  
| 
 | 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   http://functions.wolfram.com/01.09.21.0150.01
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
 | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
    Integrate[z^n E^(p z) Cos[b z]^m Cot[c z], z] == 
  ((-I) Binomial[m, m/2] n! (1 - Mod[m, 2]) 
     (E^(p z) Sum[(1/(-j + n)!) ((-1)^j p^(-1 - j) z^(-j + n) 
          HypergeometricPFQ[{Subscript[a, 1], \[Ellipsis], 
            Subscript[a, 1 + j], 1}, {1 + Subscript[a, 1], \[Ellipsis], 
            1 + Subscript[a, 1 + j]}, E^(2 I c z)]), {j, 0, n}] + 
      E^((2 I c + p) z) Sum[(1/(-j + n)!) ((-1)^j (2 I c + p)^(-1 - j) 
          z^(-j + n) HypergeometricPFQ[{Subscript[b, 1], \[Ellipsis], 
            Subscript[b, 1 + j], 1}, {1 + Subscript[b, 1], \[Ellipsis], 
            1 + Subscript[b, 1 + j]}, E^(2 I c z)]), {j, 0, n}]))/2^m - 
   (I n! Sum[Binomial[m, k] (E^((p - I b (-2 k + m)) z) 
         Sum[(1/(-j + n)!) ((-1)^j (p - I b (-2 k + m))^(-1 - j) z^(-j + n) 
            HypergeometricPFQ[{Subscript[c, 1], \[Ellipsis], Subscript[c, 1 + 
                j], 1}, {1 + Subscript[c, 1], \[Ellipsis], 1 + Subscript[c, 
                1 + j]}, E^(2 I c z)]), {j, 0, n}] + 
        E^((2 I c + p - I b (-2 k + m)) z) Sum[(1/(-j + n)!) 
           ((-1)^j (2 I c + p - I b (-2 k + m))^(-1 - j) z^(-j + n) 
            HypergeometricPFQ[{Subscript[d, 1], \[Ellipsis], Subscript[d, 1 + 
                j], 1}, {1 + Subscript[d, 1], \[Ellipsis], 1 + Subscript[d, 
                1 + j]}, E^(2 I c z)]), {j, 0, n}] + 
        E^((p + I b (-2 k + m)) z) Sum[(1/(-j + n)!) 
           ((-1)^j (p + I b (-2 k + m))^(-1 - j) z^(-j + n) 
            HypergeometricPFQ[{Subscript[e, 1], \[Ellipsis], Subscript[e, 1 + 
                j], 1}, {1 + Subscript[e, 1], \[Ellipsis], 1 + Subscript[e, 
                1 + j]}, E^(2 I c z)]), {j, 0, n}] + 
        E^((2 I c + p + I b (-2 k + m)) z) Sum[(1/(-j + n)!) 
           ((-1)^j (2 I c + p + I b (-2 k + m))^(-1 - j) z^(-j + n) 
            HypergeometricPFQ[{Subscript[f, 1], \[Ellipsis], Subscript[f, 1 + 
                j], 1}, {1 + Subscript[f, 1], \[Ellipsis], 1 + Subscript[f, 
                1 + j]}, E^(2 I c z)]), {j, 0, n}]), 
      {k, 0, Floor[(1/2) (-1 + m)]}])/2^m /; 
 Subscript[a, 1] == Subscript[a, 2] == \[Ellipsis] == Subscript[a, n + 1] == 
   -((I p)/(2 c)) && Subscript[b, 1] == Subscript[b, 2] == \[Ellipsis] == 
   Subscript[b, n + 1] == ((-I) p + 2 c)/(2 c) && 
  Subscript[c, 1] == Subscript[c, 2] == \[Ellipsis] == Subscript[c, n + 1] == 
   ((-I) p - b (-2 k + m))/(2 c) && Subscript[d, 1] == Subscript[d, 2] == 
   \[Ellipsis] == Subscript[d, n + 1] == ((-I) p - b (-2 k + m) + 2 c)/
    (2 c) && Subscript[e, 1] == Subscript[e, 2] == \[Ellipsis] == 
   Subscript[e, n + 1] == ((-I) p + b (-2 k + m))/(2 c) && 
  Subscript[f, 1] == Subscript[f, 2] == \[Ellipsis] == Subscript[f, n + 1] == 
   ((-I) p + b (-2 k + m) + 2 c)/(2 c) && Element[n, Integers] && n >= 0 && 
  Element[m, Integers] && m > 0 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["z", "n"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["p", " ", "z"]]], SuperscriptBox[RowBox[List["Cos", "[", RowBox[List["b", " ", "z"]], "]"]], "m"], RowBox[List["Cot", "[", RowBox[List["c", " ", "z"]], "]"]], " ", RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", SuperscriptBox["2", RowBox[List["-", "m"]]], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", FractionBox["m", "2"]]], "]"]], " ", RowBox[List["n", "!"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["m", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["p", " ", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], RowBox[List[FractionBox["1", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]], RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox["p", RowBox[List[RowBox[List["-", "1"]], "-", "j"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["a", RowBox[List["1", "+", "j"]]], ",", "1"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["a", "1"]]], ",", "\[Ellipsis]", ",", RowBox[List["1", "+", SubscriptBox["a", RowBox[List["1", "+", "j"]]]]]]], "}"]], ",", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "z"]]]]], "]"]]]], ")"]]]]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[ImaginaryI]", " ", "c"]], "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], RowBox[List[FractionBox["1", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]], RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[ImaginaryI]", " ", "c"]], "+", "p"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["b", RowBox[List["1", "+", "j"]]], ",", "1"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["b", "1"]]], ",", "\[Ellipsis]", ",", RowBox[List["1", "+", SubscriptBox["b", RowBox[List["1", "+", "j"]]]]]]], "}"]], ",", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "z"]]]]], "]"]]]], ")"]]]]]]]]]], ")"]]]], "-", RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["2", RowBox[List["-", "m"]]], " ", RowBox[List["n", "!"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]]]], "]"]]], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["m", ",", "k"]], "]"]], " ", RowBox[List["(", " ", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["p", "-", RowBox[List["\[ImaginaryI]", " ", "b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]]]], ")"]], " ", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], RowBox[List[FractionBox["1", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]], RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["p", "-", RowBox[List["\[ImaginaryI]", " ", "b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["c", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["c", RowBox[List["1", "+", "j"]]], ",", "1"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["c", "1"]]], ",", "\[Ellipsis]", ",", RowBox[List["1", "+", SubscriptBox["c", RowBox[List["1", "+", "j"]]]]]]], "}"]], ",", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "z"]]]]], "]"]]]], ")"]]]]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[ImaginaryI]", " ", "c"]], "+", "p", "-", RowBox[List["\[ImaginaryI]", " ", "b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]]]], ")"]], " ", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], RowBox[List[FractionBox["1", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]], RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[ImaginaryI]", " ", "c"]], "+", "p", "-", RowBox[List["\[ImaginaryI