| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/01.09.21.0068.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Integrate[Cos[b z] Cot[c z], z] == (1/(2 (b^3 - 4 b c^2))) 
  ((b (b + 2 c) E^(I (b + 2 c) z) Hypergeometric2F1[1 - b/(2 c), 1, 
      2 - b/(2 c), E^(2 I c z)] - (b - 2 c) 
     (b E^(I (3 b + 2 c) z) Hypergeometric2F1[1 + b/(2 c), 1, 2 + b/(2 c), 
        E^(2 I c z)] + (b + 2 c) E^(I b z) 
       (-Hypergeometric2F1[-(b/(2 c)), 1, 1 - b/(2 c), E^(2 I c z)] + 
        E^(2 I b z) Hypergeometric2F1[b/(2 c), 1, 1 + b/(2 c), 
          E^(2 I c z)])))/E^(2 I b z)) | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[RowBox[List["Cos", "[", RowBox[List["b", " ", "z"]], "]"]], " ", RowBox[List["Cot", "[", RowBox[List["c", " ", "z"]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["2", " ", RowBox[List["(", RowBox[List[SuperscriptBox["b", "3"], "-", RowBox[List["4", " ", "b", " ", SuperscriptBox["c", "2"]]]]], ")"]]]]], RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "2"]], " ", "\[ImaginaryI]", " ", "b", " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["2", " ", "c"]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["2", " ", "c"]]]], ")"]], " ", "z"]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "-", FractionBox["b", RowBox[List["2", " ", "c"]]]]], ",", "1", ",", RowBox[List["2", "-", FractionBox["b", RowBox[List["2", " ", "c"]]]]], ",", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "z"]]]]], "]"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List["b", "-", RowBox[List["2", " ", "c"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["3", " ", "b"]], "+", RowBox[List["2", " ", "c"]]]], ")"]], " ", "z"]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "+", FractionBox["b", RowBox[List["2", " ", "c"]]]]], ",", "1", ",", RowBox[List["2", "+", FractionBox["b", RowBox[List["2", " ", "c"]]]]], ",", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "z"]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["b", "+", RowBox[List["2", " ", "c"]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "b", " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["b", RowBox[List["2", " ", "c"]]]]], ",", "1", ",", RowBox[List["1", "-", FractionBox["b", RowBox[List["2", " ", "c"]]]]], ",", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "z"]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "z"]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox["b", RowBox[List["2", " ", "c"]]], ",", "1", ",", RowBox[List["1", "+", FractionBox["b", RowBox[List["2", " ", "c"]]]]], ",", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "z"]]]]], "]"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]], ")"]]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mo> ∫ </mo>  <mrow>  <mrow>  <mrow>  <mi> cos </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> cot </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ⅆ </mo>  <mi> z </mi>  </mrow>  </mrow>  </mrow>  <mo> ⩵ </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <msup>  <mi> b </mi>  <mn> 3 </mn>  </msup>  <mo> - </mo>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <msup>  <mi> c </mi>  <mn> 2 </mn>  </msup>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <msup>  <mi> ⅇ </mi>  <mrow>  <mrow>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> b </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> b </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 2 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mfrac>  <mi> b </mi>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  </mrow>  <mo> , </mo>  <mn> 1 </mn>  </mrow>  <mo> ; </mo>  <mrow>  <mn> 2 </mn>  <mo> - </mo>  <mfrac>  <mi> b </mi>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  </mrow>  <mo> ; </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["1", "-", FractionBox["b", RowBox[List["2", " ", "c"]]]]], Hypergeometric2F1], ",", TagBox["1", Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[RowBox[List["2", "-", FractionBox["b", RowBox[List["2", " ", "c"]]]]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "z"]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation>  </semantics>  </mrow>  <mo> - </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> b </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> b </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <msup>  <mi> ⅇ </mi>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 2 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mi> b </mi>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  <mo> , </mo>  <mn> 1 </mn>  </mrow>  <mo> ; </mo>  <mrow>  <mfrac>  <mi> b </mi>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ; </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox["b", RowBox[List["2", " ", "c"]]], Hypergeometric2F1], ",", TagBox["1", Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[RowBox[List[FractionBox["b", RowBox[List["2", " ", "c"]]], "+", "1"]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "z"]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation>  </semantics>  </mrow>  <mo> - </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 2 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mfrac>  <mi> b </mi>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  </mrow>  <mo> , </mo>  <mn> 1 </mn>  </mrow>  <mo> ; </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mfrac>  <mi> b </mi>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  </mrow>  <mo> ; </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["-", FractionBox["b", RowBox[List["2", " ", "c"]]]]], Hypergeometric2F1], ",", TagBox["1", Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[RowBox[List["1", "-", FractionBox["b", RowBox[List["2", " ", "c"]]]]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "z"]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation>  </semantics>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 3 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 2 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mfrac>  <mi> b </mi>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> , </mo>  <mn> 1 </mn>  </mrow>  <mo> ; </mo>  <mrow>  <mfrac>  <mi> b </mi>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  <mo> + </mo>  <mn> 2 </mn>  </mrow>  <mo> ; </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[FractionBox["b", RowBox[List["2", " ", "c"]]], "+", "1"]], Hypergeometric2F1], ",", TagBox["1", Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[RowBox[List[FractionBox["b", RowBox[List["2", " ", "c"]]], "+", "2"]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "z"]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation>  </semantics>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <eq />  <apply>  <int />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <times />  <apply>  <cos />  <apply>  <times />  <ci> b </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <cot />  <apply>  <times />  <ci> c </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <power />  <ci> b </ci>  <cn type='integer'> 3 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> b </ci>  <apply>  <power />  <ci> c </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> -2 </cn>  <imaginaryi />  <ci> b </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <ci> b </ci>  <apply>  <plus />  <ci> b </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <times />  <imaginaryi />  <apply>  <plus />  <ci> b </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  </apply>  <ci> z </ci>  </apply>  </apply>  <apply>  <ci> Hypergeometric2F1 </ci>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> b </ci>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> 1 </cn>  <apply>  <plus />  <cn type='integer'> 2 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> b </ci>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> c </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <plus />  <ci> b </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <ci> b </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <times />  <imaginaryi />  <ci> b </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> b </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <ci> Hypergeometric2F1 </ci>  <apply>  <times />  <ci> b </ci>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  <apply>  <plus />  <apply>  <times />  <ci> b </ci>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> c </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Hypergeometric2F1 </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> b </ci>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> 1 </cn>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> b </ci>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> c </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <ci> b </ci>  <apply>  <power />  <exponentiale />  <apply>  <times />  <imaginaryi />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 3 </cn>  <ci> b </ci>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  </apply>  <ci> z </ci>  </apply>  </apply>  <apply>  <ci> Hypergeometric2F1 </ci>  <apply>  <plus />  <apply>  <times />  <ci> b </ci>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <cn type='integer'> 1 </cn>  <apply>  <plus />  <apply>  <times />  <ci> b </ci>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> c </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[RowBox[List["Cos", "[", RowBox[List["b_", " ", "z_"]], "]"]], " ", RowBox[List["Cot", "[", RowBox[List["c_", " ", "z_"]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "2"]], " ", "\[ImaginaryI]", " ", "b", " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["2", " ", "c"]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["2", " ", "c"]]]], ")"]], " ", "z"]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "-", FractionBox["b", RowBox[List["2", " ", "c"]]]]], ",", "1", ",", RowBox[List["2", "-", FractionBox["b", RowBox[List["2", " ", "c"]]]]], ",", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "z"]]]]], "]"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List["b", "-", RowBox[List["2", " ", "c"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["3", " ", "b"]], "+", RowBox[List["2", " ", "c"]]]], ")"]], " ", "z"]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "+", FractionBox["b", RowBox[List["2", " ", "c"]]]]], ",", "1", ",", RowBox[List["2", "+", FractionBox["b", RowBox[List["2", " ", "c"]]]]], ",", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "z"]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["b", "+", RowBox[List["2", " ", "c"]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "b", " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["b", RowBox[List["2", " ", "c"]]]]], ",", "1", ",", RowBox[List["1", "-", FractionBox["b", RowBox[List["2", " ", "c"]]]]], ",", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "z"]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "z"]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox["b", RowBox[List["2", " ", "c"]]], ",", "1", ",", RowBox[List["1", "+", FractionBox["b", RowBox[List["2", " ", "c"]]]]], ",", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "z"]]]]], "]"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]], RowBox[List["2", " ", RowBox[List["(", RowBox[List[SuperscriptBox["b", "3"], "-", RowBox[List["4", " ", "b", " ", SuperscriptBox["c", "2"]]]]], ")"]]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 
 
 | 
 |