " ", "c", " ", "v"]]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["b", " ", "m"]], "+", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["2", " ", "b", " ", "u"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "n"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["h", "=", "0"]], "k"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["-", "h"]], "+", "k"]]], " ", SuperscriptBox["4", "k"], " ", SuperscriptBox["p", RowBox[List[RowBox[List["-", "h"]], "-", "k", "+", RowBox[List["2", " ", "n"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", "m"]], "+", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["2", " ", "b", " ", "u"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], RowBox[List["h", "+", "k"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", "m"]], "+", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["2", " ", "b", " ", "u"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List[RowBox[List["b", " ", "m"]], "+", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["2", " ", "b", " ", "u"]], "-", RowBox[List["c", " ", "v"]]]]]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "h", "-", "k"]], ")"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["k", ",", "h"]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List["n", ",", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["p", " ", RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", "m"]], "+", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["2", " ", "b", " ", "u"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "+", "h", "+", "k"]], ")"]]]], ",", RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", "m"]], "+", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["2", " ", "b", " ", "u"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"]]], "/", RowBox[List["(", RowBox[List[RowBox[List["8", " ", "c", " ", "s"]], "+", RowBox[List["4", " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "u"]]]], ")"]]]], "-", RowBox[List["4", " ", "c", " ", "v"]]]], ")"]]]]]], "]"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", "m"]], "+", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["2", " ", "b", " ", "u"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], " ", RowBox[List["\[Sqrt]", RowBox[List["(", RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", "m"]], "+", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["2", " ", "b", " ", "u"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"]]], "/", RowBox[List["(", RowBox[List[RowBox[List["b", " ", "m"]], "+", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["2", " ", "b", " ", "u"]], "-", RowBox[List["c", " ", "v"]]]], ")"]]]], ")"]]]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "+", "h", "+", "k"]], ")"]]]], ",", RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", "m"]], "+", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["2", " ", "b", " ", "u"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"]]], "/", RowBox[List["(", RowBox[List[RowBox[List["8", " ", "c", " ", "s"]], "+", RowBox[List["4", " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "u"]]]], ")"]]]], "-", RowBox[List["4", " ", "c", " ", "v"]]]], ")"]]]]]], "]"]]]]]], ")"]]]]]]]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "m"], SuperscriptBox["\[ExponentialE]", FractionBox[SuperscriptBox["p", "2"], RowBox[List[RowBox[List["4", " ", "b", " ", "m"]], "-", RowBox[List["8", " ", "c", " ", "s"]], "-", RowBox[List["8", " ", "b", " ", "u"]], "+", RowBox[List["4", " ", "c", " ", "v"]]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", "m"]], "+", RowBox[List["2", " ", "c", " ", "s"]], "+", RowBox[List["2", " ", "b", " ", "u"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "n"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["h", "=", "0"]], "k"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["-", "h"]], "+", "k"]]], " ", SuperscriptBox["4", "k"], " ", SuperscriptBox["p", RowBox[List[RowBox[List["-", "h"]], "-", "k", "+", RowBox[List["2", " ", "n"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["p", "-", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", "m"]], "-", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["2", " ", "b", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], RowBox[List["h", "+", "k"]]], " ", SuperscriptBox[RowBox[List["(", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["p", "-", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", "m"]], "-", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["2", " ", "b", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List[RowBox[List["b", " ", "m"]], "-", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["2", " ", "b", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "h", "-", "k"]], ")"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["k", ",", "h"]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List["n", ",", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["p", " ", RowBox[List["(", RowBox[List["p", "-", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", "m"]], "-", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["2", " ", "b", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "+", "h", "+", "k"]], ")"]]]], ",", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["p", "-", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", "m"]], "-", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["2", " ", "b", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", "m"]], "-", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["2", " ", "b", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]]]]]]], "]"]]]], "-", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", "m"]], "-", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["2", " ", "b", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", RowBox[List["\[Sqrt]", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["p", "-", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", "m"]], "-", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["2", " ", "b", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], "/", RowBox[List["(", RowBox[List[RowBox[List["b", " ", "m"]], "-", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["2", " ", "b", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]]]], ")"]]]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "+", "h", "+", "k"]], ")"]]]], ",", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["p", "-", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", "m"]], "-", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["2", " ", "b", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", "m"]], "-", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["2", " ", "b", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]]]]]]], "]"]]]]]], ")"]]]]]]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox[SuperscriptBox["p", "2"], RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", "b", " ", "m"]], "+", RowBox[List["8", " ", "c", " ", "s"]], "+", RowBox[List["8", " ", "b", " ", "u"]], "-", RowBox[List["4", " ", "c", " ", "v"]]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["b", " ", "m"]], "-", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["2", " ", "b", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "n"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["h", "=", "0"]], "k"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["-", "h"]], "+", "k"]]], " ", SuperscriptBox["4", "k"], " ", SuperscriptBox["p", RowBox[List[RowBox[List["-", "h"]], "-", "k", "+", RowBox[List["2", " ", "n"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", "m"]], "-", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["2", " ", "b", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], RowBox[List["h", "+", "k"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", "m"]], "-", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["2", " ", "b", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List[RowBox[List["b", " ", "m"]], "-", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["2", " ", "b", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]]]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "h", "-", "k"]], ")"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["k", ",", "h"]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List["n", ",", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["p", " ", RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", "m"]], "-", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["2", " ", "b", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "+", "h", "+", "k"]], ")"]]]], ",", RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", "m"]], "-", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["2", " ", "b", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"]]], "/", RowBox[List["(", RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", "m"]], "-", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["2", " ", "b", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]]]], ")"]]]]]], "]"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", "m"]], "-", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["2", " ", "b", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", RowBox[List["\[Sqrt]", RowBox[List["(", RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", "m"]], "-", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["2", " ", "b", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"]]], "/", RowBox[List["(", RowBox[List[RowBox[List["b", " ", "m"]], "-", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["2", " ", "b", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]]]], ")"]]]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "+", "h", "+", "k"]], ")"]]]], ",", RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", "m"]], "-", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["2", " ", "b", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"]]], "/", RowBox[List["(", RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", "m"]], "-", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["2", " ", "b", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]]]], ")"]]]]]], "]"]]]]]], ")"]]]]]]]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "m"], SuperscriptBox["\[ExponentialE]", FractionBox[SuperscriptBox["p", "2"], RowBox[List[RowBox[List["4", " ", "b", " ", "m"]], "+", RowBox[List["8", " ", "c", " ", "s"]], "-", RowBox[List["8", " ", "b", " ", "u"]], "-", RowBox[List["4", " ", "c", " ", "v"]]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", "m"]], "-", RowBox[List["2", " ", "c", " ", "s"]], "+", RowBox[List["2", " ", "b", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "n"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["h", "=", "0"]], "k"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["-", "h"]], "+", "k"]]], " ", SuperscriptBox["4", "k"], " ", SuperscriptBox["p", RowBox[List[RowBox[List["-", "h"]], "-", "k", "+", RowBox[List["2", " ", "n"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", "m"]], "-", RowBox[List["2", " ", "c", " ", "s"]], "+", RowBox[List["2", " ", "b", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], RowBox[List["h", "+", "k"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", "m"]], "-", RowBox[List["2", " ", "c", " ", "s"]], "+", RowBox[List["2", " ", "b", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], "/", RowBox[List["(", RowBox[List[RowBox[List["b", " ", "m"]], "+", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["2", " ", "b", " ", "u"]], "-", RowBox[List["c", " ", "v"]]]], ")"]]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "h", "-", "k"]], ")"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["k", ",", "h"]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List["n", ",", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["p", " ", RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", "m"]], "-", RowBox[List["2", " ", "c", " ", "s"]], "+", RowBox[List["2", " ", "b", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "+", "h", "+", "k"]], ")"]]]], ",", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", "m"]], "-", RowBox[List["2", " ", "c", " ", "s"]], "+", RowBox[List["2", " ", "b", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], "/", RowBox[List["(", RowBox[List[RowBox[List["4", " ", "b", " ", "m"]], "+", RowBox[List["8", " ", "c", " ", "s"]], "-", RowBox[List["8", " ", "b", " ", "u"]], "-", RowBox[List["4", " ", "c", " ", "v"]]]], ")"]]]]]], "]"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", "m"]], "-", RowBox[List["2", " ", "c", " ", "s"]], "+", RowBox[List["2", " ", "b", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", RowBox[List["\[Sqrt]", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", "m"]], "-", RowBox[List["2", " ", "c", " ", "s"]], "+", RowBox[List["2", " ", "b", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], "/", RowBox[List["(", RowBox[List[RowBox[List["b", " ", "m"]], "+", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["2", " ", "b", " ", "u"]], "-", RowBox[List["c", " ", "v"]]]], ")"]]]], ")"]]]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "+", "h", "+", "k"]], ")"]]]], ",", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", "m"]], "-", RowBox[List["2", " ", "c", " ", "s"]], "+", RowBox[List["2", " ", "b", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], "/", RowBox[List["(", RowBox[List[RowBox[List["4", " ", "b", " ", "m"]], "+", RowBox[List["8", " ", "c", " ", "s"]], "-", RowBox[List["8", " ", "b", " ", "u"]], "-", RowBox[List["4", " ", "c", " ", "v"]]]], ")"]]]]]], "]"]]]]]], ")"]]]]]]]]]]]], ")"]]]]]]]], " ", ",", RowBox[List["{", RowBox[List["s", ",", "0", ",", RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "v"]], ")"]]]], "]"]]]], "}"]]]], "]"]]]]]]]], "/;", RowBox[List[RowBox[List["m", "\[Element]", "Integers"]], "\[And]", RowBox[List["m", ">", "0"]], "\[And]", RowBox[List["v", "\[Element]", "Integers"]], "\[And]", RowBox[List["v", ">", "0"]], "\[And]", RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mrow>  <mo> ∫ </mo>  <mrow>  <msup>  <mi> z </mi>  <mi> n </mi>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mi> p </mi>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> sinh </mi>  <mi> m </mi>  </msup>  <mo> ( </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> cosh </mi>  <mi> v </mi>  </msup>  <mo> ( </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ⅆ </mo>  <mi> z </mi>  </mrow>  </mrow>  </mrow>  <mo> ⩵ </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <msup>  <mi> ⅈ </mi>  <mi> m </mi>  </msup>  </mrow>  <mo> ⁢ </mo>  <msup>  <mn> 2 </mn>  <mrow>  <mrow>  <mo> - </mo>  <mi> m </mi>  </mrow>  <mo> - </mo>  <mi> v </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mi> m </mi>  </mtd>  </mtr>  <mtr>  <mtd>  <mfrac>  <mi> m </mi>  <mn> 2 </mn>  </mfrac>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["m", Identity]], List[TagBox[FractionBox["m", "2"], Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation>  </semantics>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mi> v </mi>  </mtd>  </mtr>  <mtr>  <mtd>  <mfrac>  <mi> v </mi>  <mn> 2 </mn>  </mfrac>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["v", Identity]], List[TagBox[FractionBox["v", "2"], Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation>  </semantics>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <semantics>  <mrow>  <mi> m </mi>  <mo> ⁢ </mo>  <mi> mod </mi>  <mo> ⁢ </mo>  <mn> 2 </mn>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <rem />  <ci> $CellContext`m </ci>  <cn type='integer'> 2 </cn>  </apply>  </annotation-xml>  </semantics>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <semantics>  <mrow>  <mi> v </mi>  <mo> ⁢ </mo>  <mi> mod </mi>  <mo> ⁢ </mo>  <mn> 2 </mn>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <rem />  <ci> $CellContext`v </ci>  <cn type='integer'> 2 </cn>  </apply>  </annotation-xml>  </semantics>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> p </mi>  <mrow>  <mrow>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> n </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> n </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> , </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> p </mi>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <msup>  <mi> ⅈ </mi>  <mi> m </mi>  </msup>  <mo> ⁢ </mo>  <msup>  <mn> 2 </mn>  <mrow>  <mrow>  <mo> - </mo>  <mi> m </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> n </mi>  </mrow>  <mo> - </mo>  <mi> v </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mi> m </mi>  </mtd>  </mtr>  <mtr>  <mtd>  <mfrac>  <mi> m </mi>  <mn> 2 </mn>  </mfrac>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["m", Identity]], List[TagBox[FractionBox["m", "2"], Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation>  </semantics>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <semantics>  <mrow>  <mi> m </mi>  <mo> ⁢ </mo>  <mi> mod </mi>  <mo> ⁢ </mo>  <mn> 2 </mn>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <rem />  <ci> $CellContext`m </ci>  <cn type='integer'> 2 </cn>  </apply>  </annotation-xml>  </semantics>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> s </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mrow>  <mo> ⌊ </mo>  <mfrac>  <mrow>  <mi> v </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mn> 2 </mn>  </mfrac>  <mo> ⌋ </mo>  </mrow>  </munderover>  <mrow>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mi> v </mi>  </mtd>  </mtr>  <mtr>  <mtd>  <mi> s </mi>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["v", Identity]], List[TagBox["s", Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation>  </semantics>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mfrac>  <msup>  <mi> p </mi>  <mn> 2 </mn>  </msup>  <mrow>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 8 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  </mfrac>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> - </mo>  <mi> v </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mrow>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  <mo> ⁢ </mo>  <mi> n </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> v </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mrow>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> n </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <msup>  <mi> ⅇ </mi>  <mfrac>  <msup>  <mi> p </mi>  <mn> 2 </mn>  </msup>  <mrow>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  </mfrac>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> - </mo>  <mi> v </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> n </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mi> n </mi>  </munderover>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> h </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mi> k </mi>  </munderover>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> k </mi>  <mo> - </mo>  <mi> h </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mn> 4 </mn>  <mi> k </mi>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> p </mi>  <mrow>  <mrow>  <mo> - </mo>  <mi> h </mi>  </mrow>  <mo> - </mo>  <mi> k </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> n </mi>  </mrow>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> p </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> v </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> h </mi>  <mo> + </mo>  <mi> k </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mfrac>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> p </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> v </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> v </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> h </mi>  </mrow>  <mo> - </mo>  <mi> k </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </msup>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mi> k </mi>  </mtd>  </mtr>  <mtr>  <mtd>  <mi> h </mi>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["k", Identity]], List[TagBox["h", Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation>  </semantics>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mi> n </mi>  </mtd>  </mtr>  <mtr>  <mtd>  <mi> k </mi>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["n", Identity]], List[TagBox["k", Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation>  </semantics>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> p </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> p </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> v </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> h </mi>  <mo> + </mo>  <mi> k </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> , </mo>  <mfrac>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> p </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> v </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 8 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <msqrt>  <mfrac>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> p </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> v </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> - </mo>  <mi> v </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> v </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> h </mi>  <mo> + </mo>  <mi> k </mi>  <mo> + </mo>  <mn> 2 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> , </mo>  <mfrac>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> p </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> v </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 8 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> v </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> n </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mi> n </mi>  </munderover>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> h </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mi> k </mi>  </munderover>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> k </mi>  <mo> - </mo>  <mi> h </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mn> 4 </mn>  <mi> k </mi>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> p </mi>  <mrow>  <mrow>  <mo> - </mo>  <mi> h </mi>  </mrow>  <mo> - </mo>  <mi> k </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> n </mi>  </mrow>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> p </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> - </mo>  <mi> v </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> h </mi>  <mo> + </mo>  <mi> k </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mfrac>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> p </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> - </mo>  <mi> v </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> - </mo>  <mi> v </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> h </mi>  </mrow>  <mo> - </mo>  <mi> k </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </msup>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mi> k </mi>  </mtd>  </mtr>  <mtr>  <mtd>  <mi> h </mi>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["k", Identity]], List[TagBox["h", Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation>  </semantics>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mi> n </mi>  </mtd>  </mtr>  <mtr>  <mtd>  <mi> k </mi>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["n", Identity]], List[TagBox["k", Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation>  </semantics>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> p </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> p </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> - </mo>  <mi> v </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> h </mi>  <mo> + </mo>  <mi> k </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> , </mo>  <mrow>  <mo> - </mo>  <mfrac>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> p </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> - </mo>  <mi> v </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 8 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> - </mo>  <mi> v </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mo> - </mo>  <mfrac>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> p </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> - </mo>  <mi> v </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> - </mo>  <mi> v </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> h </mi>  <mo> + </mo>  <mi> k </mi>  <mo> + </mo>  <mn> 2 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> , </mo>  <mrow>  <mo> - </mo>  <mfrac>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> p </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> - </mo>  <mi> v </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 8 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <msup>  <mn> 2 </mn>  <mrow>  <mrow>  <mo> - </mo>  <mi> m </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> n </mi>  </mrow>  <mo> - </mo>  <mi> v </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mi> v </mi>  </mtd>  </mtr>  <mtr>  <mtd>  <mfrac>  <mi> v </mi>  <mn> 2 </mn>  </mfrac>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["v", Identity]], List[TagBox[FractionBox["v", "2"], Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation>  </semantics>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <semantics>  <mrow>  <mi> v </mi>  <mo> ⁢ </mo>  <mi> mod </mi>  <mo> ⁢ </mo>  <mn> 2 </mn>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <rem />  <ci> $CellContext`v </ci>  <cn type='integer'> 2 </cn>  </apply>  </annotation-xml>  </semantics>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> u </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mrow>  <mo> ⌊ </mo>  <mfrac>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mn> 2 </mn>  </mfrac>  <mo> ⌋ </mo>  </mrow>  </munderover>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mi> u </mi>  </msup>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mi> m </mi>  </mtd>  </mtr>  <mtr>  <mtd>  <mi> u </mi>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["m", Identity]], List[TagBox["u", Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation>  </semantics>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mfrac>  <msup>  <mi> p </mi>  <mn> 2 </mn>  </msup>  <mrow>  <mrow>  <mn> 8 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  </mrow>  </mfrac>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <msup>  <mi> b </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  <mo> ⁢ </mo>  <mi> n </mi>  </mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> b </mi>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> n </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mi> n </mi>  </munderover>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> h </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mi> k </mi>  </munderover>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> k </mi>  <mo> - </mo>  <mi> h </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mn> 4 </mn>  <mi> k </mi>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> p </mi>  <mrow>  <mrow>  <mo> - </mo>  <mi> h </mi>  </mrow>  <mo> - </mo>  <mi> k </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> n </mi>  </mrow>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> p </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> h </mi>  <mo> + </mo>  <mi> k </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mfrac>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> p </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> h </mi>  </mrow>  <mo> - </mo>  <mi> k </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </msup>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mi> k </mi>  </mtd>  </mtr>  <mtr>  <mtd>  <mi> h </mi>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["k", Identity]], List[TagBox["h", Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation>  </semantics>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mi> n </mi>  </mtd>  </mtr>  <mtr>  <mtd>  <mi> k </mi>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["n", Identity]], List[TagBox["k", Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation>  </semantics>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> p </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> p </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> h </mi>  <mo> + </mo>  <mi> k </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> , </mo>  <mrow>  <mo> - </mo>  <mfrac>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> p </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mo> - </mo>  <mfrac>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> p </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> h </mi>  <mo> + </mo>  <mi> k </mi>  <mo> + </mo>  <mn> 2 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> , </mo>  <mrow>  <mo> - </mo>  <mfrac>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> p </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mi> m </mi>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mfrac>  <msup>  <mi> p </mi>  <mn> 2 </mn>  </msup>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  </mrow>  </mfrac>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> n </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mi> n </mi>  </munderover>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> h </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mi> k </mi>  </munderover>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> k </mi>  <mo> - </mo>  <mi> h </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mn> 4 </mn>  <mi> k </mi>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> p </mi>  <mrow>  <mrow>  <mo> - </mo>  <mi> h </mi>  </mrow>  <mo> - </mo>  <mi> k </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> n </mi>  </mrow>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> p </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> h </mi>  <mo> + </mo>  <mi> k </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mfrac>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> p </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  <mo> ) </mo>  </mrow>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> h </mi>  </mrow>  <mo> - </mo>  <mi> k </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </msup>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mi> k </mi>  </mtd>  </mtr>  <mtr>  <mtd>  <mi> h </mi>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["k", Identity]], List[TagBox["h", Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation>  </semantics>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mi> n </mi>  </mtd>  </mtr>  <mtr>  <mtd>  <mi> k </mi>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["n", Identity]], List[TagBox["k", Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation>  </semantics>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> p </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> p </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> h </mi>  <mo> + </mo>  <mi> k </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> , </mo>  <mfrac>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> p </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mfrac>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> p </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> h </mi>  <mo> + </mo>  <mi> k </mi>  <mo> + </mo>  <mn> 2 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> , </mo>  <mfrac>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> p </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <msup>  <mn> 2 </mn>  <mrow>  <mrow>  <mo> - </mo>  <mi> m </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> n </mi>  </mrow>  <mo> - </mo>  <mi> v </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> s </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mrow>  <mo> ⌊ </mo>  <mfrac>  <mrow>  <mi> v </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mn> 2 </mn>  </mfrac>  <mo> ⌋ </mo>  </mrow>  </munderover>  <mrow>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mi> v </mi>  </mtd>  </mtr>  <mtr>  <mtd>  <mi> s </mi>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["v", Identity]], List[TagBox["s", Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation>  </semantics>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> u </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mrow>  <mo> ⌊ </mo>  <mfrac>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mn> 2 </mn>  </mfrac>  <mo> ⌋ </mo>  </mrow>  </munderover>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mi> u </mi>  </msup>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mi> m </mi>  </mtd>  </mtr>  <mtr>  <mtd>  <mi> u </mi>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["m", Identity]], List[TagBox["u", Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation>  </semantics>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mi> m </mi>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mfrac>  <msup>  <mi> p </mi>  <mn> 2 </mn>  </msup>  <mrow>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> + </mo>  <mrow>  <mn> 8 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 8 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  </mfrac>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mi> b </mi>  </mrow>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mrow>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> n </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mi> n </mi>  </munderover>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> h </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mi> k </mi>  </munderover>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> k </mi>  <mo> - </mo>  <mi> h </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mn> 4 </mn>  <mi> k </mi>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> p </mi>  <mrow>  <mrow>  <mo> - </mo>  <mi> h </mi>  </mrow>  <mo> - </mo>  <mi> k </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> n </mi>  </mrow>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> p </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mi> b </mi>  </mrow>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> h </mi>  <mo> + </mo>  <mi> k </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mfrac>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> p </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mi> b </mi>  </mrow>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mrow>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  </mfrac>  <mo> ) </mo>  </mrow>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> h </mi>  </mrow>  <mo> - </mo>  <mi> k </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </msup>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mi> k </mi>  </mtd>  </mtr>  <mtr>  <mtd>  <mi> h </mi>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["k", Identity]], List[TagBox["h", Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation>  </semantics>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mi> n </mi>  </mtd>  </mtr>  <mtr>  <mtd>  <mi> k </mi>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["n", Identity]], List[TagBox["k", Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation>  </semantics>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> p </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> p </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mi> b </mi>  </mrow>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> h </mi>  <mo> + </mo>  <mi> k </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> , </mo>  <mfrac>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> p </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mi> b </mi>  </mrow>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mrow>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> + </mo>  <mrow>  <mn> 8 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 8 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mi> b </mi>  </mrow>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> h </mi>  <mo> + </mo>  <mi> k </mi>  <mo> + </mo>  <mn> 2 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> , </mo>  <mfrac>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> p </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mi> b </mi>  </mrow>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mrow>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> + </mo>  <mrow>  <mn> 8 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 8 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mfrac>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> p </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mi> b </mi>  </mrow>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mrow>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  </mfrac>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mi> m </mi>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mfrac>  <msup>  <mi> p </mi>  <mn> 2 </mn>  </msup>  <mrow>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 8 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 8 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  <mo> + </mo>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  </mfrac>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mi> b </mi>  </mrow>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mrow>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> n </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mi> n </mi>  </munderover>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> h </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mi> k </mi>  </munderover>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> k </mi>  <mo> - </mo>  <mi> h </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mn> 4 </mn>  <mi> k </mi>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> p </mi>  <mrow>  <mrow>  <mo> - </mo>  <mi> h </mi>  </mrow>  <mo> - </mo>  <mi> k </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> n </mi>  </mrow>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> p </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> h </mi>  <mo> + </mo>  <mi> k </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mfrac>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> p </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mrow>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  </mfrac>  <mo> ) </mo>  </mrow>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> h </mi>  </mrow>  <mo> - </mo>  <mi> k </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </msup>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mi> k </mi>  </mtd>  </mtr>  <mtr>  <mtd>  <mi> h </mi>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["k", Identity]], List[TagBox["h", Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation>  </semantics>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mi> n </mi>  </mtd>  </mtr>  <mtr>  <mtd>  <mi> k </mi>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["n", Identity]], List[TagBox["k", Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation>  </semantics>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> p </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> p </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> h </mi>  <mo> + </mo>  <mi> k </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> , </mo>  <mfrac>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> p </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mfrac>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> p </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mrow>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  </mfrac>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> h </mi>  <mo> + </mo>  <mi> k </mi>  <mo> + </mo>  <mn> 2 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> , </mo>  <mfrac>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> p </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <msup>  <mi> ⅇ </mi>  <mfrac>  <msup>  <mi> p </mi>  <mn> 2 </mn>  </msup>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mn> 4 </mn>  </mrow>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> + </mo>  <mrow>  <mn> 8 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> + </mo>  <mrow>  <mn> 8 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  </mfrac>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mrow>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> n </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mi> n </mi>  </munderover>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> h </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mi> k </mi>  </munderover>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> k </mi>  <mo> - </mo>  <mi> h </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mn> 4 </mn>  <mi> k </mi>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> p </mi>  <mrow>  <mrow>  <mo> - </mo>  <mi> h </mi>  </mrow>  <mo> - </mo>  <mi> k </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> n </mi>  </mrow>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> p </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> h </mi>  <mo> + </mo>  <mi> k </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mfrac>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> p </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mrow>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> h </mi>  </mrow>  <mo> - </mo>  <mi> k </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </msup>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mi> k </mi>  </mtd>  </mtr>  <mtr>  <mtd>  <mi> h </mi>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["k", Identity]], List[TagBox["h", Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation>  </semantics>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mi> n </mi>  </mtd>  </mtr>  <mtr>  <mtd>  <mi> k </mi>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["n", Identity]], List[TagBox["k", Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation>  </semantics>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> p </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> p </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> h </mi>  <mo> + </mo>  <mi> k </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> , </mo>  <mrow>  <mo> - </mo>  <mfrac>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> p </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> h </mi>  <mo> + </mo>  <mi> k </mi>  <mo> + </mo>  <mn> 2 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> , </mo>  <mrow>  <mo> - </mo>  <mfrac>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> p </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mo> - </mo>  <mfrac>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> p </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mrow>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  </mfrac>  </mrow>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <msup>  <mi> ⅇ </mi>  <mfrac>  <msup>  <mi> p </mi>  <mn> 2 </mn>  </msup>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mn> 4 </mn>  </mrow>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 8 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> + </mo>  <mrow>  <mn> 8 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  <mo> + </mo>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  </mfrac>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mrow>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> n </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mi> n </mi>  </munderover>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> h </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mi> k </mi>  </munderover>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> k </mi>  <mo> - </mo>  <mi> h </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mn> 4 </mn>  <mi> k </mi>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> p </mi>  <mrow>  <mrow>  <mo> - </mo>  <mi> h </mi>  </mrow>  <mo> - </mo>  <mi> k </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> n </mi>  </mrow>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> p </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> h </mi>  <mo> + </mo>  <mi> k </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mfrac>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> p </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mrow>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> h </mi>  </mrow>  <mo> - </mo>  <mi> k </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </msup>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mi> k </mi>  </mtd>  </mtr>  <mtr>  <mtd>  <mi> h </mi>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["k", Identity]], List[TagBox["h", Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation>  </semantics>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mi> n </mi>  </mtd>  </mtr>  <mtr>  <mtd>  <mi> k </mi>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["n", Identity]], List[TagBox["k", Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation>  </semantics>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> p </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> p </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> h </mi>  <mo> + </mo>  <mi> k </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> , </mo>  <mrow>  <mo> - </mo>  <mfrac>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> p </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mrow>  <mrow>  <mn> 8 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> + </mo>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  </mfrac>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> h </mi>  <mo> + </mo>  <mi> k </mi>  <mo> + </mo>  <mn> 2 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> , </mo>  <mrow>  <mo> - </mo>  <mfrac>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> p </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mrow>  <mrow>  <mn> 8 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> + </mo>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  </mfrac>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mo> - </mo>  <mfrac>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> p </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mrow>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  </mfrac>  </mrow>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> /; </mo>  <mrow>  <mrow>  <mi> m </mi>  <mo> ∈ </mo>  <msup>  <mi> ℕ </mi>  <mo> + </mo>  </msup>  </mrow>  <mo> ∧ </mo>  <mrow>  <mi> v </mi>  <mo> ∈ </mo>  <msup>  <mi> ℕ </mi>  <mo> + </mo>  </msup>  </mrow>  <mo> ∧ </mo>  <mrow>  <mi> n </mi>  <mo> ∈ </mo>  <mi> ℕ </mi>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <ci> Condition </ci>  <apply>  <eq />  <apply>  <int />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <times />  <apply>  <power />  <ci> z </ci>  <ci> n </ci>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <times />  <ci> p </ci>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <sinh />  <apply>  <times />  <ci> b </ci>  <ci> z </ci>  </apply>  </apply>  <ci> m </ci>  </apply>  <apply>  <power />  <apply>  <cosh />  <apply>  <times />  <ci> c </ci>  <ci> z </ci>  </apply>  </apply>  <ci> v </ci>  </apply>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <imaginaryi />  <ci> m </ci>  </apply>  </apply>  <apply>  <power />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> m </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> v </ci>  </apply>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <ci> Binomial </ci>  <ci> m </ci>  <apply>  <times />  <ci> m </ci>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <ci> Binomial </ci>  <ci> v </ci>  <apply>  <times />  <ci> v </ci>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <rem />  <ci> $CellContext`m </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <rem />  <ci> $CellContext`v </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> p </ci>  <apply>  <times />  <cn type='integer'> -2 </cn>  <apply>  <plus />  <ci> n </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  </apply>  <apply>  <ci> Gamma </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <ci> n </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> p </ci>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <imaginaryi />  <ci> m </ci>  </apply>  <apply>  <power />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> m </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> n </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> v </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <ci> Binomial </ci>  <ci> m </ci>  <apply>  <times />  <ci> m </ci>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <rem />  <ci> $CellContext`m </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <sum />  <bvar>  <ci> s </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <apply>  <floor />  <apply>  <times />  <apply>  <plus />  <ci> v </ci>  <cn type='integer'> -1 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </uplimit>  <apply>  <times />  <apply>  <ci> Binomial </ci>  <ci> v </ci>  <ci> s </ci>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <times />  <apply>  <power />  <ci> p </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> c </ci>  <ci> v </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 8 </cn>  <ci> c </ci>  <ci> s </ci>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <ci> c </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> v </ci>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -2 </cn>  <ci> n </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <ci> c </ci>  <apply>  <plus />  <ci> v </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -2 </cn>  <apply>  <plus />  <ci> n </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <exponentiale />  <apply>  <times />  <apply>  <power />  <ci> p </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> c </ci>  <ci> s </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <ci> v </ci>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <ci> c </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> v </ci>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> n </ci>  </apply>  </apply>  <apply>  <sum />  <bvar>  <ci> h </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <ci> k </ci>  </uplimit>  <apply>  <sum />  <bvar>  <ci> k </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <ci> n </ci>  </uplimit>  <apply>  <times />  <apply>  <power />  <cn type='integer'> -1 </cn>  <apply>  <plus />  <ci> k </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> h </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <cn type='integer'> 4 </cn>  <ci> k </ci>  </apply>  <apply>  <power />  <ci> p </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> h </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> k </ci>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> n </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> p </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <apply>  <plus />  <ci> v </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <plus />  <ci> h </ci>  <ci> k </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <ci> p </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <apply>  <plus />  <ci> v </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <ci> c </ci>  <apply>  <plus />  <ci> v </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='rational'> 1 <sep /> 2 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> h </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> k </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <ci> Binomial </ci>  <ci> k </ci>  <ci> h </ci>  </apply>  <apply>  <ci> Binomial </ci>  <ci> n </ci>  <ci> k </ci>  </apply>  <apply>  <plus />  <apply>  <times />  <ci> p </ci>  <apply>  <plus />  <ci> p </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <apply>  <plus />  <ci> v </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <ci> Gamma </ci>  <apply>  <times />  <cn type='rational'> 1 <sep /> 2 </cn>  <apply>  <plus />  <ci> h </ci>  <ci> k </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <ci> p </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <apply>  <plus />  <ci> v </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <ci> c </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 8 </cn>  <ci> s </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> v </ci>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <apply>  <power />  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <ci> p </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <apply>  <plus />  <ci> v </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <ci> c </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> v </ci>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <plus />  <ci> v </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  <apply>  <ci> Gamma </ci>  <apply>  <times />  <cn type='rational'> 1 <sep /> 2 </cn>  <apply>  <plus />  <ci> h </ci>  <ci> k </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <ci> p </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <apply>  <plus />  <ci> v </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <ci> c </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 8 </cn>  <ci> s </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> v </ci>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <apply>  <times />  <ci> c </ci>  <apply>  <plus />  <ci> v </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> n </ci>  </apply>  </apply>  <apply>  <sum />  <bvar>  <ci> h </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <ci> k </ci>  </uplimit>  <apply>  <sum />  <bvar>  <ci> k </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <ci> n </ci>  </uplimit>  <apply>  <times />  <apply>  <power />  <cn type='integer'> -1 </cn>  <apply>  <plus />  <ci> k </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> h </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <cn type='integer'> 4 </cn>  <ci> k </ci>  </apply>  <apply>  <power />  <ci> p </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> h </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> k </ci>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> n </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> p </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> v </ci>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <plus />  <ci> h </ci>  <ci> k </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <ci> p </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> v </ci>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <ci> c </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> v </ci>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='rational'> 1 <sep /> 2 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> h </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> k </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <ci> Binomial </ci>  <ci> k </ci>  <ci> h </ci>  </apply>  <apply>  <ci> Binomial </ci>  <ci> n </ci>  <ci> k </ci>  </apply>  <apply>  <plus />  <apply>  <times />  <ci> p </ci>  <apply>  <plus />  <ci> p </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> v </ci>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <ci> Gamma </ci>  <apply>  <times />  <cn type='rational'> 1 <sep /> 2 </cn>  <apply>  <plus />  <ci> h </ci>  <ci> k </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <ci> p </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> v </ci>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <ci> c </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 8 </cn>  <ci> s </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> v </ci>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> v </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <ci> p </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> v </ci>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <ci> c </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> v </ci>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <ci> Gamma </ci>  <apply>  <times />  <cn type='rational'> 1 <sep /> 2 </cn>  <apply>  <plus />  <ci> h </ci>  <ci> k </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <ci> p </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> v </ci>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <ci> c </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 8 </cn>  <ci> s </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> v </ci>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> m </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> n </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> v </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <ci> Binomial </ci>  <ci> v </ci>  <apply>  <times />  <ci> v </ci>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <rem />  <ci> $CellContext`v </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <sum />  <bvar>  <ci> u </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <apply>  <floor />  <apply>  <times />  <apply>  <plus />  <ci> m </ci>  <cn type='integer'> -1 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </uplimit>  <apply>  <times />  <apply>  <power />  <cn type='integer'> -1 </cn>  <ci> u </ci>  </apply>  <apply>  <ci> Binomial </ci>  <ci> m </ci>  <ci> u </ci>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <times />  <apply>  <power />  <ci> p </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 8 </cn>  <ci> b </ci>  <ci> u </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> b </ci>  <ci> m </ci>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> u </ci>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -2 </cn>  <ci> n </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> b </ci>  </apply>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> u </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> n </ci>  </apply>  </apply>  <apply>  <sum />  <bvar>  <ci> h </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <ci> k </ci>  </uplimit>  <apply>  <sum />  <bvar>  <ci> k </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <ci> n </ci>  </uplimit>  <apply>  <times />  <apply>  <power />  <cn type='integer'> -1 </cn>  <apply>  <plus />  <ci> k </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> h </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <cn type='integer'> 4 </cn>  <ci> k </ci>  </apply>  <apply>  <power />  <ci> p </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> h </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> k </ci>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> n </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> p </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> u </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <plus />  <ci> h </ci>  <ci> k </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <ci> p </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> u </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <ci> b </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> u </ci>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='rational'> 1 <sep /> 2 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> h </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> k </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <ci> Binomial </ci>  <ci> k </ci>  <ci> h </ci>  </apply>  <apply>  <ci> Binomial </ci>  <ci> n </ci>  <ci> k </ci>  </apply>  <apply>  <plus />  <apply>  <times />  <ci> p </ci>  <apply>  <plus />  <ci> p </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> u </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <ci> Gamma </ci>  <apply>  <times />  <cn type='rational'> 1 <sep /> 2 </cn>  <apply>  <plus />  <ci> h </ci>  <ci> k </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <ci> p </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> u </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> b </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> u </ci>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> u </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <ci> p </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> u </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <ci> b </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> u </ci>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <ci> Gamma </ci>  <apply>  <times />  <cn type='rational'> 1 <sep /> 2 </cn>  <apply>  <plus />  <ci> h </ci>  <ci> k </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <ci> p </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> u </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> b </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> u </ci>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <cn type='integer'> -1 </cn>  <ci> m </ci>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <times />  <apply>  <power />  <ci> p </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <ci> m </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> b </ci>  <ci> u </ci>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <ci> b </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> u </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> n </ci>  </apply>  </apply>  <apply>  <sum />  <bvar>  <ci> h </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <ci> k </ci>  </uplimit>  <apply>  <sum />  <bvar>  <ci> k </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <ci> n </ci>  </uplimit>  <apply>  <times />  <apply>  <power />  <cn type='integer'> -1 </cn>  <apply>  <plus />  <ci> k </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> h </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <cn type='integer'> 4 </cn>  <ci> k </ci>  </apply>  <apply>  <power />  <ci> p </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> h </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> k </ci>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> n </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> p </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> u </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <plus />  <ci> h </ci>  <ci> k </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <ci> p </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> u </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <ci> b </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> u </ci>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='rational'> 1 <sep /> 2 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> h </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> k </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <ci> Binomial </ci>  <ci> k </ci>  <ci> h </ci>  </apply>  <apply>  <ci> Binomial </ci>  <ci> n </ci>  <ci> k </ci>  </apply>  <apply>  <plus />  <apply>  <times />  <ci> p </ci>  <apply>  <plus />  <ci> p </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> u </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <ci> Gamma </ci>  <apply>  <times />  <cn type='rational'> 1 <sep /> 2 </cn>  <apply>  <plus />  <ci> h </ci>  <ci> k </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <ci> p </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> u </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> b </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> u </ci>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> u </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <ci> p </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> u </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <ci> b </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> u </ci>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <ci> Gamma </ci>  <apply>  <times />  <cn type='rational'> 1 <sep /> 2 </cn>  <apply>  <plus />  <ci> h </ci>  <ci> k </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <ci> p </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> u </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> b </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> u </ci>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> m </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> n </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> v </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <sum />  <bvar>  <ci> s </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <apply>  <floor />  <apply>  <times />  <apply>  <plus />  <ci> v </ci>  <cn type='integer'> -1 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </uplimit>  <apply>  <times />  <apply>  <ci> Binomial </ci>  <ci> v </ci>  <ci> s </ci>  </apply>  <apply>  <sum />  <bvar>  <ci> u </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <apply>  <floor />  <apply>  <times />  <apply>  <plus />  <ci> m </ci>  <cn type='integer'> -1 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </uplimit>  <apply>  <times />  <apply>  <power />  <cn type='integer'> -1 </cn>  <ci> u </ci>  </apply>  <apply>  <ci> Binomial </ci>  <ci> m </ci>  <ci> u </ci>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <cn type='integer'> -1 </cn>  <ci> m </ci>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <times />  <apply>  <power />  <ci> p </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> b </ci>  <ci> m </ci>  </apply>  <apply>  <times />  <cn type='integer'> 8 </cn>  <ci> c </ci>  <ci> s </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 8 </cn>  <ci> b </ci>  <ci> u </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> c </ci>  <ci> v </ci>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> b </ci>  </apply>  <ci> m </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <ci> s </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <ci> u </ci>  </apply>  <apply>  <times />  <ci> c </ci>  <ci> v </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -2 </cn>  <apply>  <plus />  <ci> n </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  </apply>  <apply>  <sum />  <bvar>  <ci> h </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <ci> k </ci>  </uplimit>  <apply>  <sum />  <bvar>  <ci> k </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <ci> n </ci>  </uplimit>  <apply>  <times />  <apply>  <power />  <cn type='integer'> -1 </cn>  <apply>  <plus />  <ci> k </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> h </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <cn type='integer'> 4 </cn>  <ci> k </ci>  </apply>  <apply>  <power />  <ci> p </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> h </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> k </ci>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> n </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> p </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> b </ci>  </apply>  <ci> m </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <ci> s </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <ci> u </ci>  </apply>  <apply>  <times />  <ci> c </ci>  <ci> v </ci>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <plus />  <ci> h </ci>  <ci> k </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <ci> p </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> b </ci>  </apply>  <ci> m </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <ci> s </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <ci> u </ci>  </apply>  <apply>  <times />  <ci> c </ci>  <ci> v </ci>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <ci> b </ci>  <ci> m </ci>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <ci> s </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <ci> u </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> c </ci>  <ci> v </ci>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='rational'> 1 <sep /> 2 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> h </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> k </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <ci> Binomial </ci>  <ci> k </ci>  <ci> h </ci>  </apply>  <apply>  <ci> Binomial </ci>  <ci> n </ci>  <ci> k </ci>  </apply>  <apply>  <plus />  <apply>  <times />  <ci> p </ci>  <apply>  <plus />  <ci> p </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> b </ci>  </apply>  <ci> m </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <ci> s </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <ci> u </ci>  </apply>  <apply>  <times />  <ci> c </ci>  <ci> v </ci>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <ci> Gamma </ci>  <apply>  <times />  <cn type='rational'> 1 <sep /> 2 </cn>  <apply>  <plus />  <ci> h </ci>  <ci> k </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <ci> p </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> b </ci>  </apply>  <ci> m </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <ci> s </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <ci> u </ci>  </apply>  <apply>  <times />  <ci> c </ci>  <ci> v </ci>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> b </ci>  <ci> m </ci>  </apply>  <apply>  <times />  <cn type='integer'> 8 </cn>  <ci> c </ci>  <ci> s </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 8 </cn>  <ci> b </ci>  <ci> u </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> c </ci>  <ci> v </ci>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> b </ci>  </apply>  <ci> m </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <ci> s </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <ci> u </ci>  </apply>  <apply>  <times />  <ci> c </ci>  <ci> v </ci>  </apply>  </apply>  <apply>  <ci> Gamma </ci>  <apply>  <times />  <cn type='rational'> 1 <sep /> 2 </cn>  <apply>  <plus />  <ci> h </ci>  <ci> k </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <ci> p </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> b </ci>  </apply>  <ci> m </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <ci> s </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <ci> u </ci>  </apply>  <apply>  <times />  <ci> c </ci>  <ci> v </ci>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> b </ci>  <ci> m </ci>  </apply>  <apply>  <times />  <cn type='integer'> 8 </cn>  <ci> c </ci>  <ci> s </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 8 </cn>  <ci> b </ci>  <ci> u </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> c </ci>  <ci> v </ci>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <ci> p </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> b </ci>  </apply>  <ci> m </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <ci> s </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <ci> u </ci>  </apply>  <apply>  <times />  <ci> c </ci>  <ci> v </ci>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <ci> b </ci>  <ci> m </ci>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <ci> s </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <ci> u </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> c </ci>  <ci> v </ci>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <cn type='integer'> -1 </cn>  <ci> m </ci>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <times />  <apply>  <power />  <ci> p </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> b </ci>  <ci> m </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 8 </cn>  <ci> c </ci>  <ci> s </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 8 </cn>  <ci> b </ci>  <ci> u </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> c </ci>  <ci> v </ci>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> b </ci>  </apply>  <ci> m </ci>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <ci> s </ci>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <ci> u </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> c </ci>  <ci> v </ci>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -2 </cn>  <apply>  <plus />  <ci> n </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  </apply>  <apply>  <sum />  <bvar>  <ci> h </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <ci> k </ci>  </uplimit>  <apply>  <sum />  <bvar>  <ci> k </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <ci> n </ci>  </uplimit>  <apply>  <times />  <apply>  <power />  <cn type='integer'> -1 </cn>  <apply>  <plus />  <ci> k </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> h </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <cn type='integer'> 4 </cn>  <ci> k </ci>  </apply>  <apply>  <power />  <ci> p </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> h </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> k </ci>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> n </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> p </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <times />  <ci> b </ci>  <ci> m </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <ci> s </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <ci> u </ci>  </apply>  </apply>  <apply>  <times />  <ci> c </ci>  <ci> v </ci>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <plus />  <ci> h </ci>  <ci> k </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <ci> p </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <times />  <ci> b </ci>  <ci> m </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <ci> s </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <ci> u </ci>  </apply>  </apply>  <apply>  <times />  <ci> c </ci>  <ci> v </ci>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <ci> b </ci>  <ci> m </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <ci> s </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <ci> u </ci>  </apply>  </apply>  <apply>  <times />  <ci> c </ci>  <ci> v </ci>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='rational'> 1 <sep /> 2 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> h </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> k </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <ci> Binomial </ci>  <ci> k </ci>  <ci> h </ci>  </apply>  <apply>  <ci> Binomial </ci>  <ci> n </ci>  <ci> k </ci>  </apply>  <apply>  <plus />  <apply>  <times />  <ci> p </ci>  <apply>  <plus />  <ci> p </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <times />  <ci> b </ci>  <ci> m </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <ci> s </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <ci> u </ci>  </apply>  </apply>  <apply>  <times />  <ci> c </ci>  <ci> v </ci>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <ci> Gamma </ci>  <apply>  <times />  <cn type='rational'> 1 <sep /> 2 </cn>  <apply>  <plus />  <ci> h </ci>  <ci> k </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <ci> p </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <times />  <ci> b </ci>  <ci> m </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <ci> s </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <ci> u </ci>  </apply>  </apply>  <apply>  <times />  <ci> c </ci>  <ci> v </ci>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 4 </cn>  <apply>  <plus />  <apply>  <times />  <ci> b </ci>  <ci> m </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <ci> s </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <ci> u </ci>  </apply>  </apply>  <apply>  <times />  <ci> c </ci>  <ci> v </ci>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <times />  <ci> b </ci>  <ci> m </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <ci> s </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <ci> u </ci>  </apply>  </apply>  <apply>  <times />  <ci> c </ci>  <ci> v </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <ci> p </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <times />  <ci> b </ci>  <ci> m </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <ci> s </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <ci> u </ci>  </apply>  </apply>  <apply>  <times />  <ci> c </ci>  <ci> v </ci>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <ci> b </ci>  <ci> m </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <ci> s </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <ci> u </ci>  </apply>  </apply>  <apply>  <times />  <ci> c </ci>  <ci> v </ci>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <ci> Gamma </ci>  <apply>  <times />  <cn type='rational'> 1 <sep /> 2 </cn>  <apply>  <plus />  <ci> h </ci>  <ci> k </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <ci> p </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <times />  <ci> b </ci>  <ci> m </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <ci> s </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <ci> u </ci>  </apply>  </apply>  <apply>  <times />  <ci> c </ci>  <ci> v </ci>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 4 </cn>  <apply>  <plus />  <apply>  <times />  <ci> b </ci>  <ci> m </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <ci> s </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <ci> u </ci>  </apply>  </apply>  <apply>  <times />  <ci> c </ci>  <ci> v </ci>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <exponentiale />  <apply>  <times />  <apply>  <power />  <ci> p </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -4 </cn>  <ci> b </ci>  <ci> m </ci>  </apply>  <apply>  <times />  <cn type='integer'> 8 </cn>  <ci> c </ci>  <ci> s </ci>  </apply>  <apply>  <times />  <cn type='integer'> 8 </cn>  <ci> b </ci>  <ci> u </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> c </ci>  <ci> v </ci>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <ci> b </ci>  <ci> m </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <ci> s </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <ci> u </ci>  </apply>  </apply>  <apply>  <times />  <ci> c </ci>  <ci> v </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -2 </cn>  <apply>  <plus />  <ci> n </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  </apply>  <apply>  <sum />  <bvar>  <ci> h </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <ci> k </ci>  </uplimit>  <apply>  <sum />  <bvar>  <ci> k </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <ci> n </ci>  </uplimit>  <apply>  <times />  <apply>  <power />  <cn type='integer'> -1 </cn>  <apply>  <plus />  <ci> k </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> h </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <cn type='integer'> 4 </cn>  <ci> k </ci>  </apply>  <apply>  <power />  <ci> p </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> h </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> k </ci>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> n </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> p </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <times />  <ci> b </ci>  <ci> m </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <ci> s </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <ci> u </ci>  </apply>  </apply>  <apply>  <times />  <ci> c </ci>  <ci> v </ci>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <plus />  <ci> h </ci>  <ci> k </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <ci> p </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <times />  <ci> b </ci>  <ci> m </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <ci> s </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <ci> u </ci>  </apply>  </apply>  <apply>  <times />  <ci> c </ci>  <ci> v </ci>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <ci> b </ci>  <ci> m </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <ci> s </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <ci> u </ci>  </apply>  </apply>  <apply>  <times />  <ci> c </ci>  <ci> v </ci>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='rational'> 1 <sep /> 2 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> h </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> k </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <ci> Binomial </ci>  <ci> k </ci>  <ci> h </ci>  </apply>  <apply>  <ci> Binomial </ci>  <ci> n </ci>  <ci> k </ci>  </apply>  <apply>  <plus />  <apply>  <times />  <ci> p </ci>  <apply>  <plus />  <ci> p </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <times />  <ci> b </ci>  <ci> m </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <ci> s </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <ci> u </ci>  </apply>  </apply>  <apply>  <times />  <ci> c </ci>  <ci> v </ci>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <ci> Gamma </ci>  <apply>  <times />  <cn type='rational'> 1 <sep /> 2 </cn>  <apply>  <plus />  <ci> h </ci>  <ci> k </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <ci> p </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <times />  <ci> b </ci>  <ci> m </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <ci> s </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <ci> u </ci>  </apply>  </apply>  <apply>  <times />  <ci> c </ci>  <ci> v </ci>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 4 </cn>  <apply>  <plus />  <apply>  <times />  <ci> b </ci>  <ci> m </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <ci> s </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <ci> u </ci>  </apply>  </apply>  <apply>  <times />  <ci> c </ci>  <ci> v </ci>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <times />  <ci> b </ci>  <ci> m </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <ci> s </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <ci> u </ci>  </apply>  </apply>  <apply>  <times />  <ci> c </ci>  <ci> v </ci>  </apply>  </apply>  <apply>  <ci> Gamma </ci>  <apply>  <times />  <cn type='rational'> 1 <sep /> 2 </cn>  <apply>  <plus />  <ci> h </ci>  <ci> k </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <ci> p </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <times />  <ci> b </ci>  <ci> m </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <ci> s </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <ci> u </ci>  </apply>  </apply>  <apply>  <times />  <ci> c </ci>  <ci> v </ci>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 4 </cn>  <apply>  <plus />  <apply>  <times />  <ci> b </ci>  <ci> m </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <ci> s </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <ci> u </ci>  </apply>  </apply>  <apply>  <times />  <ci> c </ci>  <ci> v </ci>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <ci> p </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <times />  <ci> b </ci>  <ci> m </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <ci> s </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <ci> u </ci>  </apply>  </apply>  <apply>  <times />  <ci> c </ci>  <ci> v </ci>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <ci> b </ci>  <ci> m </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <ci> s </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <ci> u </ci>  </apply>  </apply>  <apply>  <times />  <ci> c </ci>  <ci> v </ci>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <exponentiale />  <apply>  <times />  <apply>  <power />  <ci> p </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -4 </cn>  <ci> b </ci>  <ci> m </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 8 </cn>  <ci> c </ci>  <ci> s </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 8 </cn>  <ci> b </ci>  <ci> u </ci>  </apply>  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> c </ci>  <ci> v </ci>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <ci> b </ci>  <ci> m </ci>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <ci> s </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <ci> u </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> c </ci>  <ci> v </ci>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -2 </cn>  <apply>  <plus />  <ci> n </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  </apply>  <apply>  <sum />  <bvar>  <ci> h </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <ci> k </ci>  </uplimit>  <apply>  <sum />  <bvar>  <ci> k </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <ci> n </ci>  </uplimit>  <apply>  <times />  <apply>  <power />  <cn type='integer'> -1 </cn>  <apply>  <plus />  <ci> k </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> h </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <cn type='integer'> 4 </cn>  <ci> k </ci>  </apply>  <apply>  <power />  <ci> p </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> h </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> k </ci>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> n </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> p </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <times />  <ci> b </ci>  <ci> m </ci>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <ci> s </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <ci> u </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> c </ci>  <ci> v </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <plus />  <ci> h </ci>  <ci> k </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <ci> p </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <times />  <ci> b </ci>  <ci> m </ci>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <ci> s </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <ci> u </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> c </ci>  <ci> v </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <ci> b </ci>  <ci> m </ci>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <ci> s </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <ci> u </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> c </ci>  <ci> v </ci>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='rational'> 