Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Cosh






Mathematica Notation

Traditional Notation









Elementary Functions > Cosh[z] > Representations through equivalent functions > With inverse function





http://functions.wolfram.com/01.20.27.0004.01









  


  










Input Form





ArcCosh[Cosh[z]] == (Sqrt[z^2] - ((Pi I)/2) E^(I Pi Floor[1/2 - Arg[z]/Pi]) (1 - (-1)^Floor[Im[z]/Pi] + 2 Floor[Im[z]/Pi])) (1 - KroneckerDelta[Re[z]]) + ((-1)^Floor[Im[z]/Pi] (z - Pi I Floor[Im[z]/Pi] - (Pi I)/2) + (Pi I)/2) KroneckerDelta[Re[z]] - Pi I UnitStep[Im[z]] KroneckerDelta[Re[z]] (1 + (-1)^(Floor[Im[z]/(2 Pi) + 1/2] + Floor[-(Im[z]/(2 Pi)) - 1/2])) + ((Pi I)/2) (E^(I Pi Floor[1/2 - Arg[z]/Pi]) + 1) (1 + (-1)^(Floor[Im[z]/(2 Pi) + 1/2] + Floor[-(Im[z]/(2 Pi)) - 1/2])) UnitStep[Re[z]]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["ArcCosh", "[", RowBox[List["Cosh", "[", "z", "]"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[SqrtBox[SuperscriptBox["z", "2"]], " ", "-", RowBox[List[FractionBox[RowBox[List["\[Pi]", " ", "\[ImaginaryI]", " "]], "2"], SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], "-", FractionBox[RowBox[List["Arg", "[", "z", "]"]], "\[Pi]"]]], "]"]]]]], RowBox[List["(", RowBox[List["1", "-", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["Floor", "[", FractionBox[RowBox[List["Im", "[", "z", "]"]], "\[Pi]"], "]"]]], "+", RowBox[List["2", " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Im", "[", "z", "]"]], "\[Pi]"], "]"]]]]]], ")"]]]]]], ")"]], RowBox[List["(", RowBox[List["1", "-", RowBox[List["KroneckerDelta", "[", RowBox[List["Re", "[", "z", "]"]], "]"]]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["Floor", "[", FractionBox[RowBox[List["Im", "[", "z", "]"]], "\[Pi]"], "]"]]], RowBox[List["(", RowBox[List["z", "-", RowBox[List["\[Pi]", " ", "\[ImaginaryI]", " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Im", "[", "z", "]"]], "\[Pi]"], "]"]]]], "-", FractionBox[RowBox[List["\[Pi]", " ", "\[ImaginaryI]"]], "2"]]], ")"]]]], "+", FractionBox[RowBox[List["\[Pi]", " ", "\[ImaginaryI]"]], "2"]]], ")"]], RowBox[List["KroneckerDelta", "[", RowBox[List["Re", "[", "z", "]"]], "]"]]]], "-", RowBox[List["\[Pi]", " ", "\[ImaginaryI]", " ", RowBox[List["UnitStep", "[", RowBox[List["Im", "[", "z", "]"]], "]"]], RowBox[List["KroneckerDelta", "[", RowBox[List["Re", "[", "z", "]"]], "]"]], RowBox[List["(", RowBox[List["1", "+", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["Floor", "[", RowBox[List[FractionBox[RowBox[List["Im", "[", "z", "]"]], RowBox[List["2", " ", "\[Pi]"]]], "+", FractionBox["1", "2"]]], "]"]], "+", RowBox[List["Floor", "[", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["Im", "[", "z", "]"]], RowBox[List["2", " ", "\[Pi]"]]]]], "-", FractionBox["1", "2"]]], "]"]]]]]]], ")"]]]], "+", RowBox[List[FractionBox[RowBox[List["\[Pi]", " ", "\[ImaginaryI]"]], "2"], RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], "-", FractionBox[RowBox[List["Arg", "[", "z", "]"]], "\[Pi]"]]], "]"]]]]], "+", "1"]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["Floor", "[", RowBox[List[FractionBox[RowBox[List["Im", "[", "z", "]"]], RowBox[List["2", " ", "\[Pi]"]]], "+", FractionBox["1", "2"]]], "]"]], "+", RowBox[List["Floor", "[", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["Im", "[", "z", "]"]], RowBox[List["2", " ", "\[Pi]"]]]]], "-", FractionBox["1", "2"]]], "]"]]]]]]], ")"]], " ", RowBox[List["UnitStep", "[", RowBox[List["Re", "[", "z", "]"]], "]"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msup> <mi> cosh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <msqrt> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </msqrt> <mo> - </mo> <mrow> <mfrac> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mo> &#8970; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mfrac> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mi> &#960; </mi> </mfrac> </mrow> <mo> &#8971; </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> Im </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mi> &#960; </mi> </mfrac> <mo> &#8971; </mo> </mrow> </mrow> <mo> - </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> Im </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mi> &#960; </mi> </mfrac> <mo> &#8971; </mo> </mrow> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <semantics> <mi> &#948; </mi> <annotation-xml encoding='MathML-Content'> <ci> KroneckerDelta </ci> </annotation-xml> </semantics> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <semantics> <mi> &#952; </mi> <annotation-xml encoding='MathML-Content'> <ci> UnitStep </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mi> Im </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> &#8970; </mo> <mrow> <mfrac> <mrow> <mi> Im </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> &#8971; </mo> </mrow> <mo> + </mo> <mrow> <mo> &#8970; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> Im </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> </mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> &#8971; </mo> </mrow> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <semantics> <mi> &#948; </mi> <annotation-xml encoding='MathML-Content'> <ci> KroneckerDelta </ci> </annotation-xml> </semantics> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </msub> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> Im </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mi> &#960; </mi> </mfrac> <mo> &#8971; </mo> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> Im </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mi> &#960; </mi> </mfrac> <mo> &#8971; </mo> </mrow> </mrow> <mo> - </mo> <mfrac> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <semantics> <mi> &#948; </mi> <annotation-xml encoding='MathML-Content'> <ci> KroneckerDelta </ci> </annotation-xml> </semantics> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </msub> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mo> &#8970; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mfrac> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mi> &#960; </mi> </mfrac> </mrow> <mo> &#8971; </mo> </mrow> </mrow> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> &#8970; </mo> <mrow> <mfrac> <mrow> <mi> Im </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> &#8971; </mo> </mrow> <mo> + </mo> <mrow> <mo> &#8970; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> Im </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> </mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> &#8971; </mo> </mrow> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <semantics> <mi> &#952; </mi> <annotation-xml encoding='MathML-Content'> <ci> UnitStep </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <arccosh /> <apply> <cosh /> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <pi /> <imaginaryi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <pi /> <apply> <floor /> <apply> <plus /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <arg /> <ci> z </ci> </apply> <apply> <power /> <pi /> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <floor /> <apply> <times /> <apply> <imaginary /> <ci> z </ci> </apply> <apply> <power /> <pi /> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <floor /> <apply> <times /> <apply> <imaginary /> <ci> z </ci> </apply> <apply> <power /> <pi /> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> KroneckerDelta </ci> <apply> <real /> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <pi /> <imaginaryi /> <apply> <ci> UnitStep </ci> <apply> <imaginary /> <ci> z </ci> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <apply> <floor /> <apply> <plus /> <apply> <times /> <apply> <imaginary /> <ci> z </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <floor /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <imaginary /> <ci> z </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <ci> KroneckerDelta </ci> <apply> <real /> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <floor /> <apply> <times /> <apply> <imaginary /> <ci> z </ci> </apply> <apply> <power /> <pi /> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <pi /> <imaginaryi /> <apply> <floor /> <apply> <times /> <apply> <imaginary /> <ci> z </ci> </apply> <apply> <power /> <pi /> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <pi /> <imaginaryi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <imaginaryi /> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> KroneckerDelta </ci> <apply> <real /> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <pi /> <imaginaryi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <pi /> <apply> <floor /> <apply> <plus /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <arg /> <ci> z </ci> </apply> <apply> <power /> <pi /> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <apply> <floor /> <apply> <plus /> <apply> <times /> <apply> <imaginary /> <ci> z </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <floor /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <imaginary /> <ci> z </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <ci> UnitStep </ci> <apply> <real /> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["ArcCosh", "[", RowBox[List["Cosh", "[", "z_", "]"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[SqrtBox[SuperscriptBox["z", "2"]], "-", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["\[Pi]", " ", "\[ImaginaryI]"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], "-", FractionBox[RowBox[List["Arg", "[", "z", "]"]], "\[Pi]"]]], "]"]]]]], " ", RowBox[List["(", RowBox[List["1", "-", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["Floor", "[", FractionBox[RowBox[List["Im", "[", "z", "]"]], "\[Pi]"], "]"]]], "+", RowBox[List["2", " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Im", "[", "z", "]"]], "\[Pi]"], "]"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["KroneckerDelta", "[", RowBox[List["Re", "[", "z", "]"]], "]"]]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["Floor", "[", FractionBox[RowBox[List["Im", "[", "z", "]"]], "\[Pi]"], "]"]]], " ", RowBox[List["(", RowBox[List["z", "-", RowBox[List["\[Pi]", " ", "\[ImaginaryI]", " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Im", "[", "z", "]"]], "\[Pi]"], "]"]]]], "-", FractionBox[RowBox[List["\[Pi]", " ", "\[ImaginaryI]"]], "2"]]], ")"]]]], "+", FractionBox[RowBox[List["\[Pi]", " ", "\[ImaginaryI]"]], "2"]]], ")"]], " ", RowBox[List["KroneckerDelta", "[", RowBox[List["Re", "[", "z", "]"]], "]"]]]], "-", RowBox[List["\[Pi]", " ", "\[ImaginaryI]", " ", RowBox[List["UnitStep", "[", RowBox[List["Im", "[", "z", "]"]], "]"]], " ", RowBox[List["KroneckerDelta", "[", RowBox[List["Re", "[", "z", "]"]], "]"]], " ", RowBox[List["(", RowBox[List["1", "+", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["Floor", "[", RowBox[List[FractionBox[RowBox[List["Im", "[", "z", "]"]], RowBox[List["2", " ", "\[Pi]"]]], "+", FractionBox["1", "2"]]], "]"]], "+", RowBox[List["Floor", "[", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["Im", "[", "z", "]"]], RowBox[List["2", " ", "\[Pi]"]]]]], "-", FractionBox["1", "2"]]], "]"]]]]]]], ")"]]]], "+", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["\[Pi]", " ", "\[ImaginaryI]"]], ")"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], "-", FractionBox[RowBox[List["Arg", "[", "z", "]"]], "\[Pi]"]]], "]"]]]]], "+", "1"]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["Floor", "[", RowBox[List[FractionBox[RowBox[List["Im", "[", "z", "]"]], RowBox[List["2", " ", "\[Pi]"]]], "+", FractionBox["1", "2"]]], "]"]], "+", RowBox[List["Floor", "[", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["Im", "[", "z", "]"]], RowBox[List["2", " ", "\[Pi]"]]]]], "-", FractionBox["1", "2"]]], "]"]]]]]]], ")"]], " ", RowBox[List["UnitStep", "[", RowBox[List["Re", "[", "z", "]"]], "]"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29