
|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
http://functions.wolfram.com/01.09.21.0126.01
|
|

|

|

|

|
|
|
|

|

|

|

|
|

|

|

|

|

|
Integrate[Cot[d z]/Sqrt[a Cos[d z]^2 + b Cos[d z] Sin[d z] + c Sin[d z]^2],
z] == -(2 ((-I) b + 2 c - Sqrt[-b^2 + 4 a c])
(EllipticF[ArcSin[Sqrt[((I b + 2 c + Sqrt[-b^2 + 4 a c])
(1 + I Tan[d z]))/((I b - 2 c + Sqrt[-b^2 + 4 a c])
(-1 + I Tan[d z]))]], -((-a - c + Sqrt[-b^2 + 4 a c])/
(a + c + Sqrt[-b^2 + 4 a c]))] -
2 EllipticPi[(I b - 2 c + Sqrt[-b^2 + 4 a c])/((-I) b - 2 c -
Sqrt[-b^2 + 4 a c]), ArcSin[Sqrt[((I b + 2 c + Sqrt[-b^2 + 4 a c])
(1 + I Tan[d z]))/((I b - 2 c + Sqrt[-b^2 + 4 a c])
(-1 + I Tan[d z]))]], -((-a - c + Sqrt[-b^2 + 4 a c])/
(a + c + Sqrt[-b^2 + 4 a c]))]) (Cos[d z] - I Sin[d z])^2
Sqrt[((I b + 2 c + Sqrt[-b^2 + 4 a c]) (1 + I Tan[d z]))/
((I b - 2 c + Sqrt[-b^2 + 4 a c]) (-1 + I Tan[d z]))]
Sqrt[-(((I b + 2 c + Sqrt[-b^2 + 4 a c]) (1 + I Tan[d z])
(I b + Sqrt[-b^2 + 4 a c] + 2 I c Tan[d z]))/
((I b - 2 c + Sqrt[-b^2 + 4 a c])^2 (-1 + I Tan[d z])^2))]
Sqrt[(-2 a - I b + Sqrt[-b^2 + 4 a c] +
I (I b - 2 c + Sqrt[-b^2 + 4 a c]) Tan[d z])/
((a + I b - c) (-1 + I Tan[d z]))])/
(((-I) b - 2 c - Sqrt[-b^2 + 4 a c]) d
Sqrt[-(((a + c + Sqrt[-b^2 + 4 a c]) (Cos[2 d z] + I Sin[2 d z]))/
(a + I b - c))] Sqrt[a + c + (a - c) Cos[2 d z] + b Sin[2 d z]])
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List["Cot", "[", RowBox[List["d", " ", "z"]], "]"]], SqrtBox[RowBox[List[RowBox[List["a", " ", SuperscriptBox[RowBox[List["Cos", "[", RowBox[List["d", " ", "z"]], "]"]], "2"]]], "+", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["d", " ", "z"]], "]"]], " ", RowBox[List["Sin", "[", RowBox[List["d", " ", "z"]], "]"]]]], "+", RowBox[List["c", " ", SuperscriptBox[RowBox[List["Sin", "[", RowBox[List["d", " ", "z"]], "]"]], "2"]]]]]]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]], "+", RowBox[List["2", " ", "c"]], "-", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["4", " ", "a", " ", "c"]]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["EllipticF", "[", RowBox[List[RowBox[List["ArcSin", "[", SqrtBox[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", RowBox[List["2", " ", "c"]], "+", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["4", " ", "a", " ", "c"]]]]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["Tan", "[", RowBox[List["d", " ", "z"]], "]"]]]]]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "-", RowBox[List["2", " ", "c"]], "+", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["4", " ", "a", " ", "c"]]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["Tan", "[", RowBox[List["d", " ", "z"]], "]"]]]]]], ")"]]]]]], "]"]], ",", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["-", "a"]], "-", "c", "+", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["4", " ", "a", " ", "c"]]]]]]], RowBox[List["a", "+", "c", "+", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["4", " ", "a", " ", "c"]]]]]]]]]]]], "]"]], "-", RowBox[List["2", " ", RowBox[List["EllipticPi", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "-", RowBox[List["2", " ", "c"]], "+", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["4", " ", "a", " ", "c"]]]]]]], RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]], "-", RowBox[List["2", " ", "c"]], "-", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["4", " ", "a", " ", "c"]]]]]]]], ",", RowBox[List["ArcSin", "[", SqrtBox[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", RowBox[List["2", " ", "c"]], "+", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["4", " ", "a", " ", "c"]]]]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["Tan", "[", RowBox[List["d", " ", "z"]], "]"]]]]]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "-", RowBox[List["2", " ", "c"]], "+", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["4", " ", "a", " ", "c"]]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["Tan", "[", RowBox[List["d", " ", "z"]], "]"]]]]]], ")"]]]]]], "]"]], ",", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["-", "a"]], "-", "c", "+", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["4", " ", "a", " ", "c"]]]]]]], RowBox[List["a", "+", "c", "+", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["4", " ", "a", " ", "c"]]]]]]]]]]]], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["Cos", "[", RowBox[List["d", " ", "z"]], "]"]], "-", RowBox[List["\[ImaginaryI]", " ", RowBox[List["Sin", "[", RowBox[List["d", " ", "z"]], "]"]]]]]], ")"]], "2"], " ", SqrtBox[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", RowBox[List["2", " ", "c"]], "+", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["4", " ", "a", " ", "c"]]]]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["Tan", "[", RowBox[List["d", " ", "z"]], "]"]]]]]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "-", RowBox[List["2", " ", "c"]], "+", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["4", " ", "a", " ", "c"]]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["Tan", "[", RowBox[List["d", " ", "z"]], "]"]]]]]], ")"]]]]]], " ", RowBox[List["\[Sqrt]", RowBox[List["(", RowBox[List["-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", RowBox[List["2", " ", "c"]], "+", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["4", " ", "a", " ", "c"]]]]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["Tan", "[", RowBox[List["d", " ", "z"]], "]"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["4", " ", "a", " ", "c"]]]]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", RowBox[List["Tan", "[", RowBox[List["d", " ", "z"]], "]"]]]]]], ")"]]]], ")"]], "/", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "-", RowBox[List["2", " ", "c"]], "+", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["4", " ", "a", " ", "c"]]]]]]], ")"]], "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["Tan", "[", RowBox[List["d", " ", "z"]], "]"]]]]]], ")"]], "2"]]], ")"]]]]]], ")"]]]], " ", RowBox[List["\[Sqrt]", RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "-", RowBox[List["\[ImaginaryI]", " ", "b"]], "+", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["4", " ", "a", " ", "c"]]]]], "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "-", RowBox[List["2", " ", "c"]], "+", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["4", " ", "a", " ", "c"]]]]]]], ")"]], " ", RowBox[List["Tan", "[", RowBox[List["d", " ", "z"]], "]"]]]]]], ")"]], "/", RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["a", "+", RowBox[List["\[ImaginaryI]", " ", "b"]], "-", "c"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["Tan", "[", RowBox[List["d", " ", "z"]], "]"]]]]]], ")"]]]], ")"]]]], ")"]]]]]], ")"]]]], "/", RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]], "-", RowBox[List["2", " ", "c"]], "-", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["4", " ", "a", " ", "c"]]]]]]], ")"]], " ", "d", " ", SqrtBox[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["a", "+", "c", "+", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["4", " ", "a", " ", "c"]]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Cos", "[", RowBox[List["2", " ", "d", " ", "z"]], "]"]], "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["Sin", "[", RowBox[List["2", " ", "d", " ", "z"]], "]"]]]]]], ")"]]]], RowBox[List["a", "+", RowBox[List["\[ImaginaryI]", " ", "b"]], "-", "c"]]]]]], " ", SqrtBox[RowBox[List["a", "+", "c", "+", RowBox[List[RowBox[List["(", RowBox[List["a", "-", "c"]], ")"]], " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "d", " ", "z"]], "]"]]]], "+", RowBox[List["b", " ", RowBox[List["Sin", "[", RowBox[List["2", " ", "d", " ", "z"]], "]"]]]]]]]]], ")"]]]]]]]]
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
|

