html, body, form { margin: 0; padding: 0; width: 100%; } #calculate { position: relative; width: 177px; height: 110px; background: transparent url(/images/alphabox/embed_functions_inside.gif) no-repeat scroll 0 0; } #i { position: relative; left: 18px; top: 44px; width: 133px; border: 0 none; outline: 0; font-size: 11px; } #eq { width: 9px; height: 10px; background: transparent; position: absolute; top: 47px; right: 18px; cursor: pointer; }

 Cosh

 http://functions.wolfram.com/01.20.21.4864.01

 Input Form

 Integrate[E^(b z^2 + d z + e) Sin[a z^2 + p z + q]^m Sinh[w z^2 + s z + t]^u Cosh[c z^2 + f z + g]^v, z] == -((1/(b Sqrt[-((d + 2 b z)^2/b)])) (I^u 2^(-1 - m - u - v) E^(-(d^2/(4 b)) + e) (d + 2 b z) Binomial[m, m/2] Binomial[u, u/2] Binomial[v, v/2] Gamma[1/2, -((d + 2 b z)^2/(4 b))] (1 - Mod[m, 2]) (1 - Mod[u, 2]) (1 - Mod[v, 2]))) - I^u 2^(-1 - m - u - v) Binomial[u, u/2] Binomial[v, v/2] (1 - Mod[u, 2]) (1 - Mod[v, 2]) Sum[(-1)^k Binomial[m, k] ((E^(e - (d + I (2 k - m) p)^2/(4 (b + I a (2 k - m))) + (I m Pi)/2 + I (2 k - m) q) (d + I (2 k - m) p + 2 (b + I a (2 k - m)) z) Gamma[1/2, -((d + I (2 k - m) p + 2 (b + I a (2 k - m)) z)^2/ (4 (b + I a (2 k - m))))])/((b + I a (2 k - m)) Sqrt[-((d + I (2 k - m) p + 2 (b + I a (2 k - m)) z)^2/ (b + I a (2 k - m)))]) + (E^(e - (d + I (-2 k + m) p)^2/(4 (b + I a (-2 k + m))) - (I m Pi)/2 + I (-2 k + m) q) (d + I (-2 k + m) p + 2 (b + I a (-2 k + m)) z) Gamma[1/2, -((d + I (-2 k + m) p + 2 (b + I a (-2 k + m)) z)^2/ (4 (b + I a (-2 k + m))))])/((b + I a (-2 k + m)) Sqrt[-((d + I (-2 k + m) p + 2 (b + I a (-2 k + m)) z)^2/ (b + I a (-2 k + m)))])), {k, 0, Floor[(1/2) (-1 + m)]}] - I^u 2^(-1 - m - u - v) Binomial[m, m/2] Binomial[u, u/2] (1 - Mod[m, 2]) (1 - Mod[u, 2]) Sum[Binomial[v, h] ((E^(e - (d + f (2 h - v))^2/(4 (b + c (2 h - v))) + g (2 h - v)) (d + f (2 h - v) + 2 (b + c (2 h - v)) z) Gamma[1/2, -((d + f (2 h - v) + 2 (b + c (2 h - v)) z)^2/ (4 (b + c (2 h - v))))])/((b + c (2 h - v)) Sqrt[-((d + f (2 h - v) + 2 (b + c (2 h - v)) z)^2/ (b + c (2 h - v)))]) + (E^(e - g (2 h - v) - (d + f (-2 h + v))^2/(4 (b + c (-2 h + v)))) (d + f (-2 h + v) + 2 (b + c (-2 h + v)) z) Gamma[1/2, -((d + f (-2 h + v) + 2 (b + c (-2 h + v)) z)^2/ (4 (b + c (-2 h + v))))])/((b + c (-2 h + v)) Sqrt[-((d + f (-2 h + v) + 2 (b + c (-2 h + v)) z)^2/ (b + c (-2 h + v)))])), {h, 0, Floor[(1/2) (-1 + v)]}] - I^u 2^(-1 - m - u - v) Binomial[m, m/2] Binomial[v, v/2] (1 - Mod[m, 2]) (1 - Mod[v, 2]) Sum[(-1)^k Binomial[u, k] ((E^(e + t (2 k - u) + (I Pi u)/2 - (d + s (2 k - u))^2/ (4 (b + (2 k - u) w))) (d + s (2 k - u) + 2 (b + (2 k - u) w) z) Gamma[1/2, -((d + s (2 k - u) + 2 (b + (2 k - u) w) z)^2/ (4 (b + (2 k - u) w)))])/((b + (2 k - u) w) Sqrt[-((d + s (2 k - u) + 2 (b + (2 k - u) w) z)^2/ (b + (2 k - u) w))]) + (E^(e - (I Pi u)/2 + t (-2 k + u) - (d + s (-2 k + u))^2/ (4 (b + (-2 k + u) w))) (d + s (-2 k + u) + 2 (b + (-2 k + u) w) z) Gamma[1/2, -((d + s (-2 k + u) + 2 (b + (-2 k + u) w) z)^2/ (4 (b + (-2 k + u) w)))])/((b + (-2 k + u) w) Sqrt[-((d + s (-2 k + u) + 2 (b + (-2 k + u) w) z)^2/ (b + (-2 k + u) w))])), {k, 0, Floor[(1/2) (-1 + u)]}] - I^u 2^(-1 - m - u - v) Binomial[u, u/2] (1 - Mod[u, 2]) Sum[(-1)^k Binomial[m, k] Sum[Binomial[v, h] ((E^(e + (I m Pi)/2 + I (2 k - m) q - (d + I (2 k - m) p + f (2 h - v))^2/(4 (b + I a (2 k - m) + c (2 h - v))) + g (2 h - v)) (d + I (2 k - m) p + f (2 h - v) + 2 (b + I a (2 k - m) + c (2 h - v)) z) Gamma[1/2, -((d + I (2 k - m) p + f (2 h - v) + 2 (b + I a (2 k - m) + c (2 h - v)) z)^2/(4 (b + I a (2 k - m) + c (2 h - v))))])/ ((b + I a (2 k - m) + c (2 h - v)) Sqrt[-((d + I (2 k - m) p + f (2 h - v) + 2 (b + I a (2 k - m) + c (2 h - v)) z)^2/(b + I a (2 k - m) + c (2 h - v)))]) + (E^(e - (I m Pi)/2 + I (-2 k + m) q - (d + I (-2 k + m) p + f (2 h - v))^2/(4 (b + I a (-2 k + m) + c (2 h - v))) + g (2 h - v)) (d + I (-2 k + m) p + f (2 h - v) + 2 (b + I a (-2 k + m) + c (2 h - v)) z) Gamma[1/2, -((d + I (-2 k + m) p + f (2 h - v) + 2 (b + I a (-2 k + m) + c (2 h - v)) z)^2/(4 (b + I a (-2 k + m) + c (2 h - v))))])/ ((b + I a (-2 k + m) + c (2 h - v)) Sqrt[-((d + I (-2 k + m) p + f (2 h - v) + 2 (b + I a (-2 k + m) + c (2 h - v)) z)^2/(b + I a (-2 k + m) + c (2 h - v)))]) + (E^(e + (I m Pi)/2 + I (2 k - m) q + g (-2 h + v) - (d + I (2 k - m) p + f (-2 h + v))^2/(4 (b + I a (2 k - m) + c (-2 h + v)))) (d + I (2 k - m) p + f (-2 h + v) + 2 (b + I a (2 k - m) + c (-2 h + v)) z) Gamma[1/2, -((d + I (2 k - m) p + f (-2 h + v) + 2 (b + I a (2 k - m) + c (-2 h + v)) z)^2/(4 (b + I a (2 k - m) + c (-2 h + v))))])/((b + I a (2 k - m) + c (-2 h + v)) Sqrt[-((d + I (2 k - m) p + f (-2 h + v) + 2 (b + I a (2 k - m) + c (-2 h + v)) z)^2/(b + I a (2 k - m) + c (-2 h + v)))]) + (E^(e - (I m Pi)/2 + I (-2 k + m) q + g (-2 h + v) - (d + I (-2 k + m) p + f (-2 h + v))^2/(4 (b + I a (-2 k + m) + c (-2 h + v)))) (d + I (-2 k + m) p + f (-2 h + v) + 2 (b + I a (-2 k + m) + c (-2 h + v)) z) Gamma[1/2, -((d + I (-2 k + m) p + f (-2 h + v) + 2 (b + I a (-2 k + m) + c (-2 h + v)) z)^2/(4 (b + I a (-2 k + m) + c (-2 h + v))))])/((b + I a (-2 k + m) + c (-2 h + v)) Sqrt[-((d + I (-2 k + m) p + f (-2 h + v) + 2 (b + I a (-2 k + m) + c (-2 h + v)) z)^2/ (b + I a (-2 k + m) + c (-2 h + v)))])), {h, 0, Floor[(1/2) (-1 + v)]}], {k, 0, Floor[(1/2) (-1 + m)]}] - I^u 2^(-1 - m - u - v) Binomial[v, v/2] (1 - Mod[v, 2]) Sum[(-1)^k Binomial[m, k] Sum[(-1)^j Binomial[u, j] ((E^(e + I (2 k - m) q + t (2 j - u) + (1/2) I Pi (m + u) - (d + I (2 k - m) p + s (2 j - u))^2/(4 (b + I a (2 k - m) + (2 j - u) w))) (d + I (2 k - m) p + s (2 j - u) + 2 (b + I a (2 k - m) + (2 j - u) w) z) Gamma[1/2, -((d + I (2 k - m) p + s (2 j - u) + 2 (b + I a (2 k - m) + (2 j - u) w) z)^2/(4 (b + I a (2 k - m) + (2 j - u) w)))])/ ((b + I a (2 k - m) + (2 j - u) w) Sqrt[-((d + I (2 k - m) p + s (2 j - u) + 2 (b + I a (2 k - m) + (2 j - u) w) z)^2/(b + I a (2 k - m) + (2 j - u) w))]) + (E^(e + I (-2 k + m) q + t (2 j - u) + (1/2) I Pi (-m + u) - (d + I (-2 k + m) p + s (2 j - u))^2/(4 (b + I a (-2 k + m) + (2 j - u) w))) (d + I (-2 k + m) p + s (2 j - u) + 2 (b + I a (-2 k + m) + (2 j - u) w) z) Gamma[1/2, -((d + I (-2 k + m) p + s (2 j - u) + 2 (b + I a (-2 k + m) + (2 j - u) w) z)^2/(4 (b + I a (-2 k + m) + (2 j - u) w)))])/ ((b + I a (-2 k + m) + (2 j - u) w) Sqrt[-((d + I (-2 k + m) p + s (2 j - u) + 2 (b + I a (-2 k + m) + (2 j - u) w) z)^2/(b + I a (-2 k + m) + (2 j - u) w))]) + (E^(e + I (2 k - m) q + (1/2) I Pi (m - u) + t (-2 j + u) - (d + I (2 k - m) p + s (-2 j + u))^2/(4 (b + I a (2 k - m) + (-2 j + u) w))) (d + I (2 k - m) p + s (-2 j + u) + 2 (b + I a (2 k - m) + (-2 j + u) w) z) Gamma[1/2, -((d + I (2 k - m) p + s (-2 j + u) + 2 (b + I a (2 k - m) + (-2 j + u) w) z)^2/(4 (b + I a (2 k - m) + (-2 j + u) w)))])/((b + I a (2 k - m) + (-2 j + u) w) Sqrt[-((d + I (2 k - m) p + s (-2 j + u) + 2 (b + I a (2 k - m) + (-2 j + u) w) z)^2/(b + I a (2 k - m) + (-2 j + u) w))]) + (E^(e + I (-2 k + m) q + t (-2 j + u) - (1/2) I Pi (m + u) - (d + I (-2 k + m) p + s (-2 j + u))^2/(4 (b + I a (-2 k + m) + (-2 j + u) w))) (d + I (-2 k + m) p + s (-2 j + u) + 2 (b + I a (-2 k + m) + (-2 j + u) w) z) Gamma[1/2, -((d + I (-2 k + m) p + s (-2 j + u) + 2 (b + I a (-2 k + m) + (-2 j + u) w) z)^2/(4 (b + I a (-2 k + m) + (-2 j + u) w)))])/((b + I a (-2 k + m) + (-2 j + u) w) Sqrt[-((d + I (-2 k + m) p + s (-2 j + u) + 2 (b + I a (-2 k + m) + (-2 j + u) w) z)^2/ (b + I a (-2 k + m) + (-2 j + u) w))])), {j, 0, Floor[(1/2) (-1 + u)]}], {k, 0, Floor[(1/2) (-1 + m)]}] - I^u 2^(-1 - m - u - v) Binomial[m, m/2] (1 - Mod[m, 2]) Sum[(-1)^k Binomial[u, k] Sum[Binomial[v, h] ((E^(e + t (2 k - u) + (I Pi u)/2 + g (2 h - v) - (d + s (2 k - u) + f (2 h - v))^2/(4 (b + c (2 h - v) + (2 k - u) w))) (d + s (2 k - u) + f (2 h - v) + 2 (b + c (2 h - v) + (2 k - u) w) z) Gamma[1/2, -((d + s (2 k - u) + f (2 h - v) + 2 (b + c (2 h - v) + (2 k - u) w) z)^2/(4 (b + c (2 h - v) + (2 k - u) w)))])/ ((b + c (2 h - v) + (2 k - u) w) Sqrt[-((d + s (2 k - u) + f (2 h - v) + 2 (b + c (2 h - v) + (2 k - u) w) z)^2/(b + c (2 h - v) + (2 k - u) w))]) + (E^(e + t (2 k - u) + (I Pi u)/2 + g (-2 h + v) - (d + s (2 k - u) + f (-2 h + v))^2/(4 (b + c (-2 h + v) + (2 k - u) w))) (d + s (2 k - u) + f (-2 h + v) + 2 (b + c (-2 h + v) + (2 k - u) w) z) Gamma[1/2, -((d + s (2 k - u) + f (-2 h + v) + 2 (b + c (-2 h + v) + (2 k - u) w) z)^2/(4 (b + c (-2 h + v) + (2 k - u) w)))])/ ((b + c (-2 h + v) + (2 k - u) w) Sqrt[-((d + s (2 k - u) + f (-2 h + v) + 2 (b + c (-2 h + v) + (2 k - u) w) z)^2/(b + c (-2 h + v) + (2 k - u) w))]) + (E^(e - (I Pi u)/2 + t (-2 k + u) + g (2 h - v) - (d + s (-2 k + u) + f (2 h - v))^2/(4 (b + c (2 h - v) + (-2 k + u) w))) (d + s (-2 k + u) + f (2 h - v) + 2 (b + c (2 h - v) + (-2 k + u) w) z) Gamma[1/2, -((d + s (-2 k + u) + f (2 h - v) + 2 (b + c (2 h - v) + (-2 k + u) w) z)^2/(4 (b + c (2 h - v) + (-2 k + u) w)))])/ ((b + c (2 h - v) + (-2 k + u) w) Sqrt[-((d + s (-2 k + u) + f (2 h - v) + 2 (b + c (2 h - v) + (-2 k + u) w) z)^2/(b + c (2 h - v) + (-2 k + u) w))]) + (E^(e - (I Pi u)/2 + t (-2 k + u) + g (-2 h + v) - (d + s (-2 k + u) + f (-2 h + v))^2/(4 (b + c (-2 h + v) + (-2 k + u) w))) (d + s (-2 k + u) + f (-2 h + v) + 2 (b + c (-2 h + v) + (-2 k + u) w) z) Gamma[1/2, -((d + s (-2 k + u) + f (-2 h + v) + 2 (b + c (-2 h + v) + (-2 k + u) w) z)^2/(4 (b + c (-2 h + v) + (-2 k + u) w)))])/ ((b + c (-2 h + v) + (-2 k + u) w) Sqrt[-((d + s (-2 k + u) + f (-2 h + v) + 2 (b + c (-2 h + v) + (-2 k + u) w) z)^2/(b + c (-2 h + v) + (-2 k + u) w))])), {h, 0, Floor[(1/2) (-1 + v)]}], {k, 0, Floor[(1/2) (-1 + u)]}] - I^u 2^(-1 - m - u - v) Sum[Binomial[v, h] Sum[(-1)^k Binomial[m, k] Sum[(-1)^j Binomial[u, j] ((E^(e + (I m Pi)/2 + I (2 k - m) q + t (2 j - u) + (I Pi u)/2 + g (2 h - v) - (d + I (2 k - m) p + s (2 j - u) + f (2 h - v))^2/ (4 (b + I a (2 k - m) + c (2 h - v) + (2 j - u) w))) (d + I (2 k - m) p + s (2 j - u) + f (2 h - v) + 2 (b + I a (2 k - m) + c (2 h - v) + (2 j - u) w) z) Gamma[1/2, -((d + I (2 k - m) p + s (2 j - u) + f (2 h - v) + 2 (b + I a (2 k - m) + c (2 h - v) + (2 j - u) w) z)^2/ (4 (b + I a (2 k - m) + c (2 h - v) + (2 j - u) w)))])/ ((b + I a (2 k - m) + c (2 h - v) + (2 j - u) w) Sqrt[-((d + I (2 k - m) p + s (2 j - u) + f (2 h - v) + 2 (b + I a (2 k - m) + c (2 h - v) + (2 j - u) w) z)^2/ (b + I a (2 k - m) + c (2 h - v) + (2 j - u) w))]) + (E^(e - (I m Pi)/2 + I (-2 k + m) q + t (2 j - u) + (I Pi u)/2 + g (2 h - v) - (d + I (-2 k + m) p + s (2 j - u) + f (2 h - v))^ 2/(4 (b + I a (-2 k + m) + c (2 h - v) + (2 j - u) w))) (d + I (-2 k + m) p + s (2 j - u) + f (2 h - v) + 2 (b + I a (-2 k + m) + c (2 h - v) + (2 j - u) w) z) Gamma[1/2, -((d + I (-2 k + m) p + s (2 j - u) + f (2 h - v) + 2 (b + I a (-2 k + m) + c (2 h - v) + (2 j - u) w) z)^2/ (4 (b + I a (-2 k + m) + c (2 h - v) + (2 j - u) w)))])/ ((b + I a (-2 k + m) + c (2 h - v) + (2 j - u) w) Sqrt[-((d + I (-2 k + m) p + s (2 j - u) + f (2 h - v) + 2 (b + I a (-2 k + m) + c (2 h - v) + (2 j - u) w) z)^2/ (b + I a (-2 k + m) + c (2 h - v) + (2 j - u) w))]) + (E^(e + (I m Pi)/2 + I (2 k - m) q + t (2 j - u) + (I Pi u)/2 + g (-2 h + v) - (d + I (2 k - m) p + s (2 j - u) + f (-2 h + v))^ 2/(4 (b + I a (2 k - m) + c (-2 h + v) + (2 j - u) w))) (d + I (2 k - m) p + s (2 j - u) + f (-2 h + v) + 2 (b + I a (2 k - m) + c (-2 h + v) + (2 j - u) w) z) Gamma[1/2, -((d + I (2 k - m) p + s (2 j - u) + f (-2 h + v) + 2 (b + I a (2 k - m) + c (-2 h + v) + (2 j - u) w) z)^2/ (4 (b + I a (2 k - m) + c (-2 h + v) + (2 j - u) w)))])/ ((b + I a (2 k - m) + c (-2 h + v) + (2 j - u) w) Sqrt[-((d + I (2 k - m) p + s (2 j - u) + f (-2 h + v) + 2 (b + I a (2 k - m) + c (-2 h + v) + (2 j - u) w) z)^2/ (b + I a (2 k - m) + c (-2 h + v) + (2 j - u) w))]) + (E^(e - (I m Pi)/2 + I (-2 k + m) q + t (2 j - u) + (I Pi u)/2 + g (-2 h + v) - (d + I (-2 k + m) p + s (2 j - u) + f (-2 h + v))^2/(4 (b + I a (-2 k + m) + c (-2 h + v) + (2 j - u) w))) (d + I (-2 k + m) p + s (2 j - u) + f (-2 h + v) + 2 (b + I a (-2 k + m) + c (-2 h + v) + (2 j - u) w) z) Gamma[1/2, -((d + I (-2 k + m) p + s (2 j - u) + f (-2 h + v) + 2 (b + I a (-2 k + m) + c (-2 h + v) + (2 j - u) w) z)^2/(4 (b + I a (-2 k + m) + c (-2 h + v) + (2 j - u) w)))])/((b + I a (-2 k + m) + c (-2 h + v) + (2 j - u) w) Sqrt[-((d + I (-2 k + m) p + s (2 j - u) + f (-2 h + v) + 2 (b + I a (-2 k + m) + c (-2 h + v) + (2 j - u) w) z)^2/(b + I a (-2 k + m) + c (-2 h + v) + (2 j - u) w))]) + (E^(e + (I m Pi)/2 + I (2 k - m) q - (I Pi u)/2 + t (-2 j + u) + g (2 h - v) - (d + I (2 k - m) p + s (-2 j + u) + f (2 h - v))^ 2/(4 (b + I a (2 k - m) + c (2 h - v) + (-2 j + u) w))) (d + I (2 k - m) p + s (-2 j + u) + f (2 h - v) + 2 (b + I a (2 k - m) + c (2 h - v) + (-2 j + u) w) z) Gamma[1/2, -((d + I (2 k - m) p + s (-2 j + u) + f (2 h - v) + 2 (b + I a (2 k - m) + c (2 h - v) + (-2 j + u) w) z)^2/ (4 (b + I a (2 k - m) + c (2 h - v) + (-2 j + u) w)))])/ ((b + I a (2 k - m) + c (2 h - v) + (-2 j + u) w) Sqrt[-((d + I (2 k - m) p + s (-2 j + u) + f (2 h - v) + 2 (b + I a (2 k - m) + c (2 h - v) + (-2 j + u) w) z)^2/ (b + I a (2 k - m) + c (2 h - v) + (-2 j + u) w))]) + (E^(e - (I m Pi)/2 + I (-2 k + m) q - (I Pi u)/2 + t (-2 j + u) + g (2 h - v) - (d + I (-2 k + m) p + s (-2 j + u) + f (2 h - v))^2/(4 (b + I a (-2 k + m) + c (2 h - v) + (-2 j + u) w))) (d + I (-2 k + m) p + s (-2 j + u) + f (2 h - v) + 2 (b + I a (-2 k + m) + c (2 h - v) + (-2 j + u) w) z) Gamma[1/2, -((d + I (-2 k + m) p + s (-2 j + u) + f (2 h - v) + 2 (b + I a (-2 k + m) + c (2 h - v) + (-2 j + u) w) z)^2/(4 (b + I a (-2 k + m) + c (2 h - v) + (-2 j + u) w)))])/((b + I a (-2 k + m) + c (2 h - v) + (-2 j + u) w) Sqrt[-((d + I (-2 k + m) p + s (-2 j + u) + f (2 h - v) + 2 (b + I a (-2 k + m) + c (2 h - v) + (-2 j + u) w) z)^2/(b + I a (-2 k + m) + c (2 h - v) + (-2 j + u) w))]) + (E^(e + (I m Pi)/2 + I (2 k - m) q - (I Pi u)/2 + t (-2 j + u) + g (-2 h + v) - (d + I (2 k - m) p + s (-2 j + u) + f (-2 h + v))^2/(4 (b + I a (2 k - m) + c (-2 h + v) + (-2 j + u) w))) (d + I (2 k - m) p + s (-2 j + u) + f (-2 h + v) + 2 (b + I a (2 k - m) + c (-2 h + v) + (-2 j + u) w) z) Gamma[1/2, -((d + I (2 k - m) p + s (-2 j + u) + f (-2 h + v) + 2 (b + I a (2 k - m) + c (-2 h + v) + (-2 j + u) w) z)^2/(4 (b + I a (2 k - m) + c (-2 h + v) + (-2 j + u) w)))])/((b + I a (2 k - m) + c (-2 h + v) + (-2 j + u) w) Sqrt[-((d + I (2 k - m) p + s (-2 j + u) + f (-2 h + v) + 2 (b + I a (2 k - m) + c (-2 h + v) + (-2 j + u) w) z)^2/(b + I a (2 k - m) + c (-2 h + v) + (-2 j + u) w))]) + (E^(e - (I m Pi)/2 + I (-2 k + m) q - (I Pi u)/2 + t (-2 j + u) + g (-2 h + v) - (d + I (-2 k + m) p + s (-2 j + u) + f (-2 h + v))^2/(4 (b + I a (-2 k + m) + c (-2 h + v) + (-2 j + u) w))) (d + I (-2 k + m) p + s (-2 j + u) + f (-2 h + v) + 2 (b + I a (-2 k + m) + c (-2 h + v) + (-2 j + u) w) z) Gamma[1/2, -((d + I (-2 k + m) p + s (-2 j + u) + f (-2 h + v) + 2 (b + I a (-2 k + m) + c (-2 h + v) + (-2 j + u) w) z)^2/ (4 (b + I a (-2 k + m) + c (-2 h + v) + (-2 j + u) w)))])/ ((b + I a (-2 k + m) + c (-2 h + v) + (-2 j + u) w) Sqrt[-((d + I (-2 k + m) p + s (-2 j + u) + f (-2 h + v) + 2 (b + I a (-2 k + m) + c (-2 h + v) + (-2 j + u) w) z)^2/ (b + I a (-2 k + m) + c (-2 h + v) + (-2 j + u) w))])), {j, 0, Floor[(1/2) (-1 + u)]}], {k, 0, Floor[(1/2) (-1 + m)]}], {h, 0, Floor[(1/2) (-1 + v)]}] /; Element[m, Integers] && m > 0 && Element[u, Integers] && u > 0 && Element[v, Integers] && v > 0

 Standard Form

 Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["b", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["d", " ", "z"]], "+", "e"]]], SuperscriptBox[RowBox[List["Sin", "[", RowBox[List[RowBox[List["a", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["p", " ", "z"]], "+", "q"]], "]"]], "m"], SuperscriptBox[RowBox[List["Sinh", "[", RowBox[List[RowBox[List["w", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["s", " ", "z"]], "+", "t"]], "]"]], "u"], SuperscriptBox[RowBox[List["Cosh", "[", RowBox[List[RowBox[List["c", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["f", " ", "z"]], "+", "g"]], "]"]], "v"], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["-", RowBox[List[FractionBox["1", RowBox[List["b", " ", SqrtBox[RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["2", " ", "b", " ", "z"]]]], ")"]], "2"], "b"]]]]]]], RowBox[List["(", RowBox[List[SuperscriptBox["\[ImaginaryI]", "u"], " ", SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", "m", "-", "u", "-", "v"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", FractionBox[SuperscriptBox["d", "2"], RowBox[List["4", " ", "b"]]]]], "+", "e"]]], " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["2", " ", "b", " ", "z"]]]], ")"]], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", FractionBox["m", "2"]]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List["u", ",", FractionBox["u", "2"]]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List["v", ",", FractionBox["v", "2"]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], ",", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["2", " ", "b", " ", "z"]]]], ")"]], "2"], RowBox[List["4", " ", "b"]]]]]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["m", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["u", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["v", ",", "2"]], "]"]]]], ")"]]]], ")"]]]]]], "-", RowBox[List[SuperscriptBox["\[ImaginaryI]", "u"], " ", SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", "m", "-", "u", "-", "v"]]], " ", RowBox[List["Binomial", "[", RowBox[List["u", ",", FractionBox["u", "2"]]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List["v", ",", FractionBox["v", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["u", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["v", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["e", "-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]], " ", "p"]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]]]], ")"]]]]], "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", "m", " ", "\[Pi]"]], "2"], "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]], " ", "q"]]]]], " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]], " ", "p"]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]]]], ")"]], " ", "z"]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], ",", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]], " ", "p"]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]]]], ")"]], " ", "z"]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]]]], ")"]]]]]]]]], "]"]]]], ")"]], "/", RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]]]], ")"]], " ", SqrtBox[RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]], " ", "p"]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]]]], ")"]], " ", "z"]]]], ")"]], "2"], RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]]]]]]]]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["e", "-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]], " ", "p"]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]]]], ")"]]]]], "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "m", " ", "\[Pi]"]], "2"], "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]], " ", "q"]]]]], " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]], " ", "p"]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]]]], ")"]], " ", "z"]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], ",", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]], " ", "p"]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]]]], ")"]], " ", "z"]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]]]], ")"]]]]]]]]], "]"]]]], ")"]], "/", RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]]]], ")"]], " ", SqrtBox[RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]], " ", "p"]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]]]], ")"]], " ", "z"]]]], ")"]], "2"], RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]]]]]]]]]], ")"]]]]]], ")"]]]]]]]], "-", RowBox[List[SuperscriptBox["\[ImaginaryI]", "u"], " ", SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", "m", "-", "u", "-", "v"]]], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", FractionBox["m", "2"]]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List["u", ",", FractionBox["u", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["m", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["u", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["h", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "v"]], ")"]]]], "]"]]], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["v", ",", "h"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["e", "-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]]]], ")"]]]]], "+", RowBox[List["g", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]]]]], " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]]]], ")"]], " ", "z"]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], ",", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]]]], ")"]], " ", "z"]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]]]], ")"]]]]]]]]], "]"]]]], ")"]], "/", RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["b", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]]]], ")"]], " ", SqrtBox[RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]]]], ")"]], " ", "z"]]]], ")"]], "2"], RowBox[List["b", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]]]]]]]]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["e", "-", RowBox[List["g", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]], "-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]]]], ")"]]]]]]]], " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]]]], ")"]], " ", "z"]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], ",", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]]]], ")"]], " ", "z"]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]]]], ")"]]]]]]]]], "]"]]]], ")"]], "/", RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["b", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]]]], ")"]], " ", SqrtBox[RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]]]], ")"]], " ", "z"]]]], ")"]], "2"], RowBox[List["b", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]]]]]]]]]], ")"]]]]]], ")"]]]]]]]], "-", RowBox[List[SuperscriptBox["\[ImaginaryI]", "u"], " ", SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", "m", "-", "u", "-", "v"]]], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", FractionBox["m", "2"]]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List["v", ",", FractionBox["v", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["m", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["v", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "u"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", RowBox[List["Binomial", "[", RowBox[List["u", ",", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["e", "+", RowBox[List["t", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "u"]], ")"]]]], "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "u"]], "2"], "-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["s", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "u"]], ")"]]]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "u"]], ")"]], " ", "w"]]]], ")"]]]]]]]], " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["s", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "u"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "u"]], ")"]], " ", "w"]]]], ")"]], " ", "z"]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], ",", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["s", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "u"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "u"]], ")"]], " ", "w"]]]], ")"]], " ", "z"]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "u"]], ")"]], " ", "w"]]]], ")"]]]]]]]]], "]"]]]], ")"]], "/", RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