Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Cot






Mathematica Notation

Traditional Notation









Elementary Functions > Cot[z] > Integration > Indefinite integration > Involving one direct function and elementary functions > Involving trigonometric functions > Involving cos > Involving cos(b z)





http://functions.wolfram.com/01.09.21.0072.01









  


  










Input Form





Integrate[Cos[c z] Cot[4 c z], z] == (1/(4 c)) ((-1 - I) (-1)^(3/4) ArcTanh[(-1 + Tan[(c z)/2])/Sqrt[2]] - (1 - I) (-1)^(1/4) ArcTanh[(1 + Tan[(c z)/2])/Sqrt[2]] + 4 Cos[c z] - Log[Cos[(c z)/2]] + Log[Sin[(c z)/2]])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[RowBox[List["Cos", "[", RowBox[List["c", " ", "z"]], "]"]], RowBox[List["Cot", "[", RowBox[List["4", " ", "c", " ", "z"]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["4", " ", "c"]]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "\[ImaginaryI]"]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", RowBox[List["ArcTanh", "[", FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["Tan", "[", FractionBox[RowBox[List["c", " ", "z"]], "2"], "]"]]]], SqrtBox["2"]], "]"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List["1", "-", "\[ImaginaryI]"]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", RowBox[List["ArcTanh", "[", FractionBox[RowBox[List["1", "+", RowBox[List["Tan", "[", FractionBox[RowBox[List["c", " ", "z"]], "2"], "]"]]]], SqrtBox["2"]], "]"]]]], "+", RowBox[List["4", " ", RowBox[List["Cos", "[", RowBox[List["c", " ", "z"]], "]"]]]], "-", RowBox[List["Log", "[", RowBox[List["Cos", "[", FractionBox[RowBox[List["c", " ", "z"]], "2"], "]"]], "]"]], "+", RowBox[List["Log", "[", RowBox[List["Sin", "[", FractionBox[RowBox[List["c", " ", "z"]], "2"], "]"]], "]"]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mrow> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> cot </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 4 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> tanh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mrow> <mrow> <mi> tan </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <msqrt> <mn> 2 </mn> </msqrt> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mroot> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 4 </mn> </mroot> <mo> &#8290; </mo> <mrow> <msup> <mi> tanh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mrow> <mrow> <mi> tan </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <msqrt> <mn> 2 </mn> </msqrt> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <cos /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <cot /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 3 <sep /> 4 </cn> </apply> <cn type='complex-cartesian'> -1 <sep /> -1 </cn> <apply> <arctanh /> <apply> <times /> <apply> <plus /> <apply> <tan /> <apply> <times /> <ci> c </ci> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='complex-cartesian'> 1 <sep /> -1 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <arctanh /> <apply> <times /> <apply> <plus /> <apply> <tan /> <apply> <times /> <ci> c </ci> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <cos /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ln /> <apply> <cos /> <apply> <times /> <ci> c </ci> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <ln /> <apply> <sin /> <apply> <times /> <ci> c </ci> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[RowBox[List["Cos", "[", RowBox[List["c_", " ", "z_"]], "]"]], " ", RowBox[List["Cot", "[", RowBox[List["4", " ", "c_", " ", "z_"]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "\[ImaginaryI]"]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", RowBox[List["ArcTanh", "[", FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["Tan", "[", FractionBox[RowBox[List["c", " ", "z"]], "2"], "]"]]]], SqrtBox["2"]], "]"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List["1", "-", "\[ImaginaryI]"]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", RowBox[List["ArcTanh", "[", FractionBox[RowBox[List["1", "+", RowBox[List["Tan", "[", FractionBox[RowBox[List["c", " ", "z"]], "2"], "]"]]]], SqrtBox["2"]], "]"]]]], "+", RowBox[List["4", " ", RowBox[List["Cos", "[", RowBox[List["c", " ", "z"]], "]"]]]], "-", RowBox[List["Log", "[", RowBox[List["Cos", "[", FractionBox[RowBox[List["c", " ", "z"]], "2"], "]"]], "]"]], "+", RowBox[List["Log", "[", RowBox[List["Sin", "[", FractionBox[RowBox[List["c", " ", "z"]], "2"], "]"]], "]"]]]], RowBox[List["4", " ", "c"]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18