| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/01.20.26.0107.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cosh[a + 2 Sqrt[z]] Hypergeometric0F1[b, z] == 
 ((2^(-3 + 2 b) Gamma[b])/(E^a Sqrt[Pi])) 
  (MeijerG[{{3/2 - b}, {}}, {{0}, {2 - 2 b}}, 4 Sqrt[z]] + 
   E^(2 a) Pi Csc[b Pi] MeijerG[{{3/2 - b}, {1 - b}}, 
     {{0}, {2 - 2 b, 1 - b}}, 4 Sqrt[z]]) | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["Cosh", "[", RowBox[List["a", "+", RowBox[List["2", " ", SqrtBox["z"]]]]], "]"]], " ", RowBox[List["Hypergeometric0F1", "[", RowBox[List["b", ",", "z"]], "]"]]]], "\[Equal]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "3"]], "+", RowBox[List["2", " ", "b"]]]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["-", "a"]]], " ", RowBox[List["Gamma", "[", "b", "]"]]]], SqrtBox["\[Pi]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["3", "2"], "-", "b"]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", "0", "}"]], ",", RowBox[List["{", RowBox[List["2", "-", RowBox[List["2", " ", "b"]]]], "}"]]]], "}"]], ",", RowBox[List["4", " ", SqrtBox["z"]]]]], "]"]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "a"]]], " ", "\[Pi]", " ", RowBox[List["Csc", "[", RowBox[List["b", " ", "\[Pi]"]], "]"]], " ", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["3", "2"], "-", "b"]], "}"]], ",", RowBox[List["{", RowBox[List["1", "-", "b"]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", "0", "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["2", "-", RowBox[List["2", " ", "b"]]]], ",", RowBox[List["1", "-", "b"]]]], "}"]]]], "}"]], ",", RowBox[List["4", " ", SqrtBox["z"]]]]], "]"]]]]]], ")"]]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mrow>  <mi> cosh </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 0 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mo>   </mo>  <mo> ; </mo>  <mi> b </mi>  <mo> ; </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "0"], SubscriptBox["F", "1"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox["\[Null]", InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric0F1, Rule[Editable, False]], ";", TagBox[TagBox[TagBox["b", Hypergeometric0F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric0F1, Rule[Editable, False]], ";", TagBox["z", Hypergeometric0F1, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric0F1] </annotation>  </semantics>  </mrow>  <mo>  </mo>  <mrow>  <mfrac>  <mrow>  <msup>  <mn> 2 </mn>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  </mrow>  <mo> - </mo>  <mn> 3 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mo> - </mo>  <mi> a </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> b </mi>  <mo> ) </mo>  </mrow>  </mrow>  <msqrt>  <mi> π </mi>  </msqrt>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <semantics>  <mrow>  <msubsup>  <mi> G </mi>  <mrow>  <mn> 1 </mn>  <mo> , </mo>  <mn> 2 </mn>  </mrow>  <mrow>  <mn> 1 </mn>  <mo> , </mo>  <mn> 1 </mn>  </mrow>  </msubsup>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  <mo> ❘ </mo>  <mtable>  <mtr>  <mtd>  <mrow>  <mfrac>  <mn> 3 </mn>  <mn> 2 </mn>  </mfrac>  <mo> - </mo>  <mi> b </mi>  </mrow>  </mtd>  </mtr>  <mtr>  <mtd>  <mrow>  <mn> 0 </mn>  <mo> , </mo>  <mrow>  <mn> 2 </mn>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  </mrow>  </mrow>  </mrow>  </mtd>  </mtr>  </mtable>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox["G", MeijerG], RowBox[List["1", ",", "2"]], RowBox[List["1", ",", "1"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[RowBox[List["4", " ", SqrtBox["z"]]], MeijerG, Rule[Editable, True]], "\[VerticalSeparator]", GridBox[List[List[TagBox[RowBox[List[FractionBox["3", "2"], "-", "b"]], MeijerG, Rule[Editable, True]]], List[RowBox[List[TagBox["0", MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["2", "-", RowBox[List["2", " ", "b"]]]], MeijerG, Rule[Editable, True]]]]]]]]], ")"]]]], MeijerG, Rule[Editable, False]] </annotation>  </semantics>  <mo> + </mo>  <mrow>  <msup>  <mi> ⅇ </mi>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> a </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <mi> π </mi>  <mo> ⁢ </mo>  <mrow>  <mi> csc </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <semantics>  <mrow>  <msubsup>  <mi> G </mi>  <mrow>  <mn> 2 </mn>  <mo> , </mo>  <mn> 3 </mn>  </mrow>  <mrow>  <mn> 1 </mn>  <mo> , </mo>  <mn> 1 </mn>  </mrow>  </msubsup>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  <mo> ❘ </mo>  <mtable>  <mtr>  <mtd>  <mrow>  <mrow>  <mfrac>  <mn> 3 </mn>  <mn> 2 </mn>  </mfrac>  <mo> - </mo>  <mi> b </mi>  </mrow>  <mo> , </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> b </mi>  </mrow>  </mrow>  </mtd>  </mtr>  <mtr>  <mtd>  <mrow>  <mn> 0 </mn>  <mo> , </mo>  <mrow>  <mn> 2 </mn>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  </mrow>  </mrow>  <mo> , </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> b </mi>  </mrow>  </mrow>  </mtd>  </mtr>  </mtable>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox["G", MeijerG], RowBox[List["2", ",", "3"]], RowBox[List["1", ",", "1"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[RowBox[List["4", " ", SqrtBox["z"]]], MeijerG, Rule[Editable, True]], "\[VerticalSeparator]", GridBox[List[List[RowBox[List[TagBox[RowBox[List[FractionBox["3", "2"], "-", "b"]], MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", "b"]], MeijerG, Rule[Editable, True]]]]], List[RowBox[List[TagBox["0", MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["2", "-", RowBox[List["2", " ", "b"]]]], MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", "b"]], MeijerG, Rule[Editable, True]]]]]]]]], ")"]]]], MeijerG, Rule[Editable, False]] </annotation>  </semantics>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <eq />  <apply>  <times />  <apply>  <cosh />  <apply>  <plus />  <ci> a </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <ci> Hypergeometric0F1 </ci>  <ci> b </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <times />  <apply>  <times />  <apply>  <power />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  </apply>  <cn type='integer'> -3 </cn>  </apply>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> a </ci>  </apply>  </apply>  <apply>  <ci> Gamma </ci>  <ci> b </ci>  </apply>  <apply>  <power />  <apply>  <power />  <pi />  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <plus />  <apply>  <ci> MeijerG </ci>  <list>  <list>  <apply>  <plus />  <cn type='rational'> 3 <sep /> 2 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> b </ci>  </apply>  </apply>  </list>  <list />  </list>  <list>  <list>  <cn type='integer'> 0 </cn>  </list>  <list>  <apply>  <plus />  <cn type='integer'> 2 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  </apply>  </apply>  </apply>  </list>  </list>  <apply>  <times />  <cn type='integer'> 4 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> a </ci>  </apply>  </apply>  <pi />  <apply>  <csc />  <apply>  <times />  <ci> b </ci>  <pi />  </apply>  </apply>  <apply>  <ci> MeijerG </ci>  <list>  <list>  <apply>  <plus />  <cn type='rational'> 3 <sep /> 2 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> b </ci>  </apply>  </apply>  </list>  <list>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> b </ci>  </apply>  </apply>  </list>  </list>  <list>  <list>  <cn type='integer'> 0 </cn>  </list>  <list>  <apply>  <plus />  <cn type='integer'> 2 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  </apply>  </apply>  </apply>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> b </ci>  </apply>  </apply>  </list>  </list>  <apply>  <times />  <cn type='integer'> 4 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[RowBox[List["Cosh", "[", RowBox[List["a_", "+", RowBox[List["2", " ", SqrtBox["z_"]]]]], "]"]], " ", RowBox[List["Hypergeometric0F1", "[", RowBox[List["b_", ",", "z_"]], "]"]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "3"]], "+", RowBox[List["2", " ", "b"]]]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["-", "a"]]], " ", RowBox[List["Gamma", "[", "b", "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["3", "2"], "-", "b"]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", "0", "}"]], ",", RowBox[List["{", RowBox[List["2", "-", RowBox[List["2", " ", "b"]]]], "}"]]]], "}"]], ",", RowBox[List["4", " ", SqrtBox["z"]]]]], "]"]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "a"]]], " ", "\[Pi]", " ", RowBox[List["Csc", "[", RowBox[List["b", " ", "\[Pi]"]], "]"]], " ", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["3", "2"], "-", "b"]], "}"]], ",", RowBox[List["{", RowBox[List["1", "-", "b"]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", "0", "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["2", "-", RowBox[List["2", " ", "b"]]]], ",", RowBox[List["1", "-", "b"]]]], "}"]]]], "}"]], ",", RowBox[List["4", " ", SqrtBox["z"]]]]], "]"]]]]]], ")"]]]], SqrtBox["\[Pi]"]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 
 
 | 
 |