html, body, form { margin: 0; padding: 0; width: 100%; } #calculate { position: relative; width: 177px; height: 110px; background: transparent url(/images/alphabox/embed_functions_inside.gif) no-repeat scroll 0 0; } #i { position: relative; left: 18px; top: 44px; width: 133px; border: 0 none; outline: 0; font-size: 11px; } #eq { width: 9px; height: 10px; background: transparent; position: absolute; top: 47px; right: 18px; cursor: pointer; }

 Cot

 http://functions.wolfram.com/01.09.21.0029.01

 Input Form

 Integrate[Cot[a ArcCos[z]], z] == (1/(-2 + 8 a^2)) ((I ((1 + 2 a) E^(I (1 + 2 a) ArcCos[z]) Hypergeometric2F1[1 - 1/(2 a), 1, 2 - 1/(2 a), E^(2 I a ArcCos[z])] - (-1 + 2 a) (E^(I (3 + 2 a) ArcCos[z]) Hypergeometric2F1[1 + 1/(2 a), 1, 2 + 1/(2 a), E^(2 I a ArcCos[z])] + (1 + 2 a) E^(I ArcCos[z]) (Hypergeometric2F1[-(1/(2 a)), 1, 1 - 1/(2 a), E^(2 I a ArcCos[z])] + E^(2 I ArcCos[z]) Hypergeometric2F1[1/(2 a), 1, 1 + 1/(2 a), E^(2 I a ArcCos[z])]))))/E^(2 I ArcCos[z]))

 Standard Form

 Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[RowBox[List["Cot", "[", RowBox[List["a", " ", RowBox[List["ArcCos", "[", "z", "]"]]]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List[RowBox[List["-", "2"]], "+", RowBox[List["8", " ", SuperscriptBox["a", "2"]]]]]], RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "2"]], " ", "\[ImaginaryI]", " ", RowBox[List["ArcCos", "[", "z", "]"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "a"]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "a"]]]], ")"]], " ", RowBox[List["ArcCos", "[", "z", "]"]]]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "-", FractionBox["1", RowBox[List["2", " ", "a"]]]]], ",", "1", ",", RowBox[List["2", "-", FractionBox["1", RowBox[List["2", " ", "a"]]]]], ",", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", RowBox[List["ArcCos", "[", "z", "]"]]]]]]], "]"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", "a"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["3", "+", RowBox[List["2", " ", "a"]]]], ")"]], " ", RowBox[List["ArcCos", "[", "z", "]"]]]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "+", FractionBox["1", RowBox[List["2", " ", "a"]]]]], ",", "1", ",", RowBox[List["2", "+", FractionBox["1", RowBox[List["2", " ", "a"]]]]], ",", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", RowBox[List["ArcCos", "[", "z", "]"]]]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "a"]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcCos", "[", "z", "]"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["1", RowBox[List["2", " ", "a"]]]]], ",", "1", ",", RowBox[List["1", "-", FractionBox["1", RowBox[List["2", " ", "a"]]]]], ",", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", RowBox[List["ArcCos", "[", "z", "]"]]]]]]], "]"]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", RowBox[List["ArcCos", "[", "z", "]"]]]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox["1", RowBox[List["2", " ", "a"]]], ",", "1", ",", RowBox[List["1", "+", FractionBox["1", RowBox[List["2", " ", "a"]]]]], ",", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", RowBox[List["ArcCos", "[", "z", "]"]]]]]]], "]"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]], ")"]]]]]]]]

