Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Coth






Mathematica Notation

Traditional Notation









Elementary Functions > Coth[z] > Continued fraction representations





http://functions.wolfram.com/01.22.10.0005.01









  


  










Input Form





Coth[z] == 1/z - z/(2 (-(3/2) + z^2/(4 (-(5/2) + z^2/(4 (-(7/2) + z^2/(4 (-(9/2) + z^2/(4 (-(11/2) + z^2/(4 (-(13/2) + z^2/(4 (-(15/2) + z^2/(4 (-(17/2) + z^2/(4 \[Ellipsis])))))))))))))))))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["Coth", "[", "z", "]"]], "\[Equal]", RowBox[List[FractionBox["1", "z"], "-", FractionBox[RowBox[List["z", "/", "2"]], RowBox[List[RowBox[List["-", FractionBox["3", "2"]]], "+", FractionBox[RowBox[List[SuperscriptBox["z", "2"], "/", "4"]], RowBox[List[RowBox[List["-", FractionBox["5", "2"]]], "+", FractionBox[RowBox[List[SuperscriptBox["z", "2"], "/", "4"]], RowBox[List[RowBox[List["-", FractionBox["7", "2"]]], "+", FractionBox[RowBox[List[SuperscriptBox["z", "2"], "/", "4"]], RowBox[List[RowBox[List["-", FractionBox["9", "2"]]], "+", FractionBox[RowBox[List[SuperscriptBox["z", "2"], "/", "4"]], RowBox[List[RowBox[List["-", FractionBox["11", "2"]]], "+", FractionBox[RowBox[List[SuperscriptBox["z", "2"], "/", "4"]], RowBox[List[RowBox[List["-", FractionBox["13", "2"]]], "+", FractionBox[RowBox[List[SuperscriptBox["z", "2"], "/", "4"]], RowBox[List[RowBox[List["-", FractionBox["15", "2"]]], "+", FractionBox[RowBox[List[SuperscriptBox["z", "2"], "/", "4"]], RowBox[List[RowBox[List["-", FractionBox["17", "2"]]], "+", FractionBox[RowBox[List[SuperscriptBox["z", "2"], "/", "4"]], "\[Ellipsis]"]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mi> coth </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mn> 1 </mn> <mi> z </mi> </mfrac> <mo> - </mo> <mtext> </mtext> <mfrac> <mrow> <mi> z </mi> <mo> / </mo> <mn> 2 </mn> </mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> + </mo> <mfrac> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> / </mo> <mn> 4 </mn> </mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 5 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> + </mo> <mfrac> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> / </mo> <mn> 4 </mn> </mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 7 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> + </mo> <mfrac> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> / </mo> <mn> 4 </mn> </mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 9 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> + </mo> <mfrac> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> / </mo> <mn> 4 </mn> </mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 11 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> + </mo> <mfrac> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> / </mo> <mn> 4 </mn> </mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 13 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> + </mo> <mfrac> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> / </mo> <mn> 4 </mn> </mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 15 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> + </mo> <mfrac> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> / </mo> <mn> 4 </mn> </mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 17 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> + </mo> <mfrac> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> / </mo> <mn> 4 </mn> </mrow> <mo> &#8230; </mo> </mfrac> </mrow> </mfrac> </mrow> </mfrac> </mrow> </mfrac> </mrow> </mfrac> </mrow> </mfrac> </mrow> </mfrac> </mrow> </mfrac> </mrow> </mfrac> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <coth /> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 5 <sep /> 2 </cn> </apply> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 7 <sep /> 2 </cn> </apply> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 9 <sep /> 2 </cn> </apply> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 11 <sep /> 2 </cn> </apply> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 13 <sep /> 2 </cn> </apply> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 15 <sep /> 2 </cn> </apply> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 17 <sep /> 2 </cn> </apply> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <ci> &#8230; </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Coth", "[", "z_", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox["1", "z"], "-", FractionBox["z", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox["3", "2"]]], "+", FractionBox[SuperscriptBox["z", "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox["5", "2"]]], "+", FractionBox[SuperscriptBox["z", "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox["7", "2"]]], "+", FractionBox[SuperscriptBox["z", "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox["9", "2"]]], "+", FractionBox[SuperscriptBox["z", "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox["11", "2"]]], "+", FractionBox[SuperscriptBox["z", "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox["13", "2"]]], "+", FractionBox[SuperscriptBox["z", "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox["15", "2"]]], "+", FractionBox[SuperscriptBox["z", "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox["17", "2"]]], "+", FractionBox[SuperscriptBox["z", "2"], RowBox[List["4", " ", "\[Ellipsis]"]]]]], ")"]]]]]]], ")"]]]]]]], ")"]]]]]]], ")"]]]]]]], ")"]]]]]]], ")"]]]]]]], ")"]]]]]]], ")"]]]]]]]]]]]










Contributed by





A.Lauschke (2006)










Date Added to functions.wolfram.com (modification date)





2007-05-02