Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Coth






Mathematica Notation

Traditional Notation









Elementary Functions > Coth[z] > Series representations > Generalized power series > Expansions at z==z0 > For the function itself





http://functions.wolfram.com/01.22.06.0023.01









  


  










Input Form





Coth[z] == Sum[(1/k!) (Coth[Subscript[z, 0]] KroneckerDelta[k] - Csch[Subscript[z, 0]]^2 KroneckerDelta[k - 1] - (-I)^k k Sum[(((-1)^(j + m) Binomial[k - 1, m])/(m + 1)) Sinh[Subscript[z, 0]]^(-2 m - 2) 2^(k - 2 m) Binomial[2 m, j] (m - j)^(k - 1) Sinh[(k I Pi)/2 + 2 (m - j) Subscript[z, 0]], {m, 0, k - 1}, {j, 0, m - 1}]) (z - Subscript[z, 0])^k, {k, 0, Infinity}]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["Coth", "[", "z", "]"]], "\[Equal]", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[FractionBox["1", RowBox[List["k", "!"]]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Coth", "[", SubscriptBox["z", "0"], "]"]], RowBox[List["KroneckerDelta", "[", "k", "]"]]]], "-", RowBox[List[SuperscriptBox[RowBox[List["Csch", "[", SubscriptBox["z", "0"], "]"]], "2"], RowBox[List["KroneckerDelta", "[", RowBox[List["k", "-", "1"]], "]"]]]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "\[ImaginaryI]"]], ")"]], "k"], " ", "k", " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["m", "=", "0"]], RowBox[List["k", "-", "1"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], RowBox[List["m", "-", "1"]]], RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["j", "+", "m"]]], " ", RowBox[List["Binomial", "[", RowBox[List[RowBox[List["k", "-", "1"]], ",", "m"]], "]"]]]], RowBox[List["m", "+", "1"]]], SuperscriptBox[RowBox[List["Sinh", "[", SubscriptBox["z", "0"], "]"]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], "m"]], "-", "2"]]], " ", SuperscriptBox["2", RowBox[List["k", "-", RowBox[List["2", " ", "m"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List[RowBox[List["2", " ", "m"]], ",", "j"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["m", "-", "j"]], ")"]], RowBox[List["k", "-", "1"]]], " ", RowBox[List["Sinh", "[", RowBox[List[FractionBox[RowBox[List["k", " ", "\[ImaginaryI]", " ", "\[Pi]"]], "2"], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["m", "-", "j"]], ")"]], " ", SubscriptBox["z", "0"]]]]], "]"]]]]]]]]]]]], ")"]], SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["z", "0"]]], ")"]], "k"]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mi> coth </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> coth </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <semantics> <mi> &#948; </mi> <annotation-xml encoding='MathML-Content'> <ci> KroneckerDelta </ci> </annotation-xml> </semantics> <mi> k </mi> </msub> </mrow> <mo> - </mo> <mrow> <mrow> <msup> <mi> csch </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <semantics> <mi> &#948; </mi> <annotation-xml encoding='MathML-Content'> <ci> KroneckerDelta </ci> </annotation-xml> </semantics> <mrow> <mi> k </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msub> </mrow> <mo> - </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> &#8290; </mo> <mi> k </mi> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> m </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> k </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> j </mi> <mo> + </mo> <mi> m </mi> </mrow> </msup> <mrow> <mi> m </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mrow> <mi> k </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mi> m </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[RowBox[List[&quot;k&quot;, &quot;-&quot;, &quot;1&quot;]], Identity, Rule[Editable, True]]], List[TagBox[&quot;m&quot;, Identity, Rule[Editable, True]]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <msup> <mi> sinh </mi> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> - </mo> <mn> 2 </mn> </mrow> </msup> <mo> ( </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mn> 2 </mn> <mrow> <mi> k </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> m </mi> </mrow> </mrow> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> m </mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mi> j </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;m&quot;]], Identity, Rule[Editable, True]]], List[TagBox[&quot;j&quot;, Identity, Rule[Editable, True]]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mi> j </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> k </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mi> j </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <coth /> <ci> z </ci> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <factorial /> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <coth /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <ci> KroneckerDelta </ci> <ci> k </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <csch /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <ci> KroneckerDelta </ci> <apply> <plus /> <ci> k </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> k </ci> </apply> <ci> k </ci> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> </uplimit> <apply> <sum /> <bvar> <ci> m </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> k </ci> <cn type='integer'> -1 </cn> </apply> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> j </ci> <ci> m </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Binomial </ci> <apply> <plus /> <ci> k </ci> <cn type='integer'> -1 </cn> </apply> <ci> m </ci> </apply> <apply> <power /> <apply> <sinh /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> m </ci> </apply> <cn type='integer'> -2 </cn> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> m </ci> </apply> </apply> </apply> </apply> <apply> <ci> Binomial </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> m </ci> </apply> <ci> j </ci> </apply> <apply> <power /> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> <apply> <plus /> <ci> k </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sinh /> <apply> <plus /> <apply> <times /> <imaginaryi /> <pi /> <ci> k </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <ci> k </ci> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Coth", "[", "z_", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Coth", "[", SubscriptBox["zz", "0"], "]"]], " ", RowBox[List["KroneckerDelta", "[", "k", "]"]]]], "-", RowBox[List[SuperscriptBox[RowBox[List["Csch", "[", SubscriptBox["zz", "0"], "]"]], "2"], " ", RowBox[List["KroneckerDelta", "[", RowBox[List["k", "-", "1"]], "]"]]]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "\[ImaginaryI]"]], ")"]], "k"], " ", "k", " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["m", "=", "0"]], RowBox[List["k", "-", "1"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], RowBox[List["m", "-", "1"]]], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["j", "+", "m"]]], " ", RowBox[List["Binomial", "[", RowBox[List[RowBox[List["k", "-", "1"]], ",", "m"]], "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["Sinh", "[", SubscriptBox["zz", "0"], "]"]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "m"]], "-", "2"]]], " ", SuperscriptBox["2", RowBox[List["k", "-", RowBox[List["2", " ", "m"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List[RowBox[List["2", " ", "m"]], ",", "j"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["m", "-", "j"]], ")"]], RowBox[List["k", "-", "1"]]], " ", RowBox[List["Sinh", "[", RowBox[List[FractionBox[RowBox[List["k", " ", "\[ImaginaryI]", " ", "\[Pi]"]], "2"], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["m", "-", "j"]], ")"]], " ", SubscriptBox["zz", "0"]]]]], "]"]]]], RowBox[List["m", "+", "1"]]]]]]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], ")"]], "k"]]], RowBox[List["k", "!"]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02