 MathML Form

 cot ( a cos - 1 ( z ) ) z 1 8 a 2 - 2 ( - 2 cos - 1 ( z ) ( ( 2 a + 1 ) ( 2 a + 1 ) cos - 1 ( z ) 2 F 1 ( 1 - 1 2 a , 1 ; 2 - 1 2 a ; 2 a cos - 1 ( z ) ) TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["1", "-", FractionBox["1", RowBox[List["2", " ", "a"]]]]], Hypergeometric2F1, Rule[Editable, True]], ",", TagBox["1", Hypergeometric2F1, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], ";", TagBox[TagBox[TagBox[RowBox[List["2", "-", FractionBox["1", RowBox[List["2", " ", "a"]]]]], Hypergeometric2F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], ";", TagBox[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", RowBox[List[SuperscriptBox["cos", RowBox[List["-", "1"]]], "(", "z", ")"]]]]], Hypergeometric2F1, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1] - ( 2 a - 1 ) ( ( 2 a + 1 ) cos - 1 ( z ) ( 2 cos - 1 ( z ) 2 F 1 ( 1 2 a , 1 ; 1 + 1 2 a ; 2 a cos - 1 ( z ) ) TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox["1", RowBox[List["2", " ", "a"]]], Hypergeometric2F1, Rule[Editable, True]], ",", TagBox["1", Hypergeometric2F1, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], ";", TagBox[TagBox[TagBox[RowBox[List["1", "+", FractionBox["1", RowBox[List["2", " ", "a"]]]]], Hypergeometric2F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], ";", TagBox[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", RowBox[List[SuperscriptBox["cos", RowBox[List["-", "1"]]], "(", "z", ")"]]]]], Hypergeometric2F1, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1] + 2 F 1 ( - 1 2 a , 1 ; 1 - 1 2 a ; 2 a cos - 1 ( z ) ) TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["-", FractionBox["1", RowBox[List["2", " ", "a"]]]]], Hypergeometric2F1, Rule[Editable, True]], ",", TagBox["1", Hypergeometric2F1, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], ";", TagBox[TagBox[TagBox[RowBox[List["1", "-", FractionBox["1", RowBox[List["2", " ", "a"]]]]], Hypergeometric2F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], ";", TagBox[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", RowBox[List[SuperscriptBox["cos", RowBox[List["-", "1"]]], "(", "z", ")"]]]]], Hypergeometric2F1, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1] ) + ( 2 a + 3 ) cos - 1 ( z ) 2 F 1 ( 1 + 1 2 a , 1 ; 2 + 1 2 a ; 2 a cos - 1 ( z ) ) TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["1", "+", FractionBox["1", RowBox[List["2", " ", "a"]]]]], Hypergeometric2F1, Rule[Editable, True]], ",", TagBox["1", Hypergeometric2F1, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], ";", TagBox[TagBox[TagBox[RowBox[List["2", "+", FractionBox["1", RowBox[List["2", " ", "a"]]]]], Hypergeometric2F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], ";", TagBox[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", RowBox[List[SuperscriptBox["cos", RowBox[List["-", "1"]]], "(", "z", ")"]]]]], Hypergeometric2F1, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1] ) ) ) z a z 1 8 a 2 -2 -1 -2 z 2 a 1 2 a 1 z Hypergeometric2F1 1 -1 1 2 a -1 1 2 -1 1 2 a -1 2 a z -1 2 a -1 2 a 1 z 2 z Hypergeometric2F1 1 2 a -1 1 1 1 2 a -1 2 a z Hypergeometric2F1 -1 1 2 a -1 1 1 -1 1 2 a -1 2 a z 2 a 3 z Hypergeometric2F1 1 1 2 a -1 1 2 1 2 a -1 2 a z [/itex]

 Rule Form

 Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List["Cot", "[", RowBox[List["a_", " ", RowBox[List["ArcCos", "[", "z_", "]"]]]], "]"]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "2"]], " ", "\[ImaginaryI]", " ", RowBox[List["ArcCos", "[", "z", "]"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "a"]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "a"]]]], ")"]], " ", RowBox[List["ArcCos", "[", "z", "]"]]]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "-", FractionBox["1", RowBox[List["2", " ", "a"]]]]], ",", "1", ",", RowBox[List["2", "-", FractionBox["1", RowBox[List["2", " ", "a"]]]]], ",", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", RowBox[List["ArcCos", "[", "z", "]"]]]]]]], "]"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", "a"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["3", "+", RowBox[List["2", " ", "a"]]]], ")"]], " ", RowBox[List["ArcCos", "[", "z", "]"]]]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "+", FractionBox["1", RowBox[List["2", " ", "a"]]]]], ",", "1", ",", RowBox[List["2", "+", FractionBox["1", RowBox[List["2", " ", "a"]]]]], ",", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", RowBox[List["ArcCos", "[", "z", "]"]]]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "a"]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcCos", "[", "z", "]"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["1", RowBox[List["2", " ", "a"]]]]], ",", "1", ",", RowBox[List["1", "-", FractionBox["1", RowBox[List["2", " ", "a"]]]]], ",", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", RowBox[List["ArcCos", "[", "z", "]"]]]]]]], "]"]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", RowBox[List["ArcCos", "[", "z", "]"]]]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox["1", RowBox[List["2", " ", "a"]]], ",", "1", ",", RowBox[List["1", "+", FractionBox["1", RowBox[List["2", " ", "a"]]]]], ",", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", RowBox[List["ArcCos", "[", "z", "]"]]]]]]], "]"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]], RowBox[List[RowBox[List["-", "2"]], "+", RowBox[List["8", " ", SuperscriptBox["a", "2"]]]]]]]]]]

 Date Added to functions.wolfram.com (modification date)

 2002-12-18