]", " ", "b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["d", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["d", RowBox[List["1", "+", "j"]]], ",", "1"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["d", "1"]]], ",", "\[Ellipsis]", ",", RowBox[List["1", "+", SubscriptBox["d", RowBox[List["1", "+", "j"]]]]]]], "}"]], ",", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "z"]]]]], "]"]]]], ")"]]]]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["p", "+", RowBox[List["\[ImaginaryI]", " ", "b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]]]], ")"]], " ", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], RowBox[List[FractionBox["1", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]], RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["\[ImaginaryI]", " ", "b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["e", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["e", RowBox[List["1", "+", "j"]]], ",", "1"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["e", "1"]]], ",", "\[Ellipsis]", ",", RowBox[List["1", "+", SubscriptBox["e", RowBox[List["1", "+", "j"]]]]]]], "}"]], ",", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "z"]]]]], "]"]]]], ")"]]]]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[ImaginaryI]", " ", "c"]], "+", "p", "+", RowBox[List["\[ImaginaryI]", " ", "b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]]]], ")"]], " ", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], RowBox[List[FractionBox["1", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]], RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[ImaginaryI]", " ", "c"]], "+", "p", "+", RowBox[List["\[ImaginaryI]", " ", "b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["f", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["f", RowBox[List["1", "+", "j"]]], ",", "1"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["f", "1"]]], ",", "\[Ellipsis]", ",", RowBox[List["1", "+", SubscriptBox["f", RowBox[List["1", "+", "j"]]]]]]], "}"]], ",", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "z"]]]]], "]"]]]], ")"]]]]]]]]]], ")"]]]]]]]]]]]], "/;", RowBox[List[RowBox[List[SubscriptBox["a", "1"], "\[Equal]", SubscriptBox["a", "2"], "\[Equal]", "\[Ellipsis]", "\[Equal]", SubscriptBox["a", RowBox[List["n", "+", "1"]]], "\[Equal]", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "p"]], RowBox[List["2", " ", "c"]]]]]]], "\[And]", RowBox[List[SubscriptBox["b", "1"], "\[Equal]", SubscriptBox["b", "2"], "\[Equal]", "\[Ellipsis]", "\[Equal]", SubscriptBox["b", RowBox[List["n", "+", "1"]]], "\[Equal]", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "p"]], "+", RowBox[List["2", " ", "c"]]]], RowBox[List["2", " ", "c"]]]]], "\[And]", RowBox[List[SubscriptBox["c", "1"], "\[Equal]", SubscriptBox["c", "2"], "\[Equal]", "\[Ellipsis]", "\[Equal]", SubscriptBox["c", RowBox[List["n", "+", "1"]]], "\[Equal]", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "p"]], "-", RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]]]], RowBox[List["2", " ", "c"]]]]], "\[And]", RowBox[List[SubscriptBox["d", "1"], "\[Equal]", SubscriptBox["d", "2"], "\[Equal]", "\[Ellipsis]", "\[Equal]", SubscriptBox["d", RowBox[List["n", "+", "1"]]], "\[Equal]", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "p"]], "-", RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List["2", " ", "c"]]]], RowBox[List["2", " ", "c"]]]]], "\[And]", RowBox[List[SubscriptBox["e", "1"], "\[Equal]", SubscriptBox["e", "2"], "\[Equal]", "\[Ellipsis]", "\[Equal]", SubscriptBox["e", RowBox[List["n", "+", "1"]]], "\[Equal]", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "p"]], "+", " ", RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]]]], RowBox[List["2", " ", "c"]]]]], "\[And]", RowBox[List[SubscriptBox["f", "1"], "\[Equal]", SubscriptBox["f", "2"], "\[Equal]", "\[Ellipsis]", "\[Equal]", SubscriptBox["f", RowBox[List["n", "+", "1"]]], "\[Equal]", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "p"]], "+", RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List["2", " ", "c"]]]], RowBox[List["2", " ", "c"]]]]], "\[And]", RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]], "\[And]", RowBox[List["m", "\[Element]", "Integers"]], "\[And]", RowBox[List["m", ">", "0"]]]]]]]] 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
 
  | 
   
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mrow>  <mo> ∫ </mo>  <mrow>  <msup>  <mi> z </mi>  <mi> n </mi>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mi> p </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> cos </mi>  <mi> m </mi>  </msup>  <mo> ( </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> cot </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ⅆ </mo>  <mi> z </mi>  </mrow>  </mrow>  </mrow>  <mo> ⩵ </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mi> ⅈ </mi>  </mrow>  <mo> ⁢ </mo>  <msup>  <mn> 2 </mn>  <mrow>  <mo> - </mo>  <mi> m </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mi> n </mi>  <mo> ! </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mrow>  <mo> ⌊ </mo>  <mfrac>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mn> 2 </mn>  </mfrac>  <mo> ⌋ </mo>  </mrow>  </munderover>  <mrow>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mi> m </mi>  </mtd>  </mtr>  <mtr>  <mtd>  <mi> k </mi>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["m", Identity]], List[TagBox["k", Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation>  </semantics>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mtext>   </mtext>  <mrow>  <mrow>  <msup>  <mi> ⅇ </mi>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> p </mi>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mi> n </mi>  </munderover>  <mrow>  <mfrac>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mi> j </mi>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> p </mi>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mrow>  <mo> - </mo>  <mi> j </mi>  </mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mi> j </mi>  </mrow>  </msup>  </mrow>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mi> j </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ! </mo>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mrow>  <mi> j </mi>  <mo> + </mo>  <mn> 2 </mn>  </mrow>  </msub>  <msub>  <mi> F </mi>  <mrow>  <mi> j </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mi> ⅈ </mi>  </mrow>  <mo> ⁢ </mo>  <mi> p </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> + </mo>  <mi> m </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <mfrac>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mi> ⅈ </mi>  </mrow>  <mo> ⁢ </mo>  <mi> p </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> + </mo>  <mi> m </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  <mo> , </mo>  <mn> 1 </mn>  </mrow>  <mo> ; </mo>  <mrow>  <mrow>  <mfrac>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mi> ⅈ </mi>  </mrow>  <mo> ⁢ </mo>  <mi> p </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> + </mo>  <mi> m </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <mrow>  <mfrac>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mi> ⅈ </mi>  </mrow>  <mo> ⁢ </mo>  <mi> p </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> + </mo>  <mi> m </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </mrow>  <mo> ; </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox[RowBox[List["j", "+", "2"]], TraditionalForm]], SubscriptBox["F", FormBox[RowBox[List["j", "+", "1"]], TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "p"]], "-", RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]]]], RowBox[List["2", " ", "c"]]], HypergeometricPFQ], ",", TagBox["\[Ellipsis]", HypergeometricPFQ], ",", TagBox[FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "p"]], "-", RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]]]], RowBox[List["2", " ", "c"]]], HypergeometricPFQ], ",", TagBox["1", HypergeometricPFQ]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List[FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "p"]], "-", RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]]]], RowBox[List["2", " ", "c"]]], "+", "1"]], HypergeometricPFQ], ",", TagBox["\[Ellipsis]", HypergeometricPFQ], ",", TagBox[RowBox[List[FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "p"]], "-", RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]]]], RowBox[List["2", " ", "c"]]], "+", "1"]], HypergeometricPFQ]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], ";", TagBox[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "z"]]], HypergeometricPFQ]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]] </annotation>  </semantics>  </mrow>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <msup>  <mi> ⅇ </mi>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  <mo> + </mo>  <mi> p </mi>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mi> n </mi>  </munderover>  <mrow>  <mfrac>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mi> j </mi>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  <mo> + </mo>  <mi> p </mi>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mrow>  <mo> - </mo>  <mi> j </mi>  </mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mi> j </mi>  </mrow>  </msup>  </mrow>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mi> j </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ! </mo>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mrow>  <mi> j </mi>  <mo> + </mo>  <mn> 2 </mn>  </mrow>  </msub>  <msub>  <mi> F </mi>  <mrow>  <mi> j </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mi> ⅈ </mi>  </mrow>  <mo> ⁢ </mo>  <mi> p </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> + </mo>  <mi> m </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <mfrac>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mi> ⅈ </mi>  </mrow>  <mo> ⁢ </mo>  <mi> p </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> + </mo>  <mi> m </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  <mo> , </mo>  <mn> 1 </mn>  </mrow>  <mo> ; </mo>  <mrow>  <mrow>  <mfrac>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mi> ⅈ </mi>  </mrow>  <mo> ⁢ </mo>  <mi> p </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> + </mo>  <mi> m </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <mrow>  <mfrac>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mi> ⅈ </mi>  </mrow>  <mo> ⁢ </mo>  <mi> p </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> + </mo>  <mi> m </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </mrow>  <mo> ; </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox[RowBox[List["j", "+", "2"]], TraditionalForm]], SubscriptBox["F", FormBox[RowBox[List["j", "+", "1"]], TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "p"]], "-", RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List["2", " ", "c"]]]], RowBox[List["2", " ", "c"]]], HypergeometricPFQ], ",", TagBox["\[Ellipsis]", HypergeometricPFQ], ",", TagBox[FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "p"]], "-", RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List["2", " ", "c"]]]], RowBox[List["2", " ", "c"]]], HypergeometricPFQ], ",", TagBox["1", HypergeometricPFQ]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List[FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "p"]], "-", RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List["2", " ", "c"]]]], RowBox[List["2", " ", "c"]]], "+", "1"]], HypergeometricPFQ], ",", TagBox["\[Ellipsis]", HypergeometricPFQ], ",", TagBox[RowBox[List[FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "p"]], "-", RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List["2", " ", "c"]]]], RowBox[List["2", " ", "c"]]], "+", "1"]], HypergeometricPFQ]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], ";", TagBox[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "z"]]], HypergeometricPFQ]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]] </annotation>  </semantics>  </mrow>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <msup>  <mi> ⅇ </mi>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> p </mi>  <mo> + </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mi> n </mi>  </munderover>  <mrow>  <mfrac>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mi> j </mi>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> p </mi>  <mo> + </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mrow>  <mo> - </mo>  <mi> j </mi>  </mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mi> j </mi>  </mrow>  </msup>  </mrow>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mi> j </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ! </mo>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mrow>  <mi> j </mi>  <mo> + </mo>  <mn> 2 </mn>  </mrow>  </msub>  <msub>  <mi> F </mi>  <mrow>  <mi> j </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mi> ⅈ </mi>  </mrow>  <mo> ⁢ </mo>  <mi> p </mi>  </mrow>  <mo> + </mo>  <mtext>   </mtext>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> + </mo>  <mi> m </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <mfrac>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mi> ⅈ </mi>  </mrow>  <mo> ⁢ </mo>  <mi> p </mi>  </mrow>  <mo> + </mo>  <mtext>   </mtext>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> + </mo>  <mi> m </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  <mo> , </mo>  <mn> 1 </mn>  </mrow>  <mo> ; </mo>  <mrow>  <mrow>  <mfrac>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mi> ⅈ </mi>  </mrow>  <mo> ⁢ </mo>  <mi> p </mi>  </mrow>  <mo> + </mo>  <mtext>   </mtext>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> + </mo>  <mi> m </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <mrow>  <mfrac>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mi> ⅈ </mi>  </mrow>  <mo> ⁢ </mo>  <mi> p </mi>  </mrow>  <mo> + </mo>  <mtext>   </mtext>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> + </mo>  <mi> m </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </mrow>  <mo> ; </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox[RowBox[List["j", "+", "2"]], TraditionalForm]], SubscriptBox["F", FormBox[RowBox[List["j", "+", "1"]], TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "p"]], "+", " ", RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]]]], RowBox[List["2", " ", "c"]]], HypergeometricPFQ], ",", TagBox["\[Ellipsis]", HypergeometricPFQ], ",", TagBox[FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "p"]], "+", " ", RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]]]], RowBox[List["2", " ", "c"]]], HypergeometricPFQ], ",", TagBox["1", HypergeometricPFQ]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List[FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "p"]], "+", " ", RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]]]], RowBox[List["2", " ", "c"]]], "+", "1"]], HypergeometricPFQ], ",", TagBox["\[Ellipsis]", HypergeometricPFQ], ",", TagBox[RowBox[List[FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "p"]], "+", " ", RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]]]], RowBox[List["2", " ", "c"]]], "+", "1"]], HypergeometricPFQ]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], ";", TagBox[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "z"]]], HypergeometricPFQ]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]] </annotation>  </semantics>  </mrow>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <msup>  <mi> ⅇ </mi>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  <mo> + </mo>  <mi> p </mi>  <mo> + </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mi> n </mi>  </munderover>  <mrow>  <mfrac>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mi> j </mi>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  <mo> + </mo>  <mi> p </mi>  <mo> + </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mrow>  <mo> - </mo>  <mi> j </mi>  </mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mi> j </mi>  </mrow>  </msup>  </mrow>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mi> j </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ! </mo>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mrow>  <mi> j </mi>  <mo> + </mo>  <mn> 2 </mn>  </mrow>  </msub>  <msub>  <mi> F </mi>  <mrow>  <mi> j </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mi> ⅈ </mi>  </mrow>  <mo> ⁢ </mo>  <mi> p </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> + </mo>  <mi> m </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <mfrac>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mi> ⅈ </mi>  </mrow>  <mo> ⁢ </mo>  <mi> p </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> + </mo>  <mi> m </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  <mo> , </mo>  <mn> 1 </mn>  </mrow>  <mo> ; </mo>  <mrow>  <mrow>  <mfrac>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mi> ⅈ </mi>  </mrow>  <mo> ⁢ </mo>  <mi> p </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> + </mo>  <mi> m </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <mrow>  <mfrac>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mi> ⅈ </mi>  </mrow>  <mo> ⁢ </mo>  <mi> p </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> + </mo>  <mi> m </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </mrow>  <mo> ; </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox[RowBox[List["j", "+", "2"]], TraditionalForm]], SubscriptBox["F", FormBox[RowBox[List["j", "+", "1"]], TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "p"]], "+", RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List["2", " ", "c"]]]], RowBox[List["2", " ", "c"]]], HypergeometricPFQ], ",", TagBox["\[Ellipsis]", HypergeometricPFQ], ",", TagBox[FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "p"]], "+", RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List["2", " ", "c"]]]], RowBox[List["2", " ", "c"]]], HypergeometricPFQ], ",", TagBox["1", HypergeometricPFQ]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List[FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "p"]], "+", RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List["2", " ", "c"]]]], RowBox[List["2", " ", "c"]]], "+", "1"]], HypergeometricPFQ], ",", TagBox["\[Ellipsis]", HypergeometricPFQ], ",", TagBox[RowBox[List[FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "p"]], "+", RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List["2", " ", "c"]]]], RowBox[List["2", " ", "c"]]], "+", "1"]], HypergeometricPFQ]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], ";", TagBox[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "z"]]], HypergeometricPFQ]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]] </annotation>  </semantics>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <msup>  <mn> 2 </mn>  <mrow>  <mo> - </mo>  <mi> m </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mi> m </mi>  </mtd>  </mtr>  <mtr>  <mtd>  <mfrac>  <mi> m </mi>  <mn> 2 </mn>  </mfrac>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["m", Identity]], List[TagBox[FractionBox["m", "2"], Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation>  </semantics>  <mo> ⁢ </mo>  <mrow>  <mi> n </mi>  <mo> ! </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <semantics>  <mrow>  <mi> m </mi>  <mo> ⁢ </mo>  <mi> mod </mi>  <mo> ⁢ </mo>  <mn> 2 </mn>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <rem />  <ci> $CellContext`m </ci>  <cn type='integer'> 2 </cn>  </apply>  </annotation-xml>  </semantics>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <msup>  <mi> ⅇ </mi>  <mrow>  <mi> p </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mi> n </mi>  </munderover>  <mrow>  <mfrac>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mi> j </mi>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> p </mi>  <mrow>  <mrow>  <mo> - </mo>  <mi> j </mi>  </mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mi> j </mi>  </mrow>  </msup>  </mrow>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mi> j </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ! </mo>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mrow>  <mi> j </mi>  <mo> + </mo>  <mn> 2 </mn>  </mrow>  </msub>  <msub>  <mi> F </mi>  <mrow>  <mi> j </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mfrac>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> p </mi>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  </mrow>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <mrow>  <mo> - </mo>  <mfrac>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> p </mi>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  </mrow>  <mo> , </mo>  <mn> 1 </mn>  </mrow>  <mo> ; </mo>  <mrow>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mfrac>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> p </mi>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  </mrow>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mfrac>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> p </mi>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  </mrow>  </mrow>  <mo> ; </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox[RowBox[List["j", "+", "2"]], TraditionalForm]], SubscriptBox["F", FormBox[RowBox[List["j", "+", "1"]], TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "p"]], RowBox[List["2", " ", "c"]]]]], HypergeometricPFQ], ",", TagBox["\[Ellipsis]", HypergeometricPFQ], ",", TagBox[RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "p"]], RowBox[List["2", " ", "c"]]]]], HypergeometricPFQ], ",", TagBox["1", HypergeometricPFQ]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List["1", "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "p"]], RowBox[List["2", " ", "c"]]]]], HypergeometricPFQ], ",", TagBox["\[Ellipsis]", HypergeometricPFQ], ",", TagBox[RowBox[List["1", "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "p"]], RowBox[List["2", " ", "c"]]]]], HypergeometricPFQ]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], ";", TagBox[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "z"]]], HypergeometricPFQ]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]] </annotation>  </semantics>  </mrow>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <msup>  <mi> ⅇ </mi>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  <mo> + </mo>  <mi> p </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mi> n </mi>  </munderover>  <mrow>  <mfrac>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mi> j </mi>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  <mo> + </mo>  <mi> p </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mrow>  <mo> - </mo>  <mi> j </mi>  </mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mi> j </mi>  </mrow>  </msup>  </mrow>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mi> j </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ! </mo>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mrow>  <mi> j </mi>  <mo> + </mo>  <mn> 2 </mn>  </mrow>  </msub>  <msub>  <mi> F </mi>  <mrow>  <mi> j </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mfrac>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> p </mi>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  </mrow>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mfrac>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> p </mi>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  </mrow>  <mo> , </mo>  <mn> 1 </mn>  </mrow>  <mo> ; </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> - </mo>  <mfrac>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> p </mi>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  </mrow>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <mrow>  <mn> 2 </mn>  <mo> - </mo>  <mfrac>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> p </mi>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  </mrow>  </mrow>  <mo> ; </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox[RowBox[List["j", "+", "2"]], TraditionalForm]], SubscriptBox["F", FormBox[RowBox[List["j", "+", "1"]], TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["1", "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "p"]], RowBox[List["2", " ", "c"]]]]], HypergeometricPFQ], ",", TagBox["\[Ellipsis]", HypergeometricPFQ], ",", TagBox[RowBox[List["1", "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "p"]], RowBox[List["2", " ", "c"]]]]], HypergeometricPFQ], ",", TagBox["1", HypergeometricPFQ]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List["2", "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "p"]], RowBox[List["2", " ", "c"]]]]], HypergeometricPFQ], ",", TagBox["\[Ellipsis]", HypergeometricPFQ], ",", TagBox[RowBox[List["2", "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "p"]], RowBox[List["2", " ", "c"]]]]], HypergeometricPFQ]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], ";", TagBox[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "z"]]], HypergeometricPFQ]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]] </annotation>  </semantics>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> /; </mo>  <mrow>  <mrow>  <mi> n </mi>  <mo> ∈ </mo>  <mi> ℕ </mi>  </mrow>  <mo> ∧ </mo>  <mrow>  <mi> m </mi>  <mo> ∈ </mo>  <msup>  <mi> ℕ </mi>  <mo> + </mo>  </msup>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <ci> Condition </ci>  <apply>  <eq />  <apply>  <int />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <times />  <apply>  <power />  <ci> z </ci>  <ci> n </ci>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <times />  <ci> p </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <cos />  <apply>  <times />  <ci> b </ci>  <ci> z </ci>  </apply>  </apply>  <ci> m </ci>  </apply>  <apply>  <cot />  <apply>  <times />  <ci> c </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <imaginaryi />  </apply>  <apply>  <power />  <cn type='integer'> 2 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> m </ci>  </apply>  </apply>  <apply>  <factorial />  <ci> n </ci>  </apply>  <apply>  <sum />  <bvar>  <ci> k </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <apply>  <floor />  <apply>  <times />  <apply>  <plus />  <ci> m </ci>  <cn type='integer'> -1 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </uplimit>  <apply>  <times />  <apply>  <ci> Binomial </ci>  <ci> m </ci>  <ci> k </ci>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <exponentiale />  <apply>  <times />  <apply>  <plus />  <ci> p </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> b </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> k </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <ci> z </ci>  </apply>  </apply>  <apply>  <sum />  <bvar>  <ci> j </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <ci> n </ci>  </uplimit>  <apply>  <times />  <apply>  <times />  <apply>  <power />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> p </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> b </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> k </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <apply>  <plus />  <ci> n </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <factorial />  <apply>  <plus />  <ci> n </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <ci> HypergeometricPFQ </ci>  <list>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <imaginaryi />  </apply>  <ci> p </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> b </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -2 </cn>  <ci> k </ci>  </apply>  <ci> m </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <ci> … </ci>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <imaginaryi />  </apply>  <ci> p </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> b </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -2 </cn>  <ci> k </ci>  </apply>  <ci> m </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </list>  <list>  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <imaginaryi />  </apply>  <ci> p </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> b </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -2 </cn>  <ci> k </ci>  </apply>  <ci> m </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <ci> … </ci>  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <imaginaryi />  </apply>  <ci> p </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> b </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -2 </cn>  <ci> k </ci>  </apply>  <ci> m </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  </list>  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> c </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <exponentiale />  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> c </ci>  </apply>  <ci> p </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> b </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> k </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <ci> z </ci>  </apply>  </apply>  <apply>  <sum />  <bvar>  <ci> j </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <ci> n </ci>  </uplimit>  <apply>  <times />  <apply>  <times />  <apply>  <power />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> c </ci>  </apply>  <ci> p </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> b </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> k </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <apply>  <plus />  <ci> n </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <factorial />  <apply>  <plus />  <ci> n </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <ci> HypergeometricPFQ </ci>  <list>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <imaginaryi />  </apply>  <ci> p </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> b </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -2 </cn>  <ci> k </ci>  </apply>  <ci> m </ci>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <ci> … </ci>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <imaginaryi />  </apply>  <ci> p </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> b </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -2 </cn>  <ci> k </ci>  </apply>  <ci> m </ci>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </list>  <list>  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <imaginaryi />  </apply>  <ci> p </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> b </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -2 </cn>  <ci> k </ci>  </apply>  <ci> m </ci>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <ci> … </ci>  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <imaginaryi />  </apply>  <ci> p </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> b </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -2 </cn>  <ci> k </ci>  </apply>  <ci> m </ci>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  </list>  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> c </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <exponentiale />  <apply>  <times />  <apply>  <plus />  <ci> p </ci>  <apply>  <times />  <ci> b </ci>  <imaginaryi />  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> k </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <ci> z </ci>  </apply>  </apply>  <apply>  <sum />  <bvar>  <ci> j </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <ci> n </ci>  </uplimit>  <apply>  <times />  <apply>  <times />  <apply>  <power />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> p </ci>  <apply>  <times />  <ci> b </ci>  <imaginaryi />  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> k </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <apply>  <plus />  <ci> n </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <factorial />  <apply>  <plus />  <ci> n </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <ci> HypergeometricPFQ </ci>  <list>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <imaginaryi />  </apply>  <ci> p </ci>  </apply>  <apply>  <times />  <ci> b </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -2 </cn>  <ci> k </ci>  </apply>  <ci> m </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <ci> … </ci>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <imaginaryi />  </apply>  <ci> p </ci>  </apply>  <apply>  <times />  <ci> b </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -2 </cn>  <ci> k </ci>  </apply>  <ci> m </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </list>  <list>  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <imaginaryi />  </apply>  <ci> p </ci>  </apply>  <apply>  <times />  <ci> b </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -2 </cn>  <ci> k </ci>  </apply>  <ci> m </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <ci> … </ci>  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <imaginaryi />  </apply>  <ci> p </ci>  </apply>  <apply>  <times />  <ci> b </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -2 </cn>  <ci> k </ci>  </apply>  <ci> m </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  </list>  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> c </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <exponentiale />  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> c </ci>  </apply>  <ci> p </ci>  <apply>  <times />  <ci> b </ci>  <imaginaryi />  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> k </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <ci> z </ci>  </apply>  </apply>  <apply>  <sum />  <bvar>  <ci> j </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <ci> n </ci>  </uplimit>  <apply>  <times />  <apply>  <times />  <apply>  <power />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> c </ci>  </apply>  <ci> p </ci>  <apply>  <times />  <ci> b </ci>  <imaginaryi />  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> k </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <apply>  <plus />  <ci> n </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <factorial />  <apply>  <plus />  <ci> n </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <ci> HypergeometricPFQ </ci>  <list>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <imaginaryi />  </apply>  <ci> p </ci>  </apply>  <apply>  <times />  <ci> b </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -2 </cn>  <ci> k </ci>  </apply>  <ci> m </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <ci> … </ci>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <imaginaryi />  </apply>  <ci> p </ci>  </apply>  <apply>  <times />  <ci> b </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -2 </cn>  <ci> k </ci>  </apply>  <ci> m </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </list>  <list>  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <imaginaryi />  </apply>  <ci> p </ci>  </apply>  <apply>  <times />  <ci> b </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -2 </cn>  <ci> k </ci>  </apply>  <ci> m </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <ci> … </ci>  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <imaginaryi />  </apply>  <ci> p </ci>  </apply>  <apply>  <times />  <ci> b </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -2 </cn>  <ci> k </ci>  </apply>  <ci> m </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  </list>  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> c </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <apply>  <power />  <cn type='integer'> 2 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> m </ci>  </apply>  </apply>  <apply>  <ci> Binomial </ci>  <ci> m </ci>  <apply>  <times />  <ci> m </ci>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <factorial />  <ci> n </ci>  </apply>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <rem />  <ci> $CellContext`m </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <exponentiale />  <apply>  <times />  <ci> p </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <sum />  <bvar>  <ci> j </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <ci> n </ci>  </uplimit>  <apply>  <times />  <apply>  <times />  <apply>  <power />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  <apply>  <power />  <ci> p </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <apply>  <plus />  <ci> n </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <factorial />  <apply>  <plus />  <ci> n </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <ci> HypergeometricPFQ </ci>  <list>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> p </ci>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <ci> … </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> p </ci>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </list>  <list>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> p </ci>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <ci> … </ci>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> p </ci>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </list>  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> c </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <exponentiale />  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> c </ci>  </apply>  <ci> p </ci>  </apply>  <ci> z </ci>  </apply>  </apply>  <apply>  <sum />  <bvar>  <ci> j </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <ci> n </ci>  </uplimit>  <apply>  <times />  <apply>  <times />  <apply>  <power />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> c </ci>  </apply>  <ci> p </ci>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <apply>  <plus />  <ci> n </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <factorial />  <apply>  <plus />  <ci> n </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <ci> HypergeometricPFQ </ci>  <list>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> p </ci>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <ci> … </ci>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> p </ci>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </list>  <list>  <apply>  <plus />  <cn type='integer'> 2 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> p </ci>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <ci> … </ci>  <apply>  <plus />  <cn type='integer'> 2 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> p </ci>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </list>  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> c </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <and />  <apply>  <in />  <ci> n </ci>  <ci> ℕ </ci>  </apply>  <apply>  <in />  <ci> m </ci>  <apply>  <ci> SuperPlus </ci>  <ci> ℕ </ci>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 
  |   
  |  
  |  
  |   
  |  |  
  |   
  |  
  |  
  |   
  | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["z_", "n_"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["p_", " ", "z_"]]], " ", SuperscriptBox[RowBox[List["Cos", "[", RowBox[List["b_", " ", "z_"]], "]"]], "m_"], " ", RowBox[List["Cot", "[", RowBox[List["c_", " ", "z_"]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", SuperscriptBox["2", RowBox[List["-", "m"]]], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", FractionBox["m", "2"]]], "]"]], " ", RowBox[List["n", "!"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["m", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["p", " ", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox["p", RowBox[List[RowBox[List["-", "1"]], "-", "j"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["Join", "[", RowBox[List[RowBox[List["Table", "[", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "p"]], RowBox[List["2", " ", "c"]]]]], ",", RowBox[List["{", RowBox[List["K$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], ",", RowBox[List["{", "1", "}"]]]], "]"]], ",", RowBox[List["Join", "[", RowBox[List["Table", "[", RowBox[List[RowBox[List["1", "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "p"]], RowBox[List["2", " ", "c"]]]]], ",", RowBox[List["{", RowBox[List["K$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], "]"]], ",", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "z"]]]]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[ImaginaryI]", " ", "c"]], "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[ImaginaryI]", " ", "c"]], "+", "p"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["Join", "[", RowBox[List[RowBox[List["Table", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["2", " ", "c"]], "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["{", RowBox[List["K$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], ",", RowBox[List["{", "1", "}"]]]], "]"]], ",", RowBox[List["Join", "[", RowBox[List["Table", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["2", " ", "c"]], "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], RowBox[List["2", " ", "c"]]]]], ",", RowBox[List["{", RowBox[List["K$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], "]"]], ",", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "z"]]]]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]]]]]]]], ")"]]]], "-", RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["2", RowBox[List["-", "m"]]], " ", RowBox[List["n", "!"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]]]], "]"]]], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["m", ",", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["p", "-", RowBox[List["\[ImaginaryI]", " ", "b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]]]], ")"]], " ", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["p", "-", RowBox[List["\[ImaginaryI]", " ", "b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["Join", "[", RowBox[List[RowBox[List["Table", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["{", RowBox[List["K$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], ",", RowBox[List["{", "1", "}"]]]], "]"]], ",", RowBox[List["Join", "[", RowBox[List["Table", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], RowBox[List["2", " ", "c"]]]]], ",", RowBox[List["{", RowBox[List["K$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], "]"]], ",", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "z"]]]]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[ImaginaryI]", " ", "c"]], "+", "p", "-", RowBox[List["\[ImaginaryI]", " ", "b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]]]], ")"]], " ", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[ImaginaryI]", " ", "c"]], "+", "p", "-", RowBox[List["\[ImaginaryI]", " ", "b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["Join", "[", RowBox[List[RowBox[List["Table", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["2", " ", "c"]], "-", RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["{", RowBox[List["K$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], ",", RowBox[List["{", "1", "}"]]]], "]"]], ",", RowBox[List["Join", "[", RowBox[List["Table", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["2", " ", "c"]], "-", RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], RowBox[List["2", " ", "c"]]]]], ",", RowBox[List["{", RowBox[List["K$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], "]"]], ",", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "z"]]]]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["p", "+", RowBox[List["\[ImaginaryI]", " ", "b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]]]], ")"]], " ", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["\[ImaginaryI]", " ", "b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["Join", "[", RowBox[List[RowBox[List["Table", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["{", RowBox[List["K$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], ",", RowBox[List["{", "1", "}"]]]], "]"]], ",", RowBox[List["Join", "[", RowBox[List["Table", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], RowBox[List["2", " ", "c"]]]]], ",", RowBox[List["{", RowBox[List["K$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], "]"]], ",", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "z"]]]]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[ImaginaryI]", " ", "c"]], "+", "p", "+", RowBox[List["\[ImaginaryI]", " ", "b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]]]], ")"]], " ", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[ImaginaryI]", " ", "c"]], "+", "p", "+", RowBox[List["\[ImaginaryI]", " ", "b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["Join", "[", RowBox[List[RowBox[List["Table", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["2", " ", "c"]], "+", RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["{", RowBox[List["K$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], ",", RowBox[List["{", "1", "}"]]]], "]"]], ",", RowBox[List["Join", "[", RowBox[List["Table", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["2", " ", "c"]], "+", RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], RowBox[List["2", " ", "c"]]]]], ",", RowBox[List["{", RowBox[List["K$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], "]"]], ",", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "z"]]]]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]]]]]]]], ")"]]]]]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]], "&&", RowBox[List["m", "\[Element]", "Integers"]], "&&", RowBox[List["m", ">", "0"]]]]]]]]]]  |  
  |  
  |   
  |  
  |  
  | 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Date Added to functions.wolfram.com (modification date)
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 | 
  | 
  
  
  
 |  
 
 |