["b", "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "u"]], ")"]], " ", "w"]]]], ")"]], " ", SqrtBox[RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["s", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "u"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "u"]], ")"]], " ", "w"]]]], ")"]], " ", "z"]]]], ")"]], "2"], RowBox[List["b", "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "u"]], ")"]], " ", "w"]]]]]]]]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["e", "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "u"]], "2"], "+", RowBox[List["t", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "u"]], ")"]]]], "-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["s", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "u"]], ")"]]]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "u"]], ")"]], " ", "w"]]]], ")"]]]]]]]], " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["s", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "u"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "u"]], ")"]], " ", "w"]]]], ")"]], " ", "z"]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], ",", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["s", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "u"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "u"]], ")"]], " ", "w"]]]], ")"]], " ", "z"]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "u"]], ")"]], " ", "w"]]]], ")"]]]]]]]]], "]"]]]], ")"]], "/", RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["b", "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "u"]], ")"]], " ", "w"]]]], ")"]], " ", SqrtBox[RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["s", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "u"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "u"]], ")"]], " ", "w"]]]], ")"]], " ", "z"]]]], ")"]], "2"], RowBox[List["b", "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "u"]], ")"]], " ", "w"]]]]]]]]]], ")"]]]]]], ")"]]]]]]]], "-", RowBox[List[SuperscriptBox["\[ImaginaryI]", "u"], " ", SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", "m", "-", "u", "-", "v"]]], " ", RowBox[List["Binomial", "[", RowBox[List["u", ",", FractionBox["u", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["u", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", "k"]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["h", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "v"]], ")"]]]], "]"]]], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["v", ",", "h"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["e", "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", "m", " ", "\[Pi]"]], "2"], "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]], " ", "q"]], "-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]], " ", "p"]], "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]]]], ")"]]]]], "+", RowBox[List["g", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]]]]], " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]], " ", "p"]], "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]]]], ")"]], " ", "z"]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], ",", RowBox[List["-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]], " ", "p"]], "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]]]], ")"]], " ", "z"]]]], ")"]], "2"], "/", RowBox[List["(", RowBox[List["4", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]]]], ")"]]]], ")"]]]]]]]], "]"]]]], ")"]], "/", RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]]]], ")"]], " ", RowBox[List["\[Sqrt]", RowBox[List["(", RowBox[List["-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]], " ", "p"]], "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]]]], ")"]], " ", "z"]]]], ")"]], "2"], "/", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["e", "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "m", " ", "\[Pi]"]], "2"], "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]], " ", "q"]], "-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]], " ", "p"]], "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]]]], ")"]]]]], "+", RowBox[List["g", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]]]]], " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]], " ", "p"]], "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]]]], ")"]], " ", "z"]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], ",", RowBox[List["-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]], " ", "p"]], "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]]]], ")"]], " ", "z"]]]], ")"]], "2"], "/", RowBox[List["(", RowBox[List["4", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]]]], ")"]]]], ")"]]]]]]]], "]"]]]], ")"]], "/", RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]]]], ")"]], " ", RowBox[List["\[Sqrt]", RowBox[List["(", RowBox[List["-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]], " ", "p"]], "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]]]], ")"]], " ", "z"]]]], ")"]], "2"], "/", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["e", "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", "m", " ", "\[Pi]"]], "2"], "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]], " ", "q"]], "+", RowBox[List["g", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]], "-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]], " ", "p"]], "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]]]], ")"]]]]]]]], " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]], " ", "p"]], "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]]]], ")"]], " ", "z"]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], ",", RowBox[List["-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]], " ", "p"]], "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]]]], ")"]], " ", "z"]]]], ")"]], "2"], "/", RowBox[List["(", RowBox[List["4", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]]]], ")"]]]], ")"]]]]]]]], "]"]]]], ")"]], "/", RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]]]], ")"]], " ", RowBox[List["\[Sqrt]", RowBox[List["(", RowBox[List["-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]], " ", "p"]], "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]]]], ")"]], " ", "z"]]]], ")"]], "2"], "/", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["e", "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "m", " ", "\[Pi]"]], "2"], "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]], " ", "q"]], "+", RowBox[List["g", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]], "-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]], " ", "p"]], "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]]]], ")"]]]]]]]], " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]], " ", "p"]], "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]]]], ")"]], " ", "z"]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], ",", RowBox[List["-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]], " ", "p"]], "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]]]], ")"]], " ", "z"]]]], ")"]], "2"], "/", RowBox[List["(", RowBox[List["4", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]]]], ")"]]]], ")"]]]]]]]], "]"]]]], ")"]], "/", RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]]]], ")"]], " ", RowBox[List["\[Sqrt]", RowBox[List["(", RowBox[List["-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]], " ", "p"]], "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]]]], ")"]], " ", "z"]]]], ")"]], "2"], "/", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]]]]]]]], "-", RowBox[List[SuperscriptBox["\[ImaginaryI]", "u"], " ", SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", "m", "-", "u", "-", "v"]]], " ", RowBox[List["Binomial", "[", RowBox[List["v", ",", FractionBox["v", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["v", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", "k"]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "u"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", RowBox[List["Binomial", "[", RowBox[List["u", ",", "j"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["e", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]], " ", "q"]], "+", RowBox[List["t", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "j"]], "-", "u"]], ")"]]]], "+", RowBox[List[FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["(", RowBox[List["m", "+", "u"]], ")"]]]], "-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]], " ", "p"]], "+", RowBox[List["s", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "j"]], "-", "u"]], ")"]]]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "j"]], "-", "u"]], ")"]], " ", "w"]]]], ")"]]]]]]]], " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]], " ", "p"]], "+", RowBox[List["s", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "j"]], "-", "u"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "j"]], "-", "u"]], ")"]], " ", "w"]]]], ")"]], " ", "z"]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], ",", RowBox[List["-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]], " ", "p"]], "+", RowBox[List["s", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "j"]], "-", "u"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "j"]], "-", "u"]], ")"]], " ", "w"]]]], ")"]], " ", "z"]]]], ")"]], "2"], "/", RowBox[List["(", RowBox[List["4", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "j"]], "-", "u"]], ")"]], " ", "w"]]]], ")"]]]], ")"]]]]]]]], "]"]]]], ")"]], "/", RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "j"]], "-", "u"]], ")"]], " ", "w"]]]], ")"]], " ", RowBox[List["\[Sqrt]", RowBox[List["(", RowBox[List["-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]], " ", "p"]], "+", RowBox[List["s", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "j"]], "-", "u"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "j"]], "-", "u"]], ")"]], " ", "w"]]]], ")"]], " ", "z"]]]], ")"]], "2"], "/", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "j"]], "-", "u"]], ")"]], " ", "w"]]]], ")"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["e", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]], " ", "q"]], "+", RowBox[List["t", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "j"]], "-", "u"]], ")"]]]], "+", RowBox[List[FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "m"]], "+", "u"]], ")"]]]], "-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]], " ", "p"]], "+", RowBox[List["s", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "j"]], "-", "u"]], ")"]]]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "j"]], "-", "u"]], ")"]], " ", "w"]]]], ")"]]]]]]]], " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]], " ", "p"]], "+", RowBox[List["s", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "j"]], "-", "u"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "j"]], "-", "u"]], ")"]], " ", "w"]]]], ")"]], " ", "z"]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], ",", RowBox[List["-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]], " ", "p"]], "+", RowBox[List["s", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "j"]], "-", "u"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "j"]], "-", "u"]], ")"]], " ", "w"]]]], ")"]], " ", "z"]]]], ")"]], "2"], "/", RowBox[List["(", RowBox[List["4", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "j"]], "-", "u"]], ")"]], " ", "w"]]]], ")"]]]], ")"]]]]]]]], "]"]]]], ")"]], "/", RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "j"]], "-", "u"]], ")"]], " ", "w"]]]], ")"]], " ", RowBox[List["\[Sqrt]", RowBox[List["(", RowBox[List["-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]], " ", "p"]], "+", RowBox[List["s", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "j"]], "-", "u"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "j"]], "-", "u"]], ")"]], " ", "w"]]]], ")"]], " ", "z"]]]], ")"]], "2"], "/", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "j"]], "-", "u"]], ")"]], " ", "w"]]]], ")"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["e", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]], " ", "q"]], "+", RowBox[List[FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["(", RowBox[List["m", "-", "u"]], ")"]]]], "+", RowBox[List["t", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "j"]], "+", "u"]], ")"]]]], "-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]], " ", "p"]], "+", RowBox[List["s", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "j"]], "+", "u"]], ")"]]]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "j"]], "+", "u"]], ")"]], " ", "w"]]]], ")"]]]]]]]], " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]], " ", "p"]], "+", RowBox[List["s", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "j"]], "+", "u"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "j"]], "+", "u"]], ")"]], " ", "w"]]]], ")"]], " ", "z"]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], ",", RowBox[List["-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]], " ", "p"]], "+", RowBox[List["s", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "j"]], "+", "u"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "j"]], "+", "u"]], ")"]], " ", "w"]]]], ")"]], " ", "z"]]]], ")"]], "2"], "/", RowBox[List["(", RowBox[List["4", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "j"]], "+", "u"]], ")"]], " ", "w"]]]], ")"]]]], ")"]]]]]]]], "]"]]]], ")"]], "/", RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "j"]], "+", "u"]], ")"]], " ", "w"]]]], ")"]], " ", RowBox[List["\[Sqrt]", RowBox[List["(", RowBox[List["-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]], " ", "p"]], "+", RowBox[List["s", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "j"]], "+", "u"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "j"]], "+", "u"]], ")"]], " ", "w"]]]], ")"]], " ", "z"]]]], ")"]], "2"], "/", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "j"]], "+", "u"]], ")"]], " ", "w"]]]], ")"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["e", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]], " ", "q"]], "+", RowBox[List["t", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "j"]], "+", "u"]], ")"]]]], "-", RowBox[List[FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["(", RowBox[List["m", "+", "u"]], ")"]]]], "-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]], " ", "p"]], "+", RowBox[List["s", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "j"]], "+", "u"]], ")"]]]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "j"]], "+", "u"]], ")"]], " ", "w"]]]], ")"]]]]]]]], " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]], " ", "p"]], "+", RowBox[List["s", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "j"]], "+", "u"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "j"]], "+", "u"]], ")"]], " ", "w"]]]], ")"]], " ", "z"]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], ",", RowBox[List["-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]], " ", "p"]], "+", RowBox[List["s", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "j"]], "+", "u"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "j"]], "+", "u"]], ")"]], " ", "w"]]]], ")"]], " ", "z"]]]], ")"]], "2"], "/", RowBox[List["(", RowBox[List["4", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "j"]], "+", "u"]], ")"]], " ", "w"]]]], ")"]]]], ")"]]]]]]]], "]"]]]], ")"]], "/", RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "j"]], "+", "u"]], ")"]], " ", "w"]]]], ")"]], " ", RowBox[List["\[Sqrt]", RowBox[List["(", RowBox[List["-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]], " ", "p"]], "+", RowBox[List["s", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "j"]], "+", "u"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "j"]], "+", "u"]], ")"]], " ", "w"]]]], ")"]], " ", "z"]]]], ")"]], "2"], "/", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "j"]], "+", "u"]], ")"]], " ", "w"]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]]]]]]]], "-", RowBox[List[SuperscriptBox["\[ImaginaryI]", "u"], " ", SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", "m", "-", "u", "-", "v"]]], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", FractionBox["m", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["m", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "u"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", RowBox[List["Binomial", "[", RowBox[List["u", ",", "k"]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["h", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "v"]], ")"]]]], "]"]]], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["v", ",", "h"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["e", "+", RowBox[List["t", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "u"]], ")"]]]], "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "u"]], "2"], "+", RowBox[List["g", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]], "-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["s", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "u"]], ")"]]]], "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "u"]], ")"]], " ", "w"]]]], ")"]]]]]]]], " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["s", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "u"]], ")"]]]], "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "u"]], ")"]], " ", "w"]]]], ")"]], " ", "z"]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], ",", RowBox[List["-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["s", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "u"]], ")"]]]], "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "u"]], ")"]], " ", "w"]]]], ")"]], " ", "z"]]]], ")"]], "2"], "/", RowBox[List["(", RowBox[List["4", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "u"]], ")"]], " ", "w"]]]], ")"]]]], ")"]]]]]]]], "]"]]]], ")"]], "/", RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["b", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "u"]], ")"]], " ", "w"]]]], ")"]], " ", RowBox[List["\[Sqrt]", RowBox[List["(", RowBox[List["-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["s", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "u"]], ")"]]]], "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "u"]], ")"]], " ", "w"]]]], ")"]], " ", "z"]]]], ")"]], "2"], "/", RowBox[List["(", RowBox[List["b", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "u"]], ")"]], " ", "w"]]]], ")"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["e", "+", RowBox[List["t", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "u"]], ")"]]]], "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "u"]], "2"], "+", RowBox[List["g", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]], "-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["s", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "u"]], ")"]]]], "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "u"]], ")"]], " ", "w"]]]], ")"]]]]]]]], " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["s", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "u"]], ")"]]]], "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "u"]], ")"]], " ", "w"]]]], ")"]], " ", "z"]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], ",", RowBox[List["-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["s", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "u"]], ")"]]]], "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "u"]], ")"]], " ", "w"]]]], ")"]], " ", "z"]]]], ")"]], "2"], "/", RowBox[List["(", RowBox[List["4", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "u"]], ")"]], " ", "w"]]]], ")"]]]], ")"]]]]]]]], "]"]]]], ")"]], "/", RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["b", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "u"]], ")"]], " ", "w"]]]], ")"]], " ", RowBox[List["\[Sqrt]", RowBox[List["(", RowBox[List["-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["s", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "u"]], ")"]]]], "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "u"]], ")"]], " ", "w"]]]], ")"]], " ", "z"]]]], ")"]], "2"], "/", RowBox[List["(", RowBox[List["b", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "u"]], ")"]], " ", "w"]]]], ")"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["e", "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "u"]], "2"], "+", RowBox[List["t", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "u"]], ")"]]]], "+", RowBox[List["g", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]], "-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["s", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "u"]], ")"]]]], "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "u"]], ")"]], " ", "w"]]]], ")"]]]]]]]], " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["s", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "u"]], ")"]]]], "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "u"]], ")"]], " ", "w"]]]], ")"]], " ", "z"]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], ",", RowBox[List["-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["s", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "u"]], ")"]]]], "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "u"]], ")"]], " ", "w"]]]], ")"]], " ", "z"]]]], ")"]], "2"], "/", RowBox[List["(", RowBox[List["4", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "u"]], ")"]], " ", "w"]]]], ")"]]]], ")"]]]]]]]], "]"]]]], ")"]], "/", RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["b", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "u"]], ")"]], " ", "w"]]]], ")"]], " ", RowBox[List["\[Sqrt]", RowBox[List["(", RowBox[List["-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["s", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "u"]], ")"]]]], "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "u"]], ")"]], " ", "w"]]]], ")"]], " ", "z"]]]], ")"]], "2"], "/", RowBox[List["(", RowBox[List["b", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "u"]], ")"]], " ", "w"]]]], ")"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["e", "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "u"]], "2"], "+", RowBox[List["t", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "u"]], ")"]]]], "+", RowBox[List["g", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]], "-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["s", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "u"]], ")"]]]], "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "u"]], ")"]], " ", "w"]]]], ")"]]]]]]]], " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["s", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "u"]], ")"]]]], "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "u"]], ")"]], " ", "w"]]]], ")"]], " ", "z"]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], ",", RowBox[List["-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["s", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "u"]], ")"]]]], "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "u"]], ")"]], " ", "w"]]]], ")"]], " ", "z"]]]], ")"]], "2"], "/", RowBox[List["(", RowBox[List["4", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "u"]], ")"]], " ", "w"]]]], ")"]]]], ")"]]]]]]]], "]"]]]], ")"]], "/", RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["b", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "u"]], ")"]], " ", "w"]]]], ")"]], " ", RowBox[List["\[Sqrt]", RowBox[List["(", RowBox[List["-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["s", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "u"]], ")"]]]], "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "u"]], ")"]], " ", "w"]]]], ")"]], " ", "z"]]]], ")"]], "2"], "/", RowBox[List["(", RowBox[List["b", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "u"]], ")"]], " ", "w"]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