|

|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> ∫ </mo> <mrow> <mfrac> <mrow> <mi> cot </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <msqrt> <mrow> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> cos </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mtext> </mtext> <mo> - </mo> <msqrt> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> F </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <msup> <mi> sin </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mtext> </mtext> <mo> + </mo> <msqrt> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mi> tan </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mtext> </mtext> <mo> + </mo> <msqrt> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mi> tan </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </msqrt> <mo> ) </mo> </mrow> <mo> ❘ </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> - </mo> <mi> c </mi> <mo> + </mo> <msqrt> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <mi> c </mi> <mo> + </mo> <msqrt> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mi> Π </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mtext> </mtext> <mo> + </mo> <msqrt> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mtext> </mtext> <mo> - </mo> <msqrt> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> </mfrac> <mo> ; </mo> <mrow> <mrow> <msup> <mi> sin </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mtext> </mtext> <mo> + </mo> <msqrt> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mi> tan </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mtext> </mtext> <mo> + </mo> <msqrt> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mi> tan </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </msqrt> <mo> ) </mo> </mrow> <mo> ❘ </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> - </mo> <mi> c </mi> <mo> + </mo> <msqrt> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <mi> c </mi> <mo> + </mo> <msqrt> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> </mfrac> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msqrt> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mtext> </mtext> <mo> + </mo> <msqrt> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mi> tan </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mtext> </mtext> <mo> + </mo> <msqrt> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mi> tan </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mo> - </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mtext> </mtext> <mo> + </mo> <msqrt> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mi> tan </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> + </mo> <msqrt> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mi> tan </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mtext> </mtext> <mo> + </mo> <msqrt> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mi> tan </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mfrac> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mfrac> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mtext> </mtext> <mo> + </mo> <msqrt> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mi> tan </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <msqrt> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> c </mi> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> </mrow> </mrow> <mtext> </mtext> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mi> tan </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mtext> </mtext> <mo> - </mo> <msqrt> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> d </mi> <mo> ⁢ </mo> <msqrt> <mrow> <mo> - </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> c </mi> <mo> + </mo> <msqrt> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> d </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> d </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> a </mi> <mo> - </mo> <mi> c </mi> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> <mtext> </mtext> </mrow> </mrow> </mfrac> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mi> c </mi> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> d </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> d </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <cot /> <apply> <times /> <ci> d </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> a </ci> <apply> <power /> <apply> <cos /> <apply> <times /> <ci> d </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <ci> b </ci> <apply> <sin /> <apply> <times /> <ci> d </ci> <ci> z </ci> </apply> </apply> <apply> <cos /> <apply> <times /> <ci> d </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <ci> c </ci> <apply> <power /> <apply> <sin /> <apply> <times /> <ci> d </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <ci> EllipticF </ci> <apply> <arcsin /> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <imaginaryi /> <apply> <tan /> <apply> <times /> <ci> d </ci> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> c </ci> </apply> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <imaginaryi /> <apply> <tan /> <apply> <times /> <ci> d </ci> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> c </ci> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> EllipticPi </ci> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> c </ci> </apply> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <arcsin /> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <imaginaryi /> <apply> <tan /> <apply> <times /> <ci> d </ci> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> c </ci> </apply> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <imaginaryi /> <apply> <tan /> <apply> <times /> <ci> d </ci> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> c </ci> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <cos /> <apply> <times /> <ci> d </ci> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <sin /> <apply> <times /> <ci> d </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <imaginaryi /> <apply> <tan /> <apply> <times /> <ci> d </ci> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> c </ci> </apply> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <imaginaryi /> <apply> <tan /> <apply> <times /> <ci> d </ci> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <imaginaryi /> <apply> <tan /> <apply> <times /> <ci> d </ci> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> c </ci> <apply> <tan /> <apply> <times /> <ci> d </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> c </ci> </apply> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <imaginaryi /> <apply> <tan /> <apply> <times /> <ci> d </ci> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> c </ci> </apply> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <imaginaryi /> <apply> <tan /> <apply> <times /> <ci> d </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <imaginaryi /> <apply> <tan /> <apply> <times /> <ci> d </ci> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <ci> d </ci> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> c </ci> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <plus /> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> d </ci> <ci> z </ci> </apply> </apply> <apply> <times /> <imaginaryi /> <apply> <sin /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> d </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> c </ci> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> d </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <ci> b </ci> <apply> <sin /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> d </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|

