Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Cot






Mathematica Notation

Traditional Notation









Elementary Functions > Cot[z] > Continued fraction representations





http://functions.wolfram.com/01.09.10.0001.01









  


  










Input Form





Cot[z] == 1/z - (4 z)/(Pi^2 (1 + (1 - (4 z^2)/Pi^2)/ (3 + (4 (4 - (4 z^2)/Pi^2))/(5 + (9 (9 - (4 z^2)/Pi^2))/ (7 + (16 (16 - (4 z^2)/Pi^2))/(9 + (25 (25 - (4 z^2)/Pi^2))/ (11 + (36 (36 - (4 z^2)/Pi^2))/(13 + \[Ellipsis]))))))))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["Cot", "[", "z", "]"]], "\[Equal]", RowBox[List[FractionBox["1", "z"], "-", " ", FractionBox[RowBox[List["4", SuperscriptBox["\[Pi]", RowBox[List["-", "2"]]], " ", "z"]], RowBox[List["1", "+", FractionBox[RowBox[List["1", "-", RowBox[List["4", " ", SuperscriptBox["\[Pi]", RowBox[List["-", "2"]]], SuperscriptBox["z", "2"]]]]], RowBox[List["3", "+", FractionBox[RowBox[List["4", " ", RowBox[List["(", RowBox[List["4", "-", RowBox[List["4", " ", SuperscriptBox["\[Pi]", RowBox[List["-", "2"]]], SuperscriptBox["z", "2"]]]]], ")"]]]], RowBox[List["5", "+", FractionBox[RowBox[List["9", " ", RowBox[List["(", RowBox[List["9", "-", RowBox[List["4", " ", SuperscriptBox["\[Pi]", RowBox[List["-", "2"]]], SuperscriptBox["z", "2"]]]]], ")"]]]], RowBox[List["7", "+", FractionBox[RowBox[List["16", " ", RowBox[List["(", RowBox[List["16", "-", RowBox[List["4", " ", SuperscriptBox["\[Pi]", RowBox[List["-", "2"]]], SuperscriptBox["z", "2"]]]]], ")"]]]], RowBox[List["9", "+", FractionBox[RowBox[List["25", " ", RowBox[List["(", RowBox[List["25", "-", RowBox[List["4", " ", SuperscriptBox["\[Pi]", RowBox[List["-", "2"]]], SuperscriptBox["z", "2"]]]]], ")"]]]], RowBox[List["11", "+", FractionBox[RowBox[List["36", " ", RowBox[List["(", RowBox[List["36", "-", RowBox[List["4", SuperscriptBox["\[Pi]", RowBox[List["-", "2"]]], SuperscriptBox["z", "2"]]]]], ")"]]]], RowBox[List["13", "+", "\[Ellipsis]"]]]]]]]]]]]]]]]]]]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mi> cot </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mn> 1 </mn> <mi> z </mi> </mfrac> <mo> - </mo> <mtext> </mtext> <mfrac> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> </msup> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mstyle scriptlevel='0'> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mrow> <mstyle scriptlevel='0'> <mrow> <mn> 3 </mn> <mo> + </mo> <mfrac> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 4 </mn> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mstyle scriptlevel='0'> <mrow> <mn> 5 </mn> <mo> + </mo> <mfrac> <mrow> <mn> 9 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 9 </mn> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mstyle scriptlevel='0'> <mrow> <mn> 7 </mn> <mo> + </mo> <mfrac> <mrow> <mn> 16 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 16 </mn> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mstyle scriptlevel='0'> <mrow> <mn> 9 </mn> <mo> + </mo> <mfrac> <mrow> <mn> 25 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 25 </mn> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mstyle scriptlevel='0'> <mrow> <mn> 11 </mn> <mo> + </mo> <mfrac> <mrow> <mn> 36 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 36 </mn> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mstyle scriptlevel='0'> <mrow> <mn> 13 </mn> <mo> + </mo> <mo> &#8230; </mo> </mrow> </mstyle> </mfrac> </mrow> </mstyle> </mfrac> </mrow> </mstyle> </mfrac> </mrow> </mstyle> </mfrac> </mrow> </mstyle> </mfrac> </mrow> </mstyle> </mfrac> </mrow> </mstyle> </mfrac> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <cot /> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <pi /> <cn type='integer'> -2 </cn> </apply> <ci> z </ci> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <pi /> <cn type='integer'> -2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 3 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <cn type='integer'> 4 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <pi /> <cn type='integer'> -2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 5 </cn> <apply> <times /> <cn type='integer'> 9 </cn> <apply> <plus /> <cn type='integer'> 9 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <pi /> <cn type='integer'> -2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 7 </cn> <apply> <times /> <cn type='integer'> 16 </cn> <apply> <plus /> <cn type='integer'> 16 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <pi /> <cn type='integer'> -2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 9 </cn> <apply> <times /> <cn type='integer'> 25 </cn> <apply> <plus /> <cn type='integer'> 25 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <pi /> <cn type='integer'> -2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 11 </cn> <apply> <times /> <cn type='integer'> 36 </cn> <apply> <plus /> <cn type='integer'> 36 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <pi /> <cn type='integer'> -2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 13 </cn> <ci> &#8230; </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Cot", "[", "z_", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox["1", "z"], "-", FractionBox[RowBox[List["4", " ", "z"]], RowBox[List[SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List["1", "-", FractionBox[RowBox[List["4", " ", SuperscriptBox["z", "2"]]], SuperscriptBox["\[Pi]", "2"]]]], RowBox[List["3", "+", FractionBox[RowBox[List["4", " ", RowBox[List["(", RowBox[List["4", "-", FractionBox[RowBox[List["4", " ", SuperscriptBox["z", "2"]]], SuperscriptBox["\[Pi]", "2"]]]], ")"]]]], RowBox[List["5", "+", FractionBox[RowBox[List["9", " ", RowBox[List["(", RowBox[List["9", "-", FractionBox[RowBox[List["4", " ", SuperscriptBox["z", "2"]]], SuperscriptBox["\[Pi]", "2"]]]], ")"]]]], RowBox[List["7", "+", FractionBox[RowBox[List["16", " ", RowBox[List["(", RowBox[List["16", "-", FractionBox[RowBox[List["4", " ", SuperscriptBox["z", "2"]]], SuperscriptBox["\[Pi]", "2"]]]], ")"]]]], RowBox[List["9", "+", FractionBox[RowBox[List["25", " ", RowBox[List["(", RowBox[List["25", "-", FractionBox[RowBox[List["4", " ", SuperscriptBox["z", "2"]]], SuperscriptBox["\[Pi]", "2"]]]], ")"]]]], RowBox[List["11", "+", FractionBox[RowBox[List["36", " ", RowBox[List["(", RowBox[List["36", "-", FractionBox[RowBox[List["4", " ", SuperscriptBox["z", "2"]]], SuperscriptBox["\[Pi]", "2"]]]], ")"]]]], RowBox[List["13", "+", "\[Ellipsis]"]]]]]]]]]]]]]]]]]]]], ")"]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29