]]]]]]]], "-", RowBox[List[SuperscriptBox["\[ImaginaryI]", "u"], " ", SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", "m", "-", "u", "-", "v"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["h", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "v"]], ")"]]]], "]"]]], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["v", ",", "h"]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", "k"]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "u"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", RowBox[List["Binomial", "[", RowBox[List["u", ",", "j"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["e", "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", "m", " ", "\[Pi]"]], "2"], "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]], " ", "q"]], "+", RowBox[List["t", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "j"]], "-", "u"]], ")"]]]], "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "u"]], "2"], "+", RowBox[List["g", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]], "-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]], " ", "p"]], "+", RowBox[List["s", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "j"]], "-", "u"]], ")"]]]], "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "j"]], "-", "u"]], ")"]], " ", "w"]]]], ")"]]]]]]]], " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]], " ", "p"]], "+", RowBox[List["s", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "j"]], "-", "u"]], ")"]]]], "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "j"]], "-", "u"]], ")"]], " ", "w"]]]], ")"]], " ", "z"]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], ",", RowBox[List["-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]], " ", "p"]], "+", RowBox[List["s", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "j"]], "-", "u"]], ")"]]]], "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "j"]], "-", "u"]], ")"]], " ", "w"]]]], ")"]], " ", "z"]]]], ")"]], "2"], "/", RowBox[List["(", RowBox[List["4", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "j"]], "-", "u"]], ")"]], " ", "w"]]]], ")"]]]], ")"]]]]]]]], "]"]]]], ")"]], "/", RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "j"]], "-", "u"]], ")"]], " ", "w"]]]], ")"]], " ", RowBox[List["\[Sqrt]", RowBox[List["(", RowBox[List["-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]], " ", "p"]], "+", RowBox[List["s", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "j"]], "-", "u"]], ")"]]]], "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "j"]], "-", "u"]], ")"]], " ", "w"]]]], ")"]], " ", "z"]]]], ")"]], "2"], "/", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "j"]], "-", "u"]], ")"]], " ", "w"]]]], ")"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["e", "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "m", " ", "\[Pi]"]], "2"], "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]], " ", "q"]], "+", RowBox[List["t", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "j"]], "-", "u"]], ")"]]]], "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "u"]], "2"], "+", RowBox[List["g", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]], "-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]], " ", "p"]], "+", RowBox[List["s", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "j"]], "-", "u"]], ")"]]]], "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "j"]], "-", "u"]], ")"]], " ", "w"]]]], ")"]]]]]]]], " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]], " ", "p"]], "+", RowBox[List["s", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "j"]], "-", "u"]], ")"]]]], "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "j"]], "-", "u"]], ")"]], " ", "w"]]]], ")"]], " ", "z"]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], ",", RowBox[List["-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]], " ", "p"]], "+", RowBox[List["s", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "j"]], "-", "u"]], ")"]]]], "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "j"]], "-", "u"]], ")"]], " ", "w"]]]], ")"]], " ", "z"]]]], ")"]], "2"], "/", RowBox[List["(", RowBox[List["4", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "j"]], "-", "u"]], ")"]], " ", "w"]]]], ")"]]]], ")"]]]]]]]], "]"]]]], ")"]], "/", RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "j"]], "-", "u"]], ")"]], " ", "w"]]]], ")"]], " ", RowBox[List["\[Sqrt]", RowBox[List["(", RowBox[List["-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]], " ", "p"]], "+", RowBox[List["s", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "j"]], "-", "u"]], ")"]]]], "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "j"]], "-", "u"]], ")"]], " ", "w"]]]], ")"]], " ", "z"]]]], ")"]], "2"], "/", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "j"]], "-", "u"]], ")"]], " ", "w"]]]], ")"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["e", "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", "m", " ", "\[Pi]"]], "2"], "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]], " ", "q"]], "+", RowBox[List["t", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "j"]], "-", "u"]], ")"]]]], "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "u"]], "2"], "+", RowBox[List["g", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]], "-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]], " ", "p"]], "+", RowBox[List["s", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "j"]], "-", "u"]], ")"]]]], "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "j"]], "-", "u"]], ")"]], " ", "w"]]]], ")"]]]]]]]], " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]], " ", "p"]], "+", RowBox[List["s", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "j"]], "-", "u"]], ")"]]]], "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "j"]], "-", "u"]], ")"]], " ", "w"]]]], ")"]], " ", "z"]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], ",", RowBox[List["-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]], " ", "p"]], "+", RowBox[List["s", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "j"]], "-", "u"]], ")"]]]], "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "j"]], "-", "u"]], ")"]], " ", "w"]]]], ")"]], " ", "z"]]]], ")"]], "2"], "/", RowBox[List["(", RowBox[List["4", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "j"]], "-", "u"]], ")"]], " ", "w"]]]], ")"]]]], ")"]]]]]]]], "]"]]]], ")"]], "/", RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "j"]], "-", "u"]], ")"]], " ", "w"]]]], ")"]], " ", RowBox[List["\[Sqrt]", RowBox[List["(", RowBox[List["-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]], " ", "p"]], "+", RowBox[List["s", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "j"]], "-", "u"]], ")"]]]], "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "j"]], "-", "u"]], ")"]], " ", "w"]]]], ")"]], " ", "z"]]]], ")"]], "2"], "/", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "j"]], "-", "u"]], ")"]], " ", "w"]]]], ")"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["e", "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "m", " ", "\[Pi]"]], "2"], "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]], " ", "q"]], "+", RowBox[List["t", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "j"]], "-", "u"]], ")"]]]], "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "u"]], "2"], "+", RowBox[List["g", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]], "-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]], " ", "p"]], "+", RowBox[List["s", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "j"]], "-", "u"]], ")"]]]], "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "j"]], "-", "u"]], ")"]], " ", "w"]]]], ")"]]]]]]]], " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]], " ", "p"]], "+", RowBox[List["s", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "j"]], "-", "u"]], ")"]]]], "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "j"]], "-", "u"]], ")"]], " ", "w"]]]], ")"]], " ", "z"]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], ",", RowBox[List["-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]], " ", "p"]], "+", RowBox[List["s", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "j"]], "-", "u"]], ")"]]]], "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "j"]], "-", "u"]], ")"]], " ", "w"]]]], ")"]], " ", "z"]]]], ")"]], "2"], "/", RowBox[List["(", RowBox[List["4", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "j"]], "-", "u"]], ")"]], " ", "w"]]]], ")"]]]], ")"]]]]]]]], "]"]]]], ")"]], "/", RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "j"]], "-", "u"]], ")"]], " ", "w"]]]], ")"]], " ", RowBox[List["\[Sqrt]", RowBox[List["(", RowBox[List["-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]], " ", "p"]], "+", RowBox[List["s", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "j"]], "-", "u"]], ")"]]]], "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "j"]], "-", "u"]], ")"]], " ", "w"]]]], ")"]], " ", "z"]]]], ")"]], "2"], "/", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "j"]], "-", "u"]], ")"]], " ", "w"]]]], ")"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["e", "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", "m", " ", "\[Pi]"]], "2"], "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]], " ", "q"]], "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "u"]], "2"], "+", RowBox[List["t", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "j"]], "+", "u"]], ")"]]]], "+", RowBox[List["g", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]], "-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]], " ", "p"]], "+", RowBox[List["s", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "j"]], "+", "u"]], ")"]]]], "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "j"]], "+", "u"]], ")"]], " ", "w"]]]], ")"]]]]]]]], " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]], " ", "p"]], "+", RowBox[List["s", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "j"]], "+", "u"]], ")"]]]], "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "j"]], "+", "u"]], ")"]], " ", "w"]]]], ")"]], " ", "z"]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], ",", RowBox[List["-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]], " ", "p"]], "+", RowBox[List["s", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "j"]], "+", "u"]], ")"]]]], "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "j"]], "+", "u"]], ")"]], " ", "w"]]]], ")"]], " ", "z"]]]], ")"]], "2"], "/", RowBox[List["(", RowBox[List["4", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "j"]], "+", "u"]], ")"]], " ", "w"]]]], ")"]]]], ")"]]]]]]]], "]"]]]], ")"]], "/", RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "j"]], "+", "u"]], ")"]], " ", "w"]]]], ")"]], " ", RowBox[List["\[Sqrt]", RowBox[List["(", RowBox[List["-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]], " ", "p"]], "+", RowBox[List["s", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "j"]], "+", "u"]], ")"]]]], "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "j"]], "+", "u"]], ")"]], " ", "w"]]]], ")"]], " ", "z"]]]], ")"]], "2"], "/", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "j"]], "+", "u"]], ")"]], " ", "w"]]]], ")"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["e", "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "m", " ", "\[Pi]"]], "2"], "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]], " ", "q"]], "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "u"]], "2"], "+", RowBox[List["t", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "j"]], "+", "u"]], ")"]]]], "+", RowBox[List["g", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]], "-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]], " ", "p"]], "+", RowBox[List["s", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "j"]], "+", "u"]], ")"]]]], "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "j"]], "+", "u"]], ")"