| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/01.09.21.0052.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Integrate[Sin[c z]^3 Cot[4 c z], z] == 
 (1/(24 c)) ((3 + 3 I) (-1)^(3/4) ArcTanh[(-1 + Tan[(c z)/2])/Sqrt[2]] + 
   (3 + 3 I) (-1)^(3/4) ArcTanh[(1 + Tan[(c z)/2])/Sqrt[2]] + 
   6 Log[Cos[(c z)/2] - Sin[(c z)/2]] - 6 Log[Cos[(c z)/2] + Sin[(c z)/2]] + 
   18 Sin[c z] - 2 Sin[3 c z]) | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox[RowBox[List["Sin", "[", RowBox[List["c", " ", "z"]], "]"]], "3"], RowBox[List["Cot", "[", RowBox[List["4", " ", "c", " ", "z"]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["24", " ", "c"]]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["3", "+", RowBox[List["3", " ", "\[ImaginaryI]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", RowBox[List["ArcTanh", "[", FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["Tan", "[", FractionBox[RowBox[List["c", " ", "z"]], "2"], "]"]]]], SqrtBox["2"]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["3", "+", RowBox[List["3", " ", "\[ImaginaryI]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", RowBox[List["ArcTanh", "[", FractionBox[RowBox[List["1", "+", RowBox[List["Tan", "[", FractionBox[RowBox[List["c", " ", "z"]], "2"], "]"]]]], SqrtBox["2"]], "]"]]]], "+", RowBox[List["6", " ", RowBox[List["Log", "[", RowBox[List[RowBox[List["Cos", "[", FractionBox[RowBox[List["c", " ", "z"]], "2"], "]"]], "-", RowBox[List["Sin", "[", FractionBox[RowBox[List["c", " ", "z"]], "2"], "]"]]]], "]"]]]], "-", RowBox[List["6", " ", RowBox[List["Log", "[", RowBox[List[RowBox[List["Cos", "[", FractionBox[RowBox[List["c", " ", "z"]], "2"], "]"]], "+", RowBox[List["Sin", "[", FractionBox[RowBox[List["c", " ", "z"]], "2"], "]"]]]], "]"]]]], "+", RowBox[List["18", " ", RowBox[List["Sin", "[", RowBox[List["c", " ", "z"]], "]"]]]], "-", RowBox[List["2", " ", RowBox[List["Sin", "[", RowBox[List["3", " ", "c", " ", "z"]], "]"]]]]]], ")"]]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mo> ∫ </mo>  <mrow>  <mrow>  <mrow>  <msup>  <mi> sin </mi>  <mn> 3 </mn>  </msup>  <mo> ( </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> cot </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ⅆ </mo>  <mi> z </mi>  </mrow>  </mrow>  </mrow>  <mo> ⩵ </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mrow>  <mn> 24 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 3 </mn>  <mo> / </mo>  <mn> 4 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 3 </mn>  <mo> + </mo>  <mrow>  <mn> 3 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  </mrow>  </mrow>  <mtext>   </mtext>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> tanh </mi>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ( </mo>  <mfrac>  <mrow>  <mrow>  <mi> tan </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mfrac>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mn> 2 </mn>  </mfrac>  <mo> ) </mo>  </mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <msqrt>  <mn> 2 </mn>  </msqrt>  </mfrac>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 3 </mn>  <mo> / </mo>  <mn> 4 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 3 </mn>  <mo> + </mo>  <mrow>  <mn> 3 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  </mrow>  </mrow>  <mtext>   </mtext>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> tanh </mi>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ( </mo>  <mfrac>  <mrow>  <mrow>  <mi> tan </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mfrac>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mn> 2 </mn>  </mfrac>  <mo> ) </mo>  </mrow>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <msqrt>  <mn> 2 </mn>  </msqrt>  </mfrac>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mn> 6 </mn>  <mo> ⁢ </mo>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mi> cos </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mfrac>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mn> 2 </mn>  </mfrac>  <mo> ) </mo>  </mrow>  <mo> - </mo>  <mrow>  <mi> sin </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mfrac>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mn> 2 </mn>  </mfrac>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mn> 6 </mn>  <mo> ⁢ </mo>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mi> cos </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mfrac>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mn> 2 </mn>  </mfrac>  <mo> ) </mo>  </mrow>  <mo> + </mo>  <mrow>  <mi> sin </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mfrac>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mn> 2 </mn>  </mfrac>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mn> 18 </mn>  <mo> ⁢ </mo>  <mrow>  <mi> sin </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mi> sin </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mn> 3 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <eq />  <apply>  <int />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <times />  <apply>  <power />  <apply>  <sin />  <apply>  <times />  <ci> c </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 3 </cn>  </apply>  <apply>  <cot />  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> c </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 24 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <cn type='integer'> -1 </cn>  <cn type='rational'> 3 <sep /> 4 </cn>  </apply>  <cn type='complex-cartesian'> 3 <sep /> 3 </cn>  <apply>  <arctanh />  <apply>  <times />  <apply>  <plus />  <apply>  <tan />  <apply>  <times />  <ci> c </ci>  <ci> z </ci>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  <apply>  <power />  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <cn type='integer'> -1 </cn>  <cn type='rational'> 3 <sep /> 4 </cn>  </apply>  <cn type='complex-cartesian'> 3 <sep /> 3 </cn>  <apply>  <arctanh />  <apply>  <times />  <apply>  <plus />  <apply>  <tan />  <apply>  <times />  <ci> c </ci>  <ci> z </ci>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <power />  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 6 </cn>  <apply>  <ln />  <apply>  <plus />  <apply>  <cos />  <apply>  <times />  <ci> c </ci>  <ci> z </ci>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <sin />  <apply>  <times />  <ci> c </ci>  <ci> z </ci>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 6 </cn>  <apply>  <ln />  <apply>  <plus />  <apply>  <cos />  <apply>  <times />  <ci> c </ci>  <ci> z </ci>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <sin />  <apply>  <times />  <ci> c </ci>  <ci> z </ci>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 18 </cn>  <apply>  <sin />  <apply>  <times />  <ci> c </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <sin />  <apply>  <times />  <cn type='integer'> 3 </cn>  <ci> c </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["Sin", "[", RowBox[List["c_", " ", "z_"]], "]"]], "3"], " ", RowBox[List["Cot", "[", RowBox[List["4", " ", "c_", " ", "z_"]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["3", "+", RowBox[List["3", " ", "\[ImaginaryI]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", RowBox[List["ArcTanh", "[", FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["Tan", "[", FractionBox[RowBox[List["c", " ", "z"]], "2"], "]"]]]], SqrtBox["2"]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["3", "+", RowBox[List["3", " ", "\[ImaginaryI]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", RowBox[List["ArcTanh", "[", FractionBox[RowBox[List["1", "+", RowBox[List["Tan", "[", FractionBox[RowBox[List["c", " ", "z"]], "2"], "]"]]]], SqrtBox["2"]], "]"]]]], "+", RowBox[List["6", " ", RowBox[List["Log", "[", RowBox[List[RowBox[List["Cos", "[", FractionBox[RowBox[List["c", " ", "z"]], "2"], "]"]], "-", RowBox[List["Sin", "[", FractionBox[RowBox[List["c", " ", "z"]], "2"], "]"]]]], "]"]]]], "-", RowBox[List["6", " ", RowBox[List["Log", "[", RowBox[List[RowBox[List["Cos", "[", FractionBox[RowBox[List["c", " ", "z"]], "2"], "]"]], "+", RowBox[List["Sin", "[", FractionBox[RowBox[List["c", " ", "z"]], "2"], "]"]]]], "]"]]]], "+", RowBox[List["18", " ", RowBox[List["Sin", "[", RowBox[List["c", " ", "z"]], "]"]]]], "-", RowBox[List["2", " ", RowBox[List["Sin", "[", RowBox[List["3", " ", "c", " ", "z"]], "]"]]]]]], RowBox[List["24", " ", "c"]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 
 
 | 
 |