1 <sep /> 2 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> h </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> k </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <ci> Binomial </ci>  <ci> k </ci>  <ci> h </ci>  </apply>  <apply>  <ci> Binomial </ci>  <ci> n </ci>  <ci> k </ci>  </apply>  <apply>  <plus />  <apply>  <times />  <ci> p </ci>  <apply>  <plus />  <ci> p </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <times />  <ci> b </ci>  <ci> m </ci>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <ci> s </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <ci> u </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> c </ci>  <ci> v </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <ci> Gamma </ci>  <apply>  <times />  <cn type='rational'> 1 <sep /> 2 </cn>  <apply>  <plus />  <ci> h </ci>  <ci> k </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <ci> p </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <times />  <ci> b </ci>  <ci> m </ci>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <ci> s </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <ci> u </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> c </ci>  <ci> v </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 8 </cn>  <ci> c </ci>  <ci> s </ci>  </apply>  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> b </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> u </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> c </ci>  <ci> v </ci>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <times />  <ci> b </ci>  <ci> m </ci>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <ci> s </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <ci> u </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> c </ci>  <ci> v </ci>  </apply>  </apply>  </apply>  <apply>  <ci> Gamma </ci>  <apply>  <times />  <cn type='rational'> 1 <sep /> 2 </cn>  <apply>  <plus />  <ci> h </ci>  <ci> k </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <ci> p </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <times />  <ci> b </ci>  <ci> m </ci>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <ci> s </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <ci> u </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> c </ci>  <ci> v </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 8 </cn>  <ci> c </ci>  <ci> s </ci>  </apply>  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> b </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> u </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> c </ci>  <ci> v </ci>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <ci> p </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <times />  <ci> b </ci>  <ci> m </ci>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <ci> s </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <ci> u </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> c </ci>  <ci> v </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <ci> b </ci>  <ci> m </ci>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <ci> s </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <ci> u </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> c </ci>  <ci> v </ci>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <and />  <apply>  <in />  <ci> m </ci>  <apply>  <ci> SuperPlus </ci>  <ci> ℕ </ci>  </apply>  </apply>  <apply>  <in />  <ci> v </ci>  <apply>  <ci> SuperPlus </ci>  <ci> ℕ </ci>  </apply>  </apply>  <apply>  <in />  <ci> n </ci>  <ci> ℕ </ci>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["z_", "n_"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["p_", " ", SqrtBox["z_"]]]], " ", SuperscriptBox[RowBox[List["Sinh", "[", RowBox[List["b_", " ", "z_"]], "]"]], "m_"], " ", SuperscriptBox[RowBox[List["Cosh", "[", RowBox[List["c_", " ", "z_"]], "]"]], "v_"]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox["\[ImaginaryI]", "m"]]], " ", SuperscriptBox["2", RowBox[List["1", "-", "m", "-", "v"]]], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", FractionBox["m", "2"]]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List["v", ",", FractionBox["v", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["m", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["v", ",", "2"]], "]"]]]], ")"]], " ", SuperscriptBox["p", RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]]]]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["2", " ", RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]]]], ",", RowBox[List[RowBox[List["-", "p"]], " ", SqrtBox["z"]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox["\[ImaginaryI]", "m"], " ", SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", "m", "-", "v", "-", RowBox[List["2", " ", "n"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", FractionBox["m", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["m", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["s", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "v"]], ")"]]]], "]"]]], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["v", ",", "s"]], "]"]], " ", SuperscriptBox["\[ExponentialE]", FractionBox[SuperscriptBox["p", "2"], RowBox[List[RowBox[List[RowBox[List["-", "8"]], " ", "c", " ", "s"]], "+", RowBox[List["4", " ", "c", " ", "v"]]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "s"]], "-", "v"]], ")"]]]], ")"]], RowBox[List[RowBox[List["-", "2"]], " ", "n"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]], ")"]], RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]], ")"]], RowBox[List["2", " ", "n"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "n"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["h", "=", "0"]], "k"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["-", "h"]], "+", "k"]]], " ", SuperscriptBox["4", "k"], " ", SuperscriptBox["p", RowBox[List[RowBox[List["-", "h"]], "-", "k", "+", RowBox[List["2", " ", "n"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "s"]], "-", "v"]], ")"]], " ", SqrtBox["z"]]]]], ")"]], RowBox[List["h", "+", "k"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "s"]], "-", "v"]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "s"]], "-", "v"]], ")"]]]]]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "h", "-", "k"]], ")"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["k", ",", "h"]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List["n", ",", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["p", " ", RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "s"]], "-", "v"]], ")"]], " ", SqrtBox["z"]]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "+", "h", "+", "k"]], ")"]]]], ",", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "s"]], "-", "v"]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["8", " ", "s"]], "-", RowBox[List["4", " ", "v"]]]], ")"]]]]]]]]], "]"]]]], "+", RowBox[List["2", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "s"]], "-", "v"]], ")"]], " ", SqrtBox[RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "s"]], "-", "v"]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "s"]], "-", "v"]], ")"]]]]]]]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "+", "h", "+", "k"]], ")"]]]], ",", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "s"]], "-", "v"]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["8", " ", "s"]], "-", RowBox[List["4", " ", "v"]]]], ")"]]]]]]]]], "]"]]]]]], ")"]]]]]]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox[SuperscriptBox["p", "2"], RowBox[List[RowBox[List["4", " ", "c", " ", "s"]], "-", RowBox[List["2", " ", "c", " ", "v"]]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "s"]], "-", "v"]], ")"]]]], ")"]], RowBox[List["2", " ", "n"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "n"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["h", "=", "0"]], "k"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["-", "h"]], "+", "k"]]], " ", SuperscriptBox["4", "k"], " ", SuperscriptBox["p", RowBox[List[RowBox[List["-", "h"]], "-", "k", "+", RowBox[List["2", " ", "n"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]], " ", SqrtBox["z"]]]]], ")"]], RowBox[List["h", "+", "k"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]]]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "h", "-", "k"]], ")"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["k", ",", "h"]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List["n", ",", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["p", " ", RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]], " ", SqrtBox["z"]]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "+", "h", "+", "k"]], ")"]]]], ",", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["8", " ", "s"]], "-", RowBox[List["4", " ", "v"]]]], ")"]]]]]]], "]"]]]], "+", RowBox[List["2", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]], " ", SqrtBox[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "s"]], "-", "v"]], ")"]]]]]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "+", "h", "+", "k"]], ")"]]]], ",", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["8", " ", "s"]], "-", RowBox[List["4", " ", "v"]]]], ")"]]]]]]], "]"]]]]]], ")"]]]]]]]]]]]], ")"]]]]]]]], "-", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", "m", "-", "v", "-", RowBox[List["2", " ", "n"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["v", ",", FractionBox["v", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["v", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["u", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "u"], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", "u"]], "]"]], " ", SuperscriptBox["\[ExponentialE]", FractionBox[SuperscriptBox["p", "2"], RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", "b", " ", "m"]], "+", RowBox[List["8", " ", "b", " ", "u"]]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "u"]]]], ")"]], "2"]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["2", " ", "n"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "m"], " ", SuperscriptBox["\[ExponentialE]", FractionBox[SuperscriptBox["p", "2"], RowBox[List[RowBox[List["2", " ", "b", " ", "m"]], "-", RowBox[List["4", " ", "b", " ", "u"]]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "u"]]]], ")"]]]], ")"]], RowBox[List["2", " ", "n"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "n"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["h", "=", "0"]], "k"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["-", "h"]], "+", "k"]]], " ", SuperscriptBox["4", "k"], " ", SuperscriptBox["p", RowBox[List[RowBox[List["-", "h"]], "-", "k", "+", RowBox[List["2", " ", "n"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["p", "-", RowBox[List["2", " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "u"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], RowBox[List["h", "+", "k"]]], " ", SuperscriptBox[RowBox[List["(", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["p", "-", RowBox[List["2", " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "u"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List["b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "u"]]]], ")"]]]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "h", "-", "k"]], ")"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["k", ",", "h"]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List["n", ",", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["p", " ", RowBox[List["(", RowBox[List["p", "-", RowBox[List["2", " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "u"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "+", "h", "+", "k"]], ")"]]]], ",", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["p", "-", RowBox[List["2", " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "u"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List["4", " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "u"]]]], ")"]]]]]]], "]"]]]], "-", RowBox[List["2", " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "u"]]]], ")"]], " ", SqrtBox[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["p", "-", RowBox[List["2", " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "u"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List["b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "u"]]]], ")"]]]]]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "+", "h", "+", "k"]], ")"]]]], ",", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["p", "-", RowBox[List["2", " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "u"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List["4", " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "u"]]]], ")"]]]]]]], "]"]]]]]], ")"]]]]]]]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "u"]]]], ")"]]]], ")"]], RowBox[List["2", " ", "n"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "n"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["h", "=", "0"]], "k"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["-", "h"]], "+", "k"]]], " ", SuperscriptBox["4", "k"], " ", SuperscriptBox["p", RowBox[List[RowBox[List["-", "h"]], "-", "k", "+", RowBox[List["2", " ", "n"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "u"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], RowBox[List["h", "+", "k"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "u"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List["b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "u"]]]], ")"]]]]]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "h", "-", "k"]], ")"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["k", ",", "h"]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List["n", ",", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["p", " ", RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "u"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "+", "h", "+", "k"]], ")"]]]], ",", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "u"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List["4", " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "u"]]]], ")"]]]]]]]]], "]"]]]], "+", RowBox[List["2", " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "u"]]]], ")"]], " ", SqrtBox[RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "u"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List["b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "u"]]]], ")"]]]]]]]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "+", "h", "+", "k"]], ")"]]]], ",", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "u"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List["4", " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "u"]]]], ")"]]]]]]]]], "]"]]]]]], ")"]]]]]]]]]]]], ")"]]]]]]]], "+", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", "m", "-", "v", "-", RowBox[List["2", " ", "n"]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["s", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "v"]], ")"]]]], "]"]]], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["v", ",", "s"]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["u", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "u"], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", "u"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox[SuperscriptBox["p", "2"], RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", "b", " ", "m"]], "-", RowBox[List["8", " ", "c", " ", "s"]], "+", RowBox[List["8", " ", "b", " ", "u"]], "+", RowBox[List["4", " ", "c", " ", "v"]]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["b", " ", "m"]], "+", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["2", " ", "b", " ", "u"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "n"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["h", "=", "0"]], "k"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["-", "h"]], "+", "k"]]], " ", SuperscriptBox["4", "k"], " ", SuperscriptBox["p", RowBox[List[RowBox[List["-", "h"]], "-", "k", "+", RowBox[List["2", " ", "n"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", "m"]], "+", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["2", " ", "b", " ", "u"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], RowBox[List["h", "+", "k"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", "m"]], "+", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["2", " ", "b", " ", "u"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List[RowBox[List["b", " ", "m"]], "+", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["2", " ", "b", " ", "u"]], "-", RowBox[List["c", " ", "v"]]]]]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "h", "-", "k"]], ")"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["k", ",", "h"]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List["n", ",", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["p", " ", RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", "m"]], "+", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["2", " ", "b", " ", "u"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "+", "h", "+", "k"]], ")"]]]], ",", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", "m"]], "+", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["2", " ", "b", " ", "u"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List[RowBox[List["8", " ", "c", " ", "s"]], "+", RowBox[List["4", " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "u"]]]], ")"]]]], "-", RowBox[List["4", " ", "c", " ", "v"]]]]]]]]], "]"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", "m"]], "+", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["2", " ", "b", " ", "u"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox[RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", "m"]], "+", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["2", " ", "b", " ", "u"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List[RowBox[List["b", " ", "m"]], "+", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["2", " ", "b", " ", "u"]], "-", RowBox[List["c", " ", "v"]]]]]]]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "+", "h", "+", "k"]], ")"]]]], ",", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", "m"]], "+", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["2", " ", "b", " ", "u"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List[RowBox[List["8", " ", "c", " ", "s"]], "+", RowBox[List["4", " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "u"]]]], ")"]]]], "-", RowBox[List["4", " ", "c", " ", "v"]]]]]]]]], "]"]]]]]], ")"]]]]]]]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "m"], " ", SuperscriptBox["\[ExponentialE]", FractionBox[SuperscriptBox["p", "2"], RowBox[List[RowBox[List["4", " ", "b", " ", "m"]], "-", RowBox[List["8", " ", "c", " ", "s"]], "-", RowBox[List["8", " ", "b", " ", "u"]], "+", RowBox[List["4", " ", "c", " ", "v"]]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", "m"]], "+", RowBox[List["2", " ", "c", " ", "s"]], "+", RowBox[List["2", " ", "b", " ", "u"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "n"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["h", "=", "0"]], "k"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["-", "h"]], "+", "k"]]], " ", SuperscriptBox["4", "k"], " ", SuperscriptBox["p", RowBox[List[RowBox[List["-", "h"]], "-", "k", "+", RowBox[List["2", " ", "n"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["p", "-", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", "m"]], "-", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["2", " ", "b", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], RowBox[List["h", "+", "k"]]], " ", SuperscriptBox[RowBox[List["(", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["p", "-", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", "m"]], "-", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["2", " ", "b", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List[RowBox[List["b", " ", "m"]], "-", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["2", " ", "b", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "h", "-", "k"]], ")"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["k", ",", "h"]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List["n", ",", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["p", " ", RowBox[List["(", RowBox[List["p", "-", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", "m"]], "-", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["2", " ", "b", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "+", "h", "+", "k"]], ")"]]]], ",", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["p", "-", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", "m"]], "-", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["2", " ", "b", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", "m"]], "-", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["2", " ", "b", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]]]]]]], "]"]]]], "-", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", "m"]], "-", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["2", " ", "b", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["p", "-", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", "m"]], "-", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["2", " ", "b", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List[RowBox[List["b", " ", "m"]], "-", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["2", " ", "b", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]]]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "+", "h", "+", "k"]], ")"]]]], ",", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["p", "-", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", "m"]], "-", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["2", " ", "b", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", "m"]], "-", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["2", " ", "b", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]]]]]]], "]"]]]]]], ")"]]]]]]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox[SuperscriptBox["p", "2"], RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", "b", " ", "m"]], "+", RowBox[List["8", " ", "c", " ", "s"]], "+", RowBox[List["8", " ", "b", " ", "u"]], "-", RowBox[List["4", " ", "c", " ", "v"]]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["b", " ", "m"]], "-", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["2", " ", "b", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "n"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["h", "=", "0"]], "k"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["-", "h"]], "+", "k"]]], " ", SuperscriptBox["4", "k"], " ", SuperscriptBox["p", RowBox[List[RowBox[List["-", "h"]], "-", "k", "+", RowBox[List["2", " ", "n"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", "m"]], "-", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["2", " ", "b", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], RowBox[List["h", "+", "k"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", "m"]], "-", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["2", " ", "b", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List[RowBox[List["b", " ", "m"]], "-", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["2", " ", "b", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]]]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "h", "-", "k"]], ")"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["k", ",", "h"]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List["n", ",", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["p", " ", RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", "m"]], "-", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["2", " ", "b", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "+", "h", "+", "k"]], ")"]]]], ",", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", "m"]], "-", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["2", " ", "b", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", "m"]], "-", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["2", " ", "b", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]]]]]]]]], "]"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", "m"]], "-", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["2", " ", "b", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox[RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", "m"]], "-", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["2", " ", "b", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List[RowBox[List["b", " ", "m"]], "-", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["2", " ", "b", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]]]]]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "+", "h", "+", "k"]], ")"]]]], ",", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", "m"]], "-", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["2", " ", "b", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", "m"]], "-", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["2", " ", "b", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]]]]]]]]], "]"]]]]]], ")"]]]]]]]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "m"], " ", SuperscriptBox["\[ExponentialE]", FractionBox[SuperscriptBox["p", "2"], RowBox[List[RowBox[List["4", " ", "b", " ", "m"]], "+", RowBox[List["8", " ", "c", " ", "s"]], "-", RowBox[List["8", " ", "b", " ", "u"]], "-", RowBox[List["4", " ", "c", " ", "v"]]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", "m"]], "-", RowBox[List["2", " ", "c", " ", "s"]], "+", RowBox[List["2", " ", "b", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "n"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["h", "=", "0"]], "k"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["-", "h"]], "+", "k"]]], " ", SuperscriptBox["4", "k"], " ", SuperscriptBox["p", RowBox[List[RowBox[List["-", "h"]], "-", "k", "+", RowBox[List["2", " ", "n"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", "m"]], "-", RowBox[List["2", " ", "c", " ", "s"]], "+", RowBox[List["2", " ", "b", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], RowBox[List["h", "+", "k"]]], " ", SuperscriptBox[RowBox[List["(", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", "m"]], "-", RowBox[List["2", " ", "c", " ", "s"]], "+", RowBox[List["2", " ", "b", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List[RowBox[List["b", " ", "m"]], "+", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["2", " ", "b", " ", "u"]], "-", RowBox[List["c", " ", "v"]]]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "h", "-", "k"]], ")"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["k", ",", "h"]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List["n", ",", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["p", " ", RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", "m"]], "-", RowBox[List["2", " ", "c", " ", "s"]], "+", RowBox[List["2", " ", "b", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "+", "h", "+", "k"]], ")"]]]], ",", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", "m"]], "-", RowBox[List["2", " ", "c", " ", "s"]], "+", RowBox[List["2", " ", "b", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List[RowBox[List["4", " ", "b", " ", "m"]], "+", RowBox[List["8", " ", "c", " ", "s"]], "-", RowBox[List["8", " ", "b", " ", "u"]], "-", RowBox[List["4", " ", "c", " ", "v"]]]]]]], "]"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", "m"]], "-", RowBox[List["2", " ", "c", " ", "s"]], "+", RowBox[List["2", " ", "b", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", "m"]], "-", RowBox[List["2", " ", "c", " ", "s"]], "+", RowBox[List["2", " ", "b", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List[RowBox[List["b", " ", "m"]], "+", RowBox[List["2", " ", "c", " ", "s"]], "-", RowBox[List["2", " ", "b", " ", "u"]], "-", RowBox[List["c", " ", "v"]]]]]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "+", "h", "+", "k"]], ")"]]]], ",", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", "m"]], "-", RowBox[List["2", " ", "c", " ", "s"]], "+", RowBox[List["2", " ", "b", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List[RowBox[List["4", " ", "b", " ", "m"]], "+", RowBox[List["8", " ", "c", " ", "s"]], "-", RowBox[List["8", " ", "b", " ", "u"]], "-", RowBox[List["4", " ", "c", " ", "v"]]]]]]], "]"]]]]]], ")"]]]]]]]]]]]], ")"]]]]]]]]]]]]]], "/;", RowBox[List[RowBox[List["m", "\[Element]", "Integers"]], "&&", RowBox[List["m", ">", "0"]], "&&", RowBox[List["v", "\[Element]", "Integers"]], "&&", RowBox[List["v", ">", "0"]], "&&", RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 
 
 | 
 |