]], " ", "w"]]]], ")"]]]]]]]], " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]], " ", "p"]], "+", RowBox[List["s", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "j"]], "+", "u"]], ")"]]]], "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "j"]], "+", "u"]], ")"]], " ", "w"]]]], ")"]], " ", "z"]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], ",", RowBox[List["-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]], " ", "p"]], "+", RowBox[List["s", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "j"]], "+", "u"]], ")"]]]], "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "j"]], "+", "u"]], ")"]], " ", "w"]]]], ")"]], " ", "z"]]]], ")"]], "2"], "/", RowBox[List["(", RowBox[List["4", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "j"]], "+", "u"]], ")"]], " ", "w"]]]], ")"]]]], ")"]]]]]]]], "]"]]]], ")"]], "/", RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "j"]], "+", "u"]], ")"]], " ", "w"]]]], ")"]], " ", RowBox[List["\[Sqrt]", RowBox[List["(", RowBox[List["-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]], " ", "p"]], "+", RowBox[List["s", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "j"]], "+", "u"]], ")"]]]], "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "j"]], "+", "u"]], ")"]], " ", "w"]]]], ")"]], " ", "z"]]]], ")"]], "2"], "/", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "h"]], "-", "v"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "j"]], "+", "u"]], ")"]], " ", "w"]]]], ")"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["e", "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", "m", " ", "\[Pi]"]], "2"], "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]], " ", "q"]], "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "u"]], "2"], "+", RowBox[List["t", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "j"]], "+", "u"]], ")"]]]], "+", RowBox[List["g", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]], "-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]], " ", "p"]], "+", RowBox[List["s", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "j"]], "+", "u"]], ")"]]]], "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "j"]], "+", "u"]], ")"]], " ", "w"]]]], ")"]]]]]]]], " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]], " ", "p"]], "+", RowBox[List["s", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "j"]], "+", "u"]], ")"]]]], "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "j"]], "+", "u"]], ")"]], " ", "w"]]]], ")"]], " ", "z"]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], ",", RowBox[List["-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]], " ", "p"]], "+", RowBox[List["s", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "j"]], "+", "u"]], ")"]]]], "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "j"]], "+", "u"]], ")"]], " ", "w"]]]], ")"]], " ", "z"]]]], ")"]], "2"], "/", RowBox[List["(", RowBox[List["4", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "j"]], "+", "u"]], ")"]], " ", "w"]]]], ")"]]]], ")"]]]]]]]], "]"]]]], ")"]], "/", RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "j"]], "+", "u"]], ")"]], " ", "w"]]]], ")"]], " ", RowBox[List["\[Sqrt]", RowBox[List["(", RowBox[List["-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]], " ", "p"]], "+", RowBox[List["s", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "j"]], "+", "u"]], ")"]]]], "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "j"]], "+", "u"]], ")"]], " ", "w"]]]], ")"]], " ", "z"]]]], ")"]], "2"], "/", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "j"]], "+", "u"]], ")"]], " ", "w"]]]], ")"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["e", "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "m", " ", "\[Pi]"]], "2"], "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]], " ", "q"]], "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "u"]], "2"], "+", RowBox[List["t", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "j"]], "+", "u"]], ")"]]]], "+", RowBox[List["g", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]], "-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]], " ", "p"]], "+", RowBox[List["s", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "j"]], "+", "u"]], ")"]]]], "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "j"]], "+", "u"]], ")"]], " ", "w"]]]], ")"]]]]]]]], " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]], " ", "p"]], "+", RowBox[List["s", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "j"]], "+", "u"]], ")"]]]], "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "j"]], "+", "u"]], ")"]], " ", "w"]]]], ")"]], " ", "z"]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], ",", RowBox[List["-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]], " ", "p"]], "+", RowBox[List["s", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "j"]], "+", "u"]], ")"]]]], "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "j"]], "+", "u"]], ")"]], " ", "w"]]]], ")"]], " ", "z"]]]], ")"]], "2"], "/", RowBox[List["(", RowBox[List["4", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "j"]], "+", "u"]], ")"]], " ", "w"]]]], ")"]]]], ")"]]]]]]]], "]"]]]], ")"]], "/", RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "j"]], "+", "u"]], ")"]], " ", "w"]]]], ")"]], " ", RowBox[List["\[Sqrt]", RowBox[List["(", RowBox[List["-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]], " ", "p"]], "+", RowBox[List["s", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "j"]], "+", "u"]], ")"]]]], "+", RowBox[List["f", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "j"]], "+", "u"]], ")"]], " ", "w"]]]], ")"]], " ", "z"]]]], ")"]], "2"], "/", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "h"]], "+", "v"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "j"]], "+", "u"]], ")"]], " ", "w"]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]]]]]]]]]]]]]]]], "/;", RowBox[List[RowBox[List["m", "\[Element]", "Integers"]], "\[And]", RowBox[List["m", ">", "0"]], "\[And]", RowBox[List["u", "\[Element]", "Integers"]], "\[And]", RowBox[List["u", ">", "0"]], "\[And]", RowBox[List["v", "\[Element]", "Integers"]], "\[And]", RowBox[List["v", ">", "0"]]]]]]]]

 MathML Form

 b z 2 + d z + e sin m ( a z 2 + p z + q ) sinh u ( w z 2 + s z + t ) cosh v ( c z 2 + f z + g ) z - u 2 - m - u - v - 1 e - d 2 4 b ( d + 2 b z ) ( 1 - m mod 2 \$CellContext`m 2 ) ( 1 - u mod 2 \$CellContext`u 2 ) ( 1 - v mod 2 \$CellContext`v 2 ) b - ( d + 2 b z ) 2 b ( m m 2 ) TagBox[RowBox[List["(", GridBox[List[List[TagBox["m", Identity]], List[TagBox[FractionBox["m", "2"], Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] ( u u 2 ) TagBox[RowBox[List["(", GridBox[List[List[TagBox["u", Identity]], List[TagBox[FractionBox["u", "2"], Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] ( v v 2 ) TagBox[RowBox[List["(", GridBox[List[List[TagBox["v", Identity]], List[TagBox[FractionBox["v", "2"], Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] Γ ( 1 2 , - ( d + 2 b z ) 2 4 b ) - u 2 - m - u - v - 1 ( u u 2 ) TagBox[RowBox[List["(", GridBox[List[List[TagBox["u", Identity]], List[TagBox[FractionBox["u", "2"], Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] ( v v 2 ) TagBox[RowBox[List["(", GridBox[List[List[TagBox["v", Identity]], List[TagBox[FractionBox["v", "2"], Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] ( 1 - u mod 2 \$CellContext`u 2 ) ( 1 - v mod 2 \$CellContext`v 2 ) k = 0 m - 1 2 ( - 1 ) k ( m k ) TagBox[RowBox[List["(", GridBox[List[List[TagBox["m", Identity]], List[TagBox["k", Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] ( ( - ( d + ( 2 k - m ) p ) 2 4 ( b + a ( 2 k - m ) ) + e + ( 2 k - m ) q + m π 2 ( d + ( 2 k - m ) p + 2 ( b + a ( 2 k - m ) ) z ) Γ ( 1 2 , - ( d + ( 2 k - m ) p + 2 ( b + a ( 2 k - m ) ) z ) 2 4 ( b + a ( 2 k - m ) ) ) ) / ( ( b + a ( 2 k - m ) ) - ( d + ( 2 k - m ) p + 2 ( b + a ( 2 k - m ) ) z ) 2 b + a ( 2 k - m ) ) + ( - ( d + ( m - 2 k ) p ) 2 4 ( b + a ( m - 2 k ) ) + e + ( m - 2 k ) q - m π 2 ( d + ( m - 2 k ) p + 2 ( b + a ( m - 2 k ) ) z ) Γ ( 1 2 , - ( d + ( m - 2 k ) p + 2 ( b + a ( m - 2 k ) ) z ) 2 4 ( b + a ( m - 2 k ) ) ) ) / ( ( b + a ( m - 2 k ) ) - ( d + ( m - 2 k ) p + 2 ( b + a ( m - 2 k ) ) z ) 2 b + a ( m - 2 k ) ) ) - u 2 - m - u - v - 1 ( m m 2 ) TagBox[RowBox[List["(", GridBox[List[List[TagBox["m", Identity]], List[TagBox[FractionBox["m", "2"], Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] ( u u 2 ) TagBox[RowBox[List["(", GridBox[List[List[TagBox["u", Identity]], List[TagBox[FractionBox["u", "2"], Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] ( 1 - m mod 2 \$CellContext`m 2 ) ( 1 - u mod 2 \$CellContext`u 2 ) h = 0 v - 1 2 ( v h ) TagBox[RowBox[List["(", GridBox[List[List[TagBox["v", Identity]], List[TagBox["h", Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] ( ( - ( d + f ( 2 h - v ) ) 2 4 ( b + c ( 2 h - v ) ) + e + g ( 2 h - v ) ( d + f ( 2 h - v ) + 2 ( b + c ( 2 h - v ) ) z ) Γ ( 1 2 , - ( d + f ( 2 h - v ) + 2 ( b + c ( 2 h - v ) ) z ) 2 4 ( b + c ( 2 h - v ) ) ) ) / ( ( b + c ( 2 h - v ) ) - ( d + f ( 2 h - v ) + 2 ( b + c ( 2 h - v ) ) z ) 2 b + c ( 2 h - v ) ) + ( - ( d + f ( v - 2 h ) ) 2 4 ( b + c ( v - 2 h ) ) + e - g ( 2 h - v ) ( d + f ( v - 2 h ) + 2 ( b + c ( v - 2 h ) ) z ) Γ ( 1 2 , - ( d + f ( v - 2 h ) + 2 ( b + c ( v - 2 h ) ) z ) 2 4 ( b + c ( v - 2 h ) ) ) ) / ( ( b + c ( v - 2 h ) ) - ( d + f ( v - 2 h ) + 2 ( b + c ( v - 2 h ) ) z ) 2 b + c ( v - 2 h ) ) ) - u 2 - m - u - v - 1 ( m m 2 ) TagBox[RowBox[List["(", GridBox[List[List[TagBox["m", Identity]], List[TagBox[FractionBox["m", "2"], Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] ( v v 2 ) TagBox[RowBox[List["(", GridBox[List[List[TagBox["v", Identity]], List[TagBox[FractionBox["v", "2"], Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] ( 1 - m mod 2 \$CellContext`m 2 ) ( 1 - v mod 2 \$CellContext`v 2 ) k = 0 u - 1 2 ( - 1 ) k ( u k ) TagBox[RowBox[List["(", GridBox[List[List[TagBox["u", Identity]], List[TagBox["k", Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] ( ( - ( d + s ( 2 k - u ) ) 2 4 ( b + ( 2 k - u ) w ) + e + t ( 2 k - u ) + π u 2 ( d + s ( 2 k - u ) + 2 ( b + ( 2 k - u ) w ) z ) Γ ( 1 2 , - ( d + s ( 2 k - u ) + 2 ( b + ( 2 k - u ) w ) z ) 2 4 ( b + ( 2 k - u ) w ) ) ) / ( ( b + ( 2 k - u ) w ) - ( d + s ( 2 k - u ) + 2 ( b + ( 2 k - u ) w ) z ) 2 b + ( 2 k - u ) w ) + ( - ( d + s ( u - 2 k ) ) 2 4 ( b + ( u - 2 k ) w ) + e + t ( u - 2 k ) - π u 2 ( d + s ( u - 2 k ) + 2 ( b + ( u - 2 k ) w ) z ) Γ ( 1 2 , - ( d + s ( u - 2 k ) + 2 ( b + ( u - 2 k ) w ) z ) 2 4 ( b + ( u - 2 k ) w ) ) ) / ( ( b + ( u - 2 k ) w ) - ( d + s ( u - 2 k ) + 2 ( b + ( u - 2 k ) w ) z ) 2 b + ( u - 2 k ) w ) ) - u 2 - m - u - v - 1 ( u u 2 ) TagBox[RowBox[List["(", GridBox[List[List[TagBox["u", Identity]], List[TagBox[FractionBox["u", "2"], Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] ( 1 - u mod 2 \$CellContext`u 2 ) k = 0 m - 1 2 ( - 1 ) k ( m k ) TagBox[RowBox[List["(", GridBox[List[List[TagBox["m", Identity]], List[TagBox["k", Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] h = 0 v - 1 2 ( v h ) TagBox[RowBox[List["(", GridBox[List[List[TagBox["v", Identity]], List[TagBox["h", Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] ( ( - ( d + ( 2 k - m ) p + f ( 2 h - v ) ) 2 4 ( b + a ( 2 k - m ) + c ( 2 h - v ) ) + e + ( 2 k - m ) q + g ( 2 h - v ) + m π 2 ( d + ( 2 k - m ) p + f ( 2 h - v ) + 2 ( b + a ( 2 k - m ) + c ( 2 h - v ) ) z ) Γ ( 1 2 , - ( d + ( 2 k - m ) p + f ( 2 h - v ) + 2 ( b + a ( 2 k - m ) + c ( 2 h - v ) ) z ) 2 / ( 4 ( b + a ( 2 k - m ) + c ( 2 h - v ) ) ) ) ) / ( ( b + a ( 2 k - m ) + c ( 2 h - v ) ) ( - ( d + ( 2 k - m ) p + f ( 2 h - v ) + 2 ( b + a ( 2 k - m ) + c ( 2 h - v ) ) z ) 2 / ( b + a ( 2 k - m ) + c ( 2 h - v ) ) ) ) + ( - ( d + ( m - 2 k ) p + f ( 2 h - v ) ) 2 4 ( b + a ( m - 2 k ) + c ( 2 h - v ) ) + e + ( m - 2 k ) q + g ( 2 h - v ) - m π 2 ( d + ( m - 2 k ) p + f ( 2 h - v ) + 2 ( b + a ( m - 2 k ) + c ( 2 h - v ) ) z ) Γ ( 1 2 , - ( d + ( m - 2 k ) p + f ( 2 h - v ) + 2 ( b + a ( m - 2 k ) + c ( 2 h - v ) ) z ) 2 / ( 4 ( b + a ( m - 2 k ) + c ( 2 h - v ) ) ) ) ) / ( ( b + a ( m - 2 k ) + c ( 2 h - v ) ) ( - ( d + ( m - 2 k ) p + f ( 2 h - v ) + 2 ( b + a ( m - 2 k ) + c ( 2 h - v ) ) z ) 2 / ( b + a ( m - 2 k ) + c ( 2 h - v ) ) ) ) + ( - ( d + ( 2 k - m ) p + f ( v - 2 h ) ) 2 4 ( b + a ( 2 k - m ) + c ( v - 2 h ) ) + e + ( 2 k - m ) q + g ( v - 2 h ) + m π 2 ( d + ( 2 k - m ) p + f ( v - 2 h ) + 2 ( b + a ( 2 k - m ) + c ( v - 2 h ) ) z ) Γ ( 1 2 , - ( d + ( 2 k - m ) p + f ( v - 2 h ) + 2 ( b + a ( 2 k - m ) + c ( v - 2 h ) ) z ) 2 / ( 4 ( b + a ( 2 k - m ) + c ( v - 2 h ) ) ) ) ) / ( ( b + a ( 2 k - m ) + c ( v - 2 h ) ) ( - ( d + ( 2 k - m ) p + f ( v - 2 h ) + 2 ( b + a ( 2 k - m ) + c ( v - 2 h ) ) z ) 2 / ( b + a ( 2 k - m ) + c ( v - 2 h ) ) ) ) + ( - ( d + ( m - 2 k ) p + f ( v - 2 h ) ) 2 4 ( b + a ( m - 2 k ) + c ( v - 2 h ) ) + e + ( m - 2 k ) q + g ( v - 2 h ) - m π 2 ( d + ( m - 2 k ) p + f ( v - 2 h ) + 2 ( b + a ( m - 2 k ) + c ( v - 2 h ) ) z ) Γ ( 1 2 , - ( d + ( m - 2 k ) p + f ( v - 2 h ) + 2 ( b + a ( m - 2 k ) + c ( v - 2 h ) ) z ) 2 / ( 4 ( b + a ( m - 2 k ) + c ( v - 2 h ) ) ) ) ) / ( ( b + a ( m - 2 k ) + c ( v - 2 h ) ) ( - ( d + ( m - 2 k ) p + f ( v - 2 h ) + 2 ( b + a ( m - 2 k ) + c ( v - 2 h ) ) z ) 2 / ( b + a ( m - 2 k ) + c ( v - 2 h ) ) ) ) ) - u 2 - m - u - v - 1 ( v v 2 ) TagBox[RowBox[List["(", GridBox[List[List[TagBox["v", Identity]], List[TagBox[FractionBox["v", "2"], Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] ( 1 - v mod 2 \$CellContext`v 2 ) k = 0 m - 1 2 ( - 1 ) k ( m k ) TagBox[RowBox[List["(", GridBox[List[List[TagBox["m", Identity]], List[TagBox["k", Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] j = 0 u - 1 2 ( - 1 ) j ( u j ) TagBox[RowBox[List["(", GridBox[List[List[TagBox["u", Identity]], List[TagBox["j", Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] ( ( - ( d + ( 2 k - m ) p + s ( 2 j - u ) ) 2 4 ( b + a ( 2 k - m ) + ( 2 j - u ) w ) + e + ( 2 k - m ) q + t ( 2 j - u ) + 1 2 π ( m + u ) ( d + ( 2 k - m ) p + s ( 2 j - u ) + 2 ( b + a ( 2 k - m ) + ( 2 j - u ) w ) z ) Γ ( 1 2 , - ( d + ( 2 k - m ) p + s ( 2 j - u ) + 2 ( b + a ( 2 k - m ) + ( 2 j - u ) w ) z ) 2 / ( 4 ( b + a ( 2 k - m ) + ( 2 j - u ) w ) ) ) ) / ( ( b + a ( 2 k - m ) + ( 2 j - u ) w ) ( - ( d + ( 2 k - m ) p + s ( 2 j - u ) + 2 ( b + a ( 2 k - m ) + ( 2 j - u ) w ) z ) 2 / ( b + a ( 2 k - m ) + ( 2 j - u ) w ) ) ) + ( - ( d + ( m - 2 k ) p + s ( 2 j - u ) ) 2 4 ( b + a ( m - 2 k ) + ( 2 j - u ) w ) + e + ( m - 2 k ) q + t ( 2 j - u ) + 1 2 π ( u - m ) ( d + ( m - 2 k ) p + s ( 2 j - u ) + 2 ( b + a ( m - 2 k ) + ( 2 j - u ) w ) z ) Γ ( 1 2 , - ( d + ( m - 2 k ) p + s ( 2 j - u ) + 2 ( b + a ( m - 2 k ) + ( 2 j - u ) w ) z ) 2 / ( 4 ( b + a ( m - 2 k ) + ( 2 j - u ) w ) ) ) ) / ( ( b + a ( m - 2 k ) + ( 2 j - u ) w ) ( - ( d + ( m - 2 k ) p + s ( 2 j - u ) + 2 ( b + a ( m - 2 k ) + ( 2 j - u ) w ) z ) 2 / ( b + a ( m - 2 k ) + ( 2 j - u ) w ) ) ) + ( - ( d + ( 2 k - m ) p + s ( u - 2 j ) ) 2 4 ( b + a ( 2 k - m ) + ( u - 2 j ) w ) + e + ( 2 k - m ) q + 1 2 π ( m - u ) + t ( u - 2 j ) ( d + ( 2 k - m ) p + s ( u - 2 j ) + 2 ( b + a ( 2 k - m ) + ( u - 2 j ) w ) z ) Γ ( 1 2 , - ( d + ( 2 k - m ) p + s ( u - 2 j ) + 2 ( b + a ( 2 k - m ) + ( u - 2 j ) w ) z ) 2 / ( 4 ( b + a ( 2 k - m ) + ( u - 2 j ) w ) ) ) ) / ( ( b + a ( 2 k - m ) + ( u - 2 j ) w ) ( - ( d + ( 2 k - m ) p + s ( u - 2 j ) + 2 ( b + a ( 2 k - m ) + ( u - 2 j ) w ) z ) 2 / ( b + a ( 2 k - m ) + ( u - 2 j ) w ) ) ) + ( - ( d + ( m - 2 k ) p + s ( u - 2 j ) ) 2 4 ( b + a ( m - 2 k ) + ( u - 2 j ) w ) + e + ( m - 2 k ) q + t ( u - 2 j ) - 1 2 π ( m + u ) ( d + ( m - 2 k ) p + s ( u - 2 j ) + 2 ( b + a ( m - 2 k ) + ( u - 2 j ) w ) z ) Γ ( 1 2 , - ( d + ( m - 2 k ) p + s ( u - 2 j ) + 2 ( b + a ( m - 2 k ) + ( u - 2 j ) w ) z ) 2 / ( 4 ( b + a ( m - 2 k ) + ( u - 2 j ) w ) ) ) ) / ( ( b + a ( m - 2 k ) + ( u - 2 j ) w ) ( - ( d + ( m - 2 k ) p + s ( u - 2 j ) + 2 ( b + a ( m - 2 k ) + ( u - 2 j ) w ) z ) 2 / ( b + a ( m - 2 k ) + ( u - 2 j ) w ) ) ) ) - u 2 - m - u - v - 1 ( m m 2 ) TagBox[RowBox[List["(", GridBox[List[List[TagBox["m", Identity]], List[TagBox[FractionBox["m", "2"], Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] ( 1 - m mod 2 \$CellContext`m 2 ) k = 0 u - 1 2 ( - 1 ) k ( u k ) TagBox[RowBox[List["(", GridBox[List[List[TagBox["u", Identity]], List[TagBox["k", Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] h = 0 v - 1 2 ( v h ) TagBox[RowBox[List["(", GridBox[List[List[TagBox["v", Identity]], List[TagBox["h", Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] ( ( - ( d + s ( 2 k - u ) + f ( 2 h - v ) ) 2 4 ( b + c ( 2 h - v ) + ( 2 k - u ) w ) + e + t ( 2 k - u ) + π u 2 + g ( 2 h - v ) ( d + s ( 2 k - u ) + f ( 2 h - v ) + 2 ( b + c ( 2 h - v ) + ( 2 k - u ) w ) z ) Γ ( 1 2 , - ( d + s ( 2 k - u ) + f ( 2 h - v ) + 2 ( b + c ( 2 h - v ) + ( 2 k - u ) w ) z ) 2 4 ( b + c ( 2 h - v ) + ( 2 k - u ) w ) ) ) / ( ( b + c ( 2 h - v ) + ( 2 k - u ) w ) ( - ( d + s ( 2 k - u ) + f ( 2 h - v ) + 2 ( b + c ( 2 h - v ) + ( 2 k - u ) w ) z ) 2 / ( b + c ( 2 h - v ) + ( 2 k - u ) w ) ) ) + ( - ( d + s ( 2 k - u ) + f ( v - 2 h ) ) 2 4 ( b + c ( v - 2 h ) + ( 2 k - u ) w ) + e + t ( 2 k - u ) + π u 2 + g ( v - 2 h ) ( d + s ( 2 k - u ) + f ( v - 2 h ) + 2 ( b + c ( v - 2 h ) + ( 2 k - u ) w ) z ) Γ ( 1 2 , - ( d + s ( 2 k - u ) + f ( v - 2 h ) + 2 ( b + c ( v - 2 h ) + ( 2 k - u ) w ) z ) 2 4 ( b + c ( v - 2 h ) + ( 2 k - u ) w ) ) ) / ( ( b + c ( v - 2 h ) + ( 2 k - u ) w ) ( - ( d + s ( 2 k - u ) + f ( v - 2 h ) + 2 ( b + c ( v - 2 h ) + ( 2 k - u ) w ) z ) 2 / ( b + c ( v - 2 h ) + ( 2 k - u ) w ) ) ) + ( - ( d + s ( u - 2 k ) + f ( 2 h - v ) ) 2 4 ( b + c ( 2 h - v ) + ( u - 2 k ) w ) + e + t ( u - 2 k ) + g ( 2 h - v ) - π u 2 ( d + s ( u - 2 k ) + f ( 2 h - v ) + 2 ( b + c ( 2 h - v ) + ( u - 2 k ) w ) z ) Γ ( 1 2 , - ( d + s ( u - 2 k ) + f ( 2 h - v ) + 2 ( b + c ( 2 h - v ) + ( u - 2 k ) w ) z ) 2 4 ( b + c ( 2 h - v ) + ( u - 2 k ) w ) ) ) / ( ( b + c ( 2 h - v ) + ( u - 2 k ) w ) ( - ( d + s ( u - 2 k ) + f ( 2 h - v ) + 2 ( b + c ( 2 h - v ) + ( u - 2 k ) w ) z ) 2 / ( b + c ( 2 h - v ) + ( u - 2 k ) w ) ) ) + ( - ( d + s ( u - 2 k ) + f ( v - 2 h ) ) 2 4 ( b + c ( v - 2 h ) + ( u - 2 k ) w ) + e + t ( u - 2 k ) + g ( v - 2 h ) - π u 2 ( d + s ( u - 2 k ) + f ( v - 2 h ) + 2 ( b + c ( v - 2 h ) + ( u - 2 k ) w ) z ) Γ ( 1 2 , - ( d + s ( u - 2 k ) + f ( v - 2 h ) + 2 ( b + c ( v - 2 h ) + ( u - 2 k ) w ) z ) 2 4 ( b + c ( v - 2 h ) + ( u - 2 k ) w ) ) ) / ( ( b + c ( v - 2 h ) + ( u - 2 k ) w ) ( - ( d + s ( u - 2 k ) + f ( v - 2 h ) + 2 ( b + c ( v - 2 h ) + ( u - 2 k ) w ) z ) 2 / ( b + c ( v - 2 h ) + ( u - 2 k ) w ) ) ) ) - u 2 - m - u - v - 1 h = 0 v - 1 2 ( v h ) TagBox[RowBox[List["(", GridBox[List[List[TagBox["v", Identity]], List[TagBox["h", Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] k = 0 m - 1 2 ( - 1 ) k ( m k ) TagBox[RowBox[List["(", GridBox[List[List[TagBox["m", Identity]], List[TagBox["k", Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] j = 0 u - 1 2 ( - 1 ) j ( u j ) TagBox[RowBox[List["(", GridBox[List[List[TagBox["u", Identity]], List[TagBox["j", Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] ( ( - ( d + ( 2 k - m ) p + s ( 2 j - u ) + f ( 2 h - v ) ) 2 4 ( b + a ( 2 k - m ) + c ( 2 h - v ) + ( 2 j - u ) w ) + e + ( 2 k - m ) q + t ( 2 j - u ) + π u 2 + g ( 2 h - v ) + m π 2 ( d + ( 2 k - m ) p + s ( 2 j - u ) + f ( 2 h - v ) + 2 ( b + a ( 2 k - m ) + c ( 2 h - v ) + ( 2 j - u ) w ) z ) Γ ( 1 2 , - ( d + ( 2 k - m ) p + s ( 2 j - u ) + f ( 2 h - v ) + 2 ( b + a ( 2 k - m ) + c ( 2 h - v ) + ( 2 j - u ) w ) z ) 2 / ( 4 ( b + a ( 2 k - m ) + c ( 2 h - v ) + ( 2 j - u ) w ) ) ) ) / ( ( b + a ( 2 k - m ) + c ( 2 h - v ) + ( 2 j - u ) w ) ( - ( d + ( 2 k - m ) p + s ( 2 j - u ) + f ( 2 h - v ) + 2 ( b + a ( 2 k - m ) + c ( 2 h - v ) + ( 2 j - u ) w ) z ) 2 / ( b + a ( 2 k - m ) + c ( 2 h - v ) + ( 2 j - u ) w ) ) ) + ( - ( d + ( m - 2 k ) p + s ( 2 j - u ) + f ( 2 h - v ) ) 2 4 ( b + a ( m - 2 k ) + c ( 2 h - v ) + ( 2 j - u ) w ) + e + ( m - 2 k ) q + t ( 2 j - u ) + π u 2 + g ( 2 h - v ) - m π 2 ( d + ( m - 2 k ) p + s ( 2 j - u ) + f ( 2 h - v ) + 2 ( b + a ( m - 2 k ) + c ( 2 h - v ) + ( 2 j - u ) w ) z ) Γ ( 1 2 , - ( d + ( m - 2 k ) p + s ( 2 j - u ) + f ( 2 h - v ) + 2 ( b + a ( m - 2 k ) + c ( 2 h - v ) + ( 2 j - u ) w ) z ) 2 / ( 4 ( b + a ( m - 2 k ) + c ( 2 h - v ) + ( 2 j - u ) w ) ) ) ) / ( ( b + a ( m - 2 k ) + c ( 2 h - v ) + ( 2 j - u ) w ) ( - ( d + ( m - 2 k ) p + s ( 2 j - u ) + f ( 2 h - v ) + 2 ( b + a ( m - 2 k ) + c ( 2 h - v ) + ( 2 j - u ) w ) z ) 2 / ( b + a ( m - 2 k ) + c ( 2 h - v ) + ( 2 j - u ) w ) ) ) + ( - ( d + ( 2 k - m ) p + s ( 2 j - u ) + f ( v - 2 h ) ) 2 4 ( b + a ( 2 k - m ) + c ( v - 2 h ) + ( 2 j - u ) w ) + e + ( 2 k - m ) q + t ( 2 j - u ) + π u 2 + g ( v - 2 h ) + m π 2 ( d + ( 2 k - m ) p + s ( 2 j - u ) + f ( v - 2 h ) + 2 ( b + a ( 2 k - m ) + c ( v - 2 h ) + ( 2 j - u ) w ) z ) Γ ( 1 2 , - ( d + ( 2 k - m ) p + s ( 2 j - u ) + f ( v - 2 h ) + 2 ( b + a ( 2 k - m ) + c ( v - 2 h ) + ( 2 j - u ) w ) z ) 2 / ( 4 ( b + a ( 2 k - m ) + c ( v - 2 h ) + ( 2 j - u ) w ) ) ) ) / ( ( b + a ( 2 k - m ) + c ( v - 2 h ) + ( 2 j - u ) w ) ( - ( d + ( 2 k - m ) p + s ( 2 j - u ) + f ( v - 2 h ) + 2 ( b + a ( 2 k - m ) + c ( v - 2 h ) + ( 2 j - u ) w ) z ) 2 / ( b + a ( 2 k - m ) + c ( v - 2 h ) + ( 2 j - u ) w ) ) ) + ( - ( d + ( m - 2 k ) p + s ( 2 j - u ) + f ( v - 2 h ) ) 2 4 ( b + a ( m - 2 k ) + c ( v - 2 h ) + ( 2 j - u ) w ) + e + ( m - 2 k ) q + t ( 2 j - u ) + π u 2 + g ( v - 2 h ) - m π 2 ( d + ( m - 2 k ) p + s ( 2 j - u ) + f ( v - 2 h ) + 2 ( b + a ( m - 2 k ) + c ( v - 2 h ) + ( 2 j - u ) w ) z ) Γ ( 1 2 , - ( d + ( m - 2 k ) p + s ( 2 j - u ) + f ( v - 2 h ) + 2 ( b + a ( m - 2 k ) + c ( v - 2 h ) + ( 2 j - u ) w ) z ) 2 / ( 4 ( b + a ( m - 2 k ) + c ( v - 2 h ) + ( 2 j - u ) w ) ) ) ) / ( ( b + a ( m - 2 k ) + c ( v - 2 h ) + ( 2 j - u ) w ) ( - ( d + ( m - 2 k ) p + s ( 2 j - u ) + f ( v - 2 h ) + 2 ( b + a ( m - 2 k ) + c ( v - 2 h ) + ( 2 j - u ) w ) z ) 2 / ( b + a ( m - 2 k ) + c ( v - 2 h ) + ( 2 j - u ) w ) ) ) + ( - ( d + ( 2 k - m ) p + s ( u - 2 j ) + f ( 2 h - v ) ) 2 4 ( b + a ( 2 k - m ) + c ( 2 h - v ) + ( u - 2 j ) w ) + e + ( 2 k - m ) q + t ( u - 2 j ) + g ( 2 h - v ) - π u 2 + m π 2 ( d + ( 2 k - m ) p + s ( u - 2 j ) + f ( 2 h - v ) + 2 ( b + a ( 2 k - m ) + c ( 2 h - v ) + ( u - 2 j ) w ) z ) Γ ( 1 2 , - ( d + ( 2 k - m ) p + s ( u - 2 j ) + f ( 2 h - v ) + 2 ( b + a ( 2 k - m ) + c ( 2 h - v ) + ( u - 2 j ) w ) z ) 2 / ( 4 ( b + a ( 2 k - m ) + c ( 2 h - v ) + ( u - 2 j ) w ) ) ) ) / ( ( b + a ( 2 k - m ) + c ( 2 h - v ) + ( u - 2 j ) w ) ( - ( d + ( 2 k - m ) p + s ( u - 2 j ) + f ( 2 h - v ) + 2 ( b + a ( 2 k - m ) + c ( 2 h - v ) + ( u - 2 j ) w ) z ) 2 / ( b + a ( 2 k - m ) + c ( 2 h - v ) + ( u - 2 j ) w ) ) ) + ( - ( d + ( m - 2 k ) p + s ( u - 2 j ) + f ( 2 h - v ) ) 2 4 ( b + a ( m - 2 k ) + c ( 2 h - v ) + ( u - 2 j ) w ) + e + ( m - 2 k ) q + t ( u - 2 j ) + g ( 2 h - v ) - π u 2 - m π 2 ( d + ( m - 2 k ) p + s ( u - 2 j ) + f ( 2 h - v ) + 2 ( b + a ( m - 2 k ) + c ( 2 h - v ) + ( u - 2 j ) w ) z ) Γ ( 1 2 , - ( d + ( m - 2 k ) p + s ( u - 2 j ) + f ( 2 h - v ) + 2 ( b + a ( m - 2 k ) + c ( 2 h - v ) + ( u - 2 j ) w ) z ) 2 / ( 4 ( b + a ( m - 2 k ) + c ( 2 h - v ) + ( u - 2 j ) w ) ) ) ) / ( ( b + a ( m - 2 k ) + c ( 2 h - v ) + ( u - 2 j ) w ) ( - ( d + ( m - 2 k ) p + s ( u - 2 j ) + f ( 2 h - v ) + 2 ( b + a ( m - 2 k ) + c ( 2 h - v ) + ( u - 2 j ) w ) z ) 2 / ( b + a ( m - 2 k ) + c ( 2 h - v ) + ( u - 2 j ) w ) ) ) + ( - ( d + ( 2 k - m ) p + s ( u - 2 j ) + f ( v - 2 h ) ) 2 4 ( b + a ( 2 k - m ) + c ( v - 2 h ) + ( u - 2 j ) w ) + e + ( 2 k - m ) q + t ( u - 2 j ) + g ( v - 2 h ) - π u 2 + m π 2 ( d + ( 2 k - m ) p + s ( u - 2 j ) + f ( v - 2 h ) + 2 ( b + a ( 2 k - m ) + c ( v - 2 h ) + ( u - 2 j ) w ) z ) Γ ( 1 2 , - ( d + ( 2 k - m ) p + s ( u - 2 j ) + f ( v - 2 h ) + 2 ( b + a ( 2 k - m ) + c ( v - 2 h ) + ( u - 2 j ) w ) z ) 2 / ( 4 ( b + a ( 2 k - m ) + c ( v - 2 h ) + ( u - 2 j ) w ) ) ) ) / ( ( b + a ( 2 k - m ) + c ( v - 2 h ) + ( u - 2 j ) w ) ( - ( d + ( 2 k - m ) p + s ( u - 2 j ) + f ( v - 2 h ) + 2 ( b + a ( 2 k - m ) + c ( v - 2 h ) + ( u - 2 j ) w ) z ) 2 / ( b + a ( 2 k - m ) + c ( v - 2 h ) + ( u - 2 j ) w ) ) ) + ( - ( d + ( m - 2 k ) p + s ( u - 2 j ) + f ( v - 2 h ) ) 2 4 ( b + a ( m - 2 k ) + c ( v - 2 h ) + ( u - 2 j ) w ) + e + ( m - 2 k ) q + t ( u - 2 j ) + g ( v - 2 h ) - π u 2 - m π 2 ( d + ( m - 2 k ) p + s ( u - 2 j ) + f ( v - 2 h ) + 2 ( b + a ( m - 2 k ) + c ( v - 2 h ) + ( u - 2 j ) w ) z ) Γ ( 1 2 , - ( d + ( m - 2 k ) p + s ( u - 2 j ) + f ( v - 2 h ) + 2 ( b + a ( m - 2 k ) + c ( v - 2 h ) + ( u - 2 j ) w ) z ) 2 / ( 4 ( b + a ( m - 2 k ) + c ( v - 2 h ) + ( u - 2 j ) w ) ) ) ) / ( ( b + a ( m - 2 k ) + c ( v - 2 h ) + ( u - 2 j ) w ) ( - ( d + ( m - 2 k ) p + s ( u - 2 j ) + f ( v - 2 h ) + 2 ( b + a ( m - 2 k ) + c ( v - 2 h ) + ( u - 2 j ) w ) z ) 2 / ( b + a ( m - 2 k ) + c ( v - 2 h ) + ( u - 2 j ) w ) ) ) ) /; m + u + v + Condition z b z 2 d z e a z 2 p z q m w z 2 s z t u c z 2 f z g v -1 u 2 -1 m -1 u -1 v -1 e -1 d 2 4 b -1 d 2 b z 1 -1 \$CellContext`m 2 1 -1 \$CellContext`u 2 1 -1 \$CellContext`v 2 b -1 d 2 b z 2 b -1 1 2 -1 Binomial m m 2 -1 Binomial u u 2 -1 Binomial v v 2 -1 Gamma 1 2 -1 d 2 b z 2 4 b -1 -1 u 2 -1 m -1 u -1 v -1 Binomial u u 2 -1 Binomial v v 2 -1 1 -1 \$CellContext`u 2 1 -1 \$CellContext`v 2 k 0 m -1 2 -1 -1 k Binomial m k -1 d 2 k -1 m p 2 4 b a 2 k -1 m -1 e 2 k -1 m q m 2 -1 d 2 k -1 m p 2 b a 2 k -1 m z Gamma 1 2 -1 d 2 k -1 m p 2 b a 2 k -1 m z 2 4 b a 2 k -1 m -1 b a 2 k -1 m -1 d 2 k -1 m p 2 b a 2 k -1 m z 2 b a 2 k -1 m -1 1 2 -1 -1 d m -1 2 k p 2 4 b a m -1 2 k -1 e m -1 2 k q -1 m 2 -1 d m -1 2 k p 2 b a m -1 2 k z Gamma 1 2 -1 d m -1 2 k p 2 b a m -1 2 k z 2 4 b a m -1 2 k -1 b a m -1 2 k -1 d m -1 2 k p 2 b a m -1 2 k z 2 b a m -1 2 k -1 1 2 -1 -1 u 2 -1 m -1 u -1 v -1 Binomial m m 2 -1 Binomial u u 2 -1 1 -1 \$CellContext`m 2 1 -1 \$CellContext`u 2 h 0 v -1 2 -1 Binomial v h -1 d f 2 h -1 v 2 4 b c 2 h -1 v -1 e g 2 h -1 v d f 2 h -1 v 2 b c 2 h -1 v z Gamma 1 2 -1 d f 2 h -1 v 2 b c 2 h -1 v z 2 4 b c 2 h -1 v -1 b c 2 h -1 v -1 d f 2 h -1 v 2 b c 2 h -1 v z 2 b c 2 h -1 v -1 1 2 -1 -1 d f v -1 2 h 2 4 b c v -1 2 h -1 e -1 g 2 h -1 v d f v -1 2 h 2 b c v -1 2 h z Gamma 1 2 -1 d f v -1 2 h 2 b c v -1 2 h z 2 4 b c v -1 2 h -1 b c v -1 2 h -1 d f v -1 2 h 2 b c v -1 2 h z 2 b c v -1 2 h -1 1 2 -1 -1 u 2 -1 m -1 u -1 v -1 Binomial m m 2 -1 Binomial v v 2 -1 1 -1 \$CellContext`m 2 1 -1 \$CellContext`v 2 k 0 u -1 2 -1 -1 k Binomial u k -1 d s 2 k -1 u 2 4 b 2 k -1 u w -1 e t 2 k -1 u u 2 -1 d s 2 k -1 u 2 b 2 k -1 u w z Gamma 1 2 -1 d s 2 k -1 u 2 b 2 k -1 u w z 2 4 b 2 k -1 u w -1 b 2 k -1 u w -1 d s 2 k -1 u 2 b 2 k -1 u w z 2 b 2 k -1 u w -1 1 2 -1 -1 d s u -1 2 k 2 4 b u -1 2 k w -1 e t u -1 2 k -1 u 2 -1 d s u -1 2 k 2 b u -1 2 k w z Gamma 1 2 -1 d s u -1 2 k 2 b u -1 2 k w z 2 4 b u -1 2 k w -1 b u -1 2 k w -1 d s u -1 2 k 2 b u -1 2 k w z 2 b u -1 2 k w -1 1 2 -1 -1 u 2 -1 m -1 u -1 v -1 Binomial u u 2 -1 1 -1 \$CellContext`u 2 k 0 m -1 2 -1 -1 k Binomial m k h 0 v -1 2 -1 Binomial v h -1 d 2 k -1 m p f 2 h -1 v 2 4 b a 2 k -1 m c 2 h -1 v -1 e 2 k -1 m q g 2 h -1 v m 2 -1 d 2 k -1 m p f 2 h -1 v 2 b a 2 k -1 m c 2 h -1 v z Gamma 1 2 -1 d 2 k -1 m p f 2 h -1 v 2 b a 2 k -1 m c 2 h -1 v z 2 4 b a 2 k -1 m c 2 h -1 v -1 b a 2 k -1 m c 2 h -1 v -1 d 2 k -1 m p f 2 h -1 v 2 b a 2 k -1 m c 2 h -1 v z 2 b a 2 k -1 m c 2 h -1 v -1 -1 -1 d m -1 2 k p f 2 h -1 v 2 4 b a m -1 2 k c 2 h -1 v -1 e m -1 2 k q g 2 h -1 v -1 m 2 -1 d m -1 2 k p f 2 h -1 v 2 b a m -1 2 k c 2 h -1 v z Gamma 1 2 -1 d m -1 2 k p f 2 h -1 v 2 b a m -1 2 k c 2 h -1 v z 2 4 b a m -1 2 k c 2 h -1 v -1 b a m -1 2 k c 2 h -1 v -1 d m -1 2 k p f 2 h -1 v 2 b a m -1 2 k c 2 h -1 v z 2 b a m -1 2 k c 2 h -1 v -1 -1 -1 d 2 k -1 m p f v -1 2 h 2 4 b a 2 k -1 m c v -1 2 h -1 e 2 k -1 m q g v -1 2 h m 2 -1 d 2 k -1 m p f v -1 2 h 2 b a 2 k -1 m c v -1 2 h z Gamma 1 2 -1 d 2 k -1 m p f v -1 2 h 2 b a 2 k -1 m c v -1 2 h z 2 4 b a 2 k -1 m c v -1 2 h -1 b a 2 k -1 m c v -1 2 h -1 d 2 k -1 m p f v -1 2 h 2 b a 2 k -1 m c v -1 2 h z 2 b a 2 k -1 m c v -1 2 h -1 -1 -1 d m -1 2 k p f v -1 2 h 2 4 b a m -1 2 k c v -1 2 h -1 e m -1 2 k q g v -1 2 h -1 m 2 -1 d m -1 2 k p f v -1 2 h 2 b a m -1 2 k c v -1 2 h z Gamma 1 2 -1 d m -1 2 k p f v -1 2 h 2 b a m -1 2 k c v -1 2 h z 2 4 b a m -1 2 k c v -1 2 h -1 b a m -1 2 k c v -1 2 h -1 d m -1 2 k p f v -1 2 h 2 b a m -1 2 k c v -1 2 h z 2 b a m -1 2 k c v -1 2 h -1 -1 -1 u 2 -1 m -1 u -1 v -1 Binomial v v 2 -1 1 -1 \$CellContext`v 2 k 0 m -1 2 -1 -1 k Binomial m k j 0 u -1 2 -1 -1 j Binomial u j -1 d 2 k -1 m p s 2 j -1 u 2 4 b a 2 k -1 m 2 j -1 u w -1 e 2 k -1 m q t 2 j -1 u 1 2 m u d 2 k -1 m p s 2 j -1 u 2 b a 2 k -1 m 2 j -1 u w z Gamma 1 2 -1 d 2 k -1 m p s 2 j -1 u 2 b a 2 k -1 m 2 j -1 u w z 2 4 b a 2 k -1 m 2 j -1 u w -1 b a 2 k -1 m 2 j -1 u w -1 d 2 k -1 m p s 2 j -1 u 2 b a 2 k -1 m 2 j -1 u w z 2 b a 2 k -1 m 2 j -1 u w -1 -1 -1 d m -1 2 k p s 2 j -1 u 2 4 b a m -1 2 k 2 j -1 u w -1 e m -1 2 k q t 2 j -1 u 1 2 u -1 m d m -1 2 k p s 2 j -1 u 2 b a m -1 2 k 2 j -1 u w z Gamma 1 2 -1 d m -1 2 k p s 2 j -1 u 2 b a m -1 2 k 2 j -1 u w z 2 4 b a m -1 2 k 2 j -1 u w -1 b a m -1 2 k 2 j -1 u w -1 d m -1 2 k p s 2 j -1 u 2 b a m -1 2 k 2 j -1 u w z 2 b a m -1 2 k 2 j -1 u w -1 -1 -1 d 2 k -1 m p s u -1 2 j 2 4 b a 2 k -1 m u -1 2 j w -1 e 2 k -1 m q 1 2 m -1 u t u -1 2 j d 2 k -1 m p s u -1 2 j 2 b a 2 k -1 m u -1 2 j w z Gamma 1 2 -1 d 2 k -1 m p s u -1 2 j 2 b a 2 k -1 m u -1 2 j w z 2 4 b a 2 k -1 m u -1 2 j w -1 b a 2 k -1 m u -1 2 j w -1 d 2 k -1 m p s u -1 2 j 2 b a 2 k -1 m u -1 2 j w z 2 b a 2 k -1 m u -1 2 j w -1 -1 -1 d m -1 2 k p s u -1 2 j 2 4 b a m -1 2 k u -1 2 j w -1 e m -1 2 k q t u -1 2 j -1 1 2 m u d m -1 2 k p s u -1 2 j 2 b a m -1 2 k u -1 2 j w z Gamma 1 2 -1 d m -1 2 k p s u -1 2 j 2 b a m -1 2 k u -1 2 j w z 2 4 b a m -1 2 k u -1 2 j w -1 b a m -1 2 k u -1 2 j w -1 d m -1 2 k p s u -1 2 j 2 b a m -1 2 k u -1 2 j w z 2 b a m -1 2 k u -1 2 j w -1 -1 -1 u 2 -1 m -1 u -1 v -1 Binomial m m 2 -1 1 -1 \$CellContext`m 2 k 0 u -1 2 -1 -1 k Binomial u k h 0 v -1 2 -1 Binomial v h -1 d s 2 k -1 u f 2 h -1 v 2 4 b c 2 h -1 v 2 k -1 u w -1 e t 2 k -1 u u 2 -1 g 2 h -1 v d s 2 k -1 u f 2 h -1 v 2 b c 2 h -1 v 2 k -1 u w z Gamma 1 2 -1 d s 2 k -1 u f 2 h -1 v 2 b c 2 h -1 v 2 k -1 u w z 2 4 b c 2 h -1 v 2 k -1 u w -1 b c 2 h -1 v 2 k -1 u w -1 d s 2 k -1 u f 2 h -1 v 2 b c 2 h -1 v 2 k -1 u w z 2 b c 2 h -1 v 2 k -1 u w -1 -1 -1 d s 2 k -1 u f v -1 2 h 2 4 b c v -1 2 h 2 k -1 u w -1 e t 2 k -1 u u 2 -1 g v -1 2 h d s 2 k -1 u f v -1 2 h 2 b c v -1 2 h 2 k -1 u w z Gamma 1 2 -1 d s 2 k -1 u f v -1 2 h 2 b c v -1 2 h 2 k -1 u w z 2 4 b c v -1 2 h 2 k -1 u w -1 b c v -1 2 h 2 k -1 u w -1 d s 2 k -1 u f v -1 2 h 2 b c v -1 2 h 2 k -1 u w z 2 b c v -1 2 h 2 k -1 u w -1 -1 -1 d s u -1 2 k f 2 h -1 v 2 4 b c 2 h -1 v u -1 2 k w -1 e t u -1 2 k g 2 h -1 v -1 u 2 -1 d s u -1 2 k f 2 h -1 v 2 b c 2 h -1 v u -1 2 k w z Gamma 1 2 -1 d s u -1 2 k f 2 h -1 v 2 b c 2 h -1 v u -1 2 k w z 2 4 b c 2 h -1 v u -1 2 k w -1 b c 2 h -1 v u -1 2 k w -1 d s u -1 2 k f 2 h -1 v 2 b c 2 h -1 v u -1 2 k w z 2 b c 2 h -1 v u -1 2 k w -1 -1 -1 d s u -1 2 k f v -1 2 h 2 4 b c v -1 2 h u -1 2 k w -1 e t u -1 2 k g v -1 2 h -1 u 2 -1 d s u -1 2 k f v -1 2 h 2 b c v -1 2 h u -1 2 k w z Gamma 1 2 -1 d s u -1 2 k f v -1 2 h 2 b c v -1 2 h u -1 2 k w z 2 4 b c v -1 2 h u -1 2 k w -1 b c v -1 2 h u -1 2 k w -1 d s u -1 2 k f v -1 2 h 2 b c v -1 2 h u -1 2 k w z 2 b c v -1 2 h u -1 2 k w -1 -1 -1 u 2 -1 m -1 u -1 v -1 h 0 v -1 2 -1 Binomial v h k 0 m -1 2 -1 -1 k Binomial m k j 0 u -1 2 -1 -1 j Binomial u j -1 d 2 k -1 m p s 2 j -1 u f 2 h -1 v 2 4 b a 2 k -1 m c 2 h -1 v 2 j -1 u w -1 e 2 k -1 m q t 2 j -1 u u 2 -1 g 2 h -1 v m 2 -1 d 2 k -1 m p s 2 j -1 u f 2 h -1 v 2 b a 2 k -1 m c 2 h -1 v 2 j -1 u w z Gamma 1 2 -1 d 2 k -1 m p s 2 j -1 u f 2 h -1 v 2 b a 2 k -1 m c 2 h -1 v 2 j -1 u w z 2 4 b a 2 k -1 m c 2 h -1 v 2 j -1 u w -1 b a 2 k -1 m c 2 h -1 v 2 j -1 u w -1 d 2 k -1 m p s 2 j -1 u f 2 h -1 v 2 b a 2 k -1 m c 2 h -1 v 2 j -1 u w z 2 b a 2 k -1 m c 2 h -1 v 2 j -1 u w -1 -1 -1 d m -1 2 k p s 2 j -1 u f 2 h -1 v 2 4 b a m -1 2 k c 2 h -1 v 2 j -1 u w -1 e m -1 2 k q t 2 j -1 u u 2 -1 g 2 h -1 v -1 m 2 -1 d m -1 2 k p s 2 j -1 u f 2 h -1 v 2 b a m -1 2 k c 2 h -1 v 2 j -1 u w z Gamma 1 2 -1 d m -1 2 k p s 2 j -1 u f 2 h -1 v 2 b a m -1 2 k c 2 h -1 v 2 j -1 u w z 2 4 b a m -1 2 k c 2 h -1 v 2 j -1 u w -1 b a m -1 2 k c 2 h -1 v 2 j -1 u w -1 d m -1 2 k p s 2 j -1 u f 2 h -1 v 2 b a m -1 2 k c 2 h -1 v 2 j -1 u w z 2 b a m -1 2 k c 2 h -1 v 2 j -1 u w -1 -1 -1 d 2 k -1 m p s 2 j -1 u f v -1 2 h 2 4 b a 2 k -1 m c v -1 2 h 2 j -1 u w -1 e 2 k -1 m q t 2 j -1 u u 2 -1 g v -1 2 h m 2 -1 d 2 k -1 m p s 2 j -1 u f v -1 2 h 2 b a 2 k -1 m c v -1 2 h 2 j -1 u w z Gamma 1 2 -1 d 2 k -1 m p s 2 j -1 u f v -1 2 h 2 b a 2 k -1 m c v -1 2 h 2 j -1 u w z 2 4 b a 2 k -1 m c v -1 2 h 2 j -1 u w -1 b a 2 k -1 m c v -1 2 h 2 j -1 u w -1 d 2 k -1 m p s 2 j -1 u f v -1 2 h 2 b a 2 k -1 m c v -1 2 h 2 j -1 u w z 2 b a 2 k -1 m c v -1 2 h 2 j -1 u w -1 -1 -1 d m -1 2 k p s 2 j -1 u f v -1 2 h 2 4 b a m -1 2 k c v -1 2 h 2 j -1 u w -1 e m -1 2 k q t 2 j -1 u u 2 -1 g v -1 2 h -1 m 2 -1 d m -1 2 k p s 2 j -1 u f v -1 2 h 2 b a m -1 2 k c v -1 2 h 2 j -1 u w z Gamma 1 2 -1 d m -1 2 k p s 2 j -1 u f v -1 2 h 2 b a m -1 2 k c v -1 2 h 2 j -1 u w z 2 4 b a m -1 2 k c v -1 2 h 2 j -1 u w -1 b a m -1 2 k c v -1 2 h 2 j -1 u w -1 d m -1 2 k p s 2 j -1 u f v -1 2 h 2 b a m -1 2 k c v -1 2 h 2 j -1 u w z 2 b a m -1 2 k c v -1 2 h 2 j -1 u w -1 -1 -1 d 2 k -1 m p s u -1 2 j f 2 h -1 v 2 4 b a 2 k -1 m c 2 h -1 v u -1 2 j w -1 e 2 k -1 m q t u -1 2 j g 2 h -1 v -1 u 2 -1 m 2 -1 d 2 k -1 m p s u -1 2 j f 2 h -1 v 2 b a 2 k -1 m c 2 h -1 v u -1 2 j w z Gamma 1 2 -1 d 2 k -1 m p s u -1 2 j f 2 h -1 v 2 b a 2 k -1 m c 2 h -1 v u -1 2 j w z 2 4 b a 2 k -1 m c 2 h -1 v u -1 2 j w -1 b a 2 k -1 m c 2 h -1 v u -1 2 j w -1 d 2 k -1 m p s u -1 2 j f 2 h -1 v 2 b a 2 k -1 m c 2 h -1 v u -1 2 j w z 2 b a 2 k -1 m c 2 h -1 v u -1 2 j w -1 -1 -1 d m -1 2 k p s u -1 2 j f 2 h -1 v 2 4 b a m -1 2 k c 2 h -1 v u -1 2 j w -1 e m -1 2 k q t u -1 2 j g 2 h -1 v -1 u 2 -1 -1 m 2 -1 d m -1 2 k p s u -1 2 j f 2 h -1 v 2 b a m -1 2 k c 2 h -1 v u -1 2 j w z Gamma 1 2 -1 d m -1 2 k p s u -1 2 j f 2 h -1 v 2 b a m -1 2 k c 2 h -1 v u -1 2 j w z 2 4 b a m -1 2 k c 2 h -1 v u -1 2 j w -1 b a m -1 2 k c 2 h -1 v u -1 2 j w -1 d m -1 2 k p s u -1 2 j f 2 h -1 v 2 b a m -1 2 k c 2 h -1 v u -1 2 j w z 2 b a m -1 2 k c 2 h -1 v u -1 2 j w -1 -1 -1 d 2 k -1 m p s u -1 2 j f v -1 2 h 2 4 b a 2 k -1 m c v -1 2 h u -1 2 j w -1 e 2 k -1 m q t u -1 2 j g v -1 2 h -1 u 2 -1 m 2 -1 d 2 k -1 m p s u -1 2 j f v -1 2 h 2 b a 2 k -1 m c v -1 2 h u -1 2 j w z Gamma 1 2 -1 d 2 k -1 m p s u -1 2 j f v -1 2 h 2 b a 2 k -1 m c v -1 2 h u -1 2 j w z 2 4 b a 2 k -1 m c v -1 2 h u -1 2 j w -1 b a 2 k -1 m c v -1 2 h u -1 2 j w -1 d 2 k -1 m p s u -1 2 j f v -1 2 h 2 b a 2 k -1 m c v -1 2 h u -1 2 j w z 2 b a 2 k -1 m c v -1 2 h u -1 2 j w -1 -1 -1 d m -1 2 k p s u -1 2 j f v -1 2 h 2 4 b a m -1 2 k c v -1 2 h u -1 2 j w -1 e m -1 2 k q t u -1 2 j g v -1 2 h -1 u 2 -1 -1 m 2 -1 d m -1 2 k p s u -1 2 j f v -1 2 h 2 b a m -1 2 k c v -1 2 h u -1 2 j w z Gamma 1 2 -1 d m -1 2 k p s u -1 2 j f v -1 2 h 2 b a m -1 2 k c v -1 2 h u -1 2 j w z 2 4 b a m -1 2 k c v -1 2 h u -1 2 j w -1 b a m -1 2 k c v -1 2 h u -1 2 j w -1 d m -1 2 k p s u -1 2 j f v -1 2 h 2 b a m -1 2 k c v -1 2 h u -1 2 j w z 2 b a m -1 2 k c v -1 2 h u -1 2 j w -1 -1 m SuperPlus u SuperPlus &