|

|

|

|

| 
| 
| 
| 
| | 
| 
| 
| 
| 
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List["Cot", "[", RowBox[List["d_", " ", "z_"]], "]"]], SqrtBox[RowBox[List[RowBox[List["a_", " ", SuperscriptBox[RowBox[List["Cos", "[", RowBox[List["d_", " ", "z_"]], "]"]], "2"]]], "+", RowBox[List["b_", " ", RowBox[List["Cos", "[", RowBox[List["d_", " ", "z_"]], "]"]], " ", RowBox[List["Sin", "[", RowBox[List["d_", " ", "z_"]], "]"]]]], "+", RowBox[List["c_", " ", SuperscriptBox[RowBox[List["Sin", "[", RowBox[List["d_", " ", "z_"]], "]"]], "2"]]]]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List["-", FractionBox[RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]], "+", RowBox[List["2", " ", "c"]], "-", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["4", " ", "a", " ", "c"]]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["EllipticF", "[", RowBox[List[RowBox[List["ArcSin", "[", SqrtBox[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", RowBox[List["2", " ", "c"]], "+", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["4", " ", "a", " ", "c"]]]]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["Tan", "[", RowBox[List["d", " ", "z"]], "]"]]]]]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "-", RowBox[List["2", " ", "c"]], "+", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["4", " ", "a", " ", "c"]]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["Tan", "[", RowBox[List["d", " ", "z"]], "]"]]]]]], ")"]]]]]], "]"]], ",", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["-", "a"]], "-", "c", "+", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["4", " ", "a", " ", "c"]]]]]]], RowBox[List["a", "+", "c", "+", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["4", " ", "a", " ", "c"]]]]]]]]]]]], "]"]], "-", RowBox[List["2", " ", RowBox[List["EllipticPi", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "-", RowBox[List["2", " ", "c"]], "+", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["4", " ", "a", " ", "c"]]]]]]], RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]], "-", RowBox[List["2", " ", "c"]], "-", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["4", " ", "a", " ", "c"]]]]]]]], ",", RowBox[List["ArcSin", "[", SqrtBox[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", RowBox[List["2", " ", "c"]], "+", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["4", " ", "a", " ", "c"]]]]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["Tan", "[", RowBox[List["d", " ", "z"]], "]"]]]]]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "-", RowBox[List["2", " ", "c"]], "+", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["4", " ", "a", " ", "c"]]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["Tan", "[", RowBox[List["d", " ", "z"]], "]"]]]]]], ")"]]]]]], "]"]], ",", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["-", "a"]], "-", "c", "+", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["4", " ", "a", " ", "c"]]]]]]], RowBox[List["a", "+", "c", "+", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["4", " ", "a", " ", "c"]]]]]]]]]]]], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["Cos", "[", RowBox[List["d", " ", "z"]], "]"]], "-", RowBox[List["\[ImaginaryI]", " ", RowBox[List["Sin", "[", RowBox[List["d", " ", "z"]], "]"]]]]]], ")"]], "2"], " ", SqrtBox[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", RowBox[List["2", " ", "c"]], "+", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["4", " ", "a", " ", "c"]]]]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["Tan", "[", RowBox[List["d", " ", "z"]], "]"]]]]]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "-", RowBox[List["2", " ", "c"]], "+", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["4", " ", "a", " ", "c"]]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["Tan", "[", RowBox[List["d", " ", "z"]], "]"]]]]]], ")"]]]]]], " ", SqrtBox[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", RowBox[List["2", " ", "c"]], "+", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["4", " ", "a", " ", "c"]]]]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["Tan", "[", RowBox[List["d", " ", "z"]], "]"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["4", " ", "a", " ", "c"]]]]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", RowBox[List["Tan", "[", RowBox[List["d", " ", "z"]], "]"]]]]]], ")"]]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "-", RowBox[List["2", " ", "c"]], "+", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["4", " ", "a", " ", "c"]]]]]]], ")"]], "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["Tan", "[", RowBox[List["d", " ", "z"]], "]"]]]]]], ")"]], "2"]]]]]]], " ", SqrtBox[FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "-", RowBox[List["\[ImaginaryI]", " ", "b"]], "+", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["4", " ", "a", " ", "c"]]]]], "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "-", RowBox[List["2", " ", "c"]], "+", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["4", " ", "a", " ", "c"]]]]]]], ")"]], " ", RowBox[List["Tan", "[", RowBox[List["d", " ", "z"]], "]"]]]]]], RowBox[List[RowBox[List["(", RowBox[List["a", "+", RowBox[List["\[ImaginaryI]", " ", "b"]], "-", "c"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["Tan", "[", RowBox[List["d", " ", "z"]], "]"]]]]]], ")"]]]]]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]], "-", RowBox[List["2", " ", "c"]], "-", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["4", " ", "a", " ", "c"]]]]]]], ")"]], " ", "d", " ", SqrtBox[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["a", "+", "c", "+", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["4", " ", "a", " ", "c"]]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Cos", "[", RowBox[List["2", " ", "d", " ", "z"]], "]"]], "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["Sin", "[", RowBox[List["2", " ", "d", " ", "z"]], "]"]]]]]], ")"]]]], RowBox[List["a", "+", RowBox[List["\[ImaginaryI]", " ", "b"]], "-", "c"]]]]]], " ", SqrtBox[RowBox[List["a", "+", "c", "+", RowBox[List[RowBox[List["(", RowBox[List["a", "-", "c"]], ")"]], " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "d", " ", "z"]], "]"]]]], "+", RowBox[List["b", " ", RowBox[List["Sin", "[", RowBox[List["2", " ", "d", " ", "z"]], "]"]]]]]]]]]]]]]]]] |
| 
| 
| 
| 
|
|

|

|

|

|
Date Added to functions.wolfram.com (modification date)
|
|

|

|

|

|

|
|

|

|

|

|
|
 |
|
|