
|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
http://functions.wolfram.com/01.22.21.0155.01
|
|

|

|

|

|
|
|
|

|

|

|

|
|

|

|

|

|

|
Integrate[Coth[e z]/Sqrt[a Cosh[e z]^2 + b Cosh[e z] Sinh[e z] +
c Sinh[e z]^2], z] == ((b - 2 c - Sqrt[b^2 - 4 a c])
(EllipticF[ArcSin[Sqrt[((-b - 2 c + Sqrt[b^2 - 4 a c]) (1 + Tanh[e z]))/
((-b + 2 c + Sqrt[b^2 - 4 a c]) (-1 + Tanh[e z]))]],
-((-a + c + Sqrt[b^2 - 4 a c])/(a - c + Sqrt[b^2 - 4 a c]))] -
2 EllipticPi[(-b + 2 c + Sqrt[b^2 - 4 a c])/
(b + 2 c - Sqrt[b^2 - 4 a c]),
ArcSin[Sqrt[((-b - 2 c + Sqrt[b^2 - 4 a c]) (1 + Tanh[e z]))/
((-b + 2 c + Sqrt[b^2 - 4 a c]) (-1 + Tanh[e z]))]],
-((-a + c + Sqrt[b^2 - 4 a c])/(a - c + Sqrt[b^2 - 4 a c]))])
(-1 + Tanh[e z]) Sqrt[((-b - 2 c + Sqrt[b^2 - 4 a c]) (1 + Tanh[e z]))/
((-b + 2 c + Sqrt[b^2 - 4 a c]) (-1 + Tanh[e z]))]
Sqrt[-((2 a - b + Sqrt[b^2 - 4 a c] + (b - 2 c + Sqrt[b^2 - 4 a c])
Tanh[e z])/((a - b + c) (-1 + Tanh[e z])))]
Sqrt[(-2 a + b + Sqrt[b^2 - 4 a c] + (-b + 2 c + Sqrt[b^2 - 4 a c])
Tanh[e z])/((a - b + c) (-1 + Tanh[e z]))])/
((b + 2 c - Sqrt[b^2 - 4 a c]) e (1 + Tanh[e z])
Sqrt[a Cosh[e z]^2 + b Cosh[e z] Sinh[e z] + c Sinh[e z]^2])
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List["Coth", "[", RowBox[List["e", " ", "z"]], "]"]], SqrtBox[RowBox[List[RowBox[List["a", " ", SuperscriptBox[RowBox[List["Cosh", "[", RowBox[List["e", " ", "z"]], "]"]], "2"]]], "+", RowBox[List["b", " ", RowBox[List["Cosh", "[", RowBox[List["e", " ", "z"]], "]"]], " ", RowBox[List["Sinh", "[", RowBox[List["e", " ", "z"]], "]"]]]], "+", RowBox[List["c", " ", SuperscriptBox[RowBox[List["Sinh", "[", RowBox[List["e", " ", "z"]], "]"]], "2"]]]]]]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["b", "-", RowBox[List["2", " ", "c"]], "-", SqrtBox[RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["4", " ", "a", " ", "c"]]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["EllipticF", "[", RowBox[List[RowBox[List["ArcSin", "[", SqrtBox[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "-", RowBox[List["2", " ", "c"]], "+", SqrtBox[RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["4", " ", "a", " ", "c"]]]]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["Tanh", "[", RowBox[List["e", " ", "z"]], "]"]]]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", RowBox[List["2", " ", "c"]], "+", SqrtBox[RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["4", " ", "a", " ", "c"]]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["Tanh", "[", RowBox[List["e", " ", "z"]], "]"]]]], ")"]]]]]], "]"]], ",", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["-", "a"]], "+", "c", "+", SqrtBox[RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["4", " ", "a", " ", "c"]]]]]]], RowBox[List["a", "-", "c", "+", SqrtBox[RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["4", " ", "a", " ", "c"]]]]]]]]]]]], "]"]], "-", RowBox[List["2", " ", RowBox[List["EllipticPi", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["-", "b"]], "+", RowBox[List["2", " ", "c"]], "+", SqrtBox[RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["4", " ", "a", " ", "c"]]]]]]], RowBox[List["b", "+", RowBox[List["2", " ", "c"]], "-", SqrtBox[RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["4", " ", "a", " ", "c"]]]]]]]], ",", RowBox[List["ArcSin", "[", SqrtBox[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "-", RowBox[List["2", " ", "c"]], "+", SqrtBox[RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["4", " ", "a", " ", "c"]]]]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["Tanh", "[", RowBox[List["e", " ", "z"]], "]"]]]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", RowBox[List["2", " ", "c"]], "+", SqrtBox[RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["4", " ", "a", " ", "c"]]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["Tanh", "[", RowBox[List["e", " ", "z"]], "]"]]]], ")"]]]]]], "]"]], ",", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["-", "a"]], "+", "c", "+", SqrtBox[RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["4", " ", "a", " ", "c"]]]]]]], RowBox[List["a", "-", "c", "+", SqrtBox[RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["4", " ", "a", " ", "c"]]]]]]]]]]]], "]"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["Tanh", "[", RowBox[List["e", " ", "z"]], "]"]]]], ")"]], " ", SqrtBox[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "-", RowBox[List["2", " ", "c"]], "+", SqrtBox[RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["4", " ", "a", " ", "c"]]]]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["Tanh", "[", RowBox[List["e", " ", "z"]], "]"]]]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", RowBox[List["2", " ", "c"]], "+", SqrtBox[RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["4", " ", "a", " ", "c"]]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["Tanh", "[", RowBox[List["e", " ", "z"]], "]"]]]], ")"]]]]]], " ", SqrtBox[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["2", " ", "a"]], "-", "b", "+", SqrtBox[RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["4", " ", "a", " ", "c"]]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["b", "-", RowBox[List["2", " ", "c"]], "+", SqrtBox[RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["4", " ", "a", " ", "c"]]]]]]], ")"]], " ", RowBox[List["Tanh", "[", RowBox[List["e", " ", "z"]], "]"]]]]]], RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b", "+", "c"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["Tanh", "[", RowBox[List["e", " ", "z"]], "]"]]]], ")"]]]]]]]], " ", SqrtBox[FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "+", "b", "+", SqrtBox[RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["4", " ", "a", " ", "c"]]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", RowBox[List["2", " ", "c"]], "+", SqrtBox[RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["4", " ", "a", " ", "c"]]]]]]], ")"]], " ", RowBox[List["Tanh", "[", RowBox[List["e", " ", "z"]], "]"]]]]]], RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b", "+", "c"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["Tanh", "[", RowBox[List["e", " ", "z"]], "]"]]]], ")"]]]]]]]], ")"]], "/", RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["b", "+", RowBox[List["2", " ", "c"]], "-", SqrtBox[RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["4", " ", "a", " ", "c"]]]]]]], ")"]], " ", "e", " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["Tanh", "[", RowBox[List["e", " ", "z"]], "]"]]]], ")"]], " ", SqrtBox[RowBox[List[RowBox[List["a", " ", SuperscriptBox[RowBox[List["Cosh", "[", RowBox[List["e", " ", "z"]], "]"]], "2"]]], "+", RowBox[List["b", " ", RowBox[List["Cosh", "[", RowBox[List["e", " ", "z"]], "]"]], " ", RowBox[List["Sinh", "[", RowBox[List["e", " ", "z"]], "]"]]]], "+", RowBox[List["c", " ", SuperscriptBox[RowBox[List["Sinh", "[", RowBox[List["e", " ", "z"]], "]"]], "2"]]]]]]]], ")"]]]]]]]]
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
|

|

|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> ∫ </mo> <mrow> <mfrac> <mrow> <mi> coth </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <msqrt> <mrow> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> cosh </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mi> sinh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> cosh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> sinh </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> - </mo> <msqrt> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> F </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <msup> <mi> sin </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> + </mo> <msqrt> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> tanh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> + </mo> <msqrt> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> tanh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </msqrt> <mo> ) </mo> </mrow> <mo> ❘ </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> + </mo> <mi> c </mi> <mo> + </mo> <msqrt> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mrow> </msqrt> </mrow> <mrow> <mi> a </mi> <mo> - </mo> <mi> c </mi> <mo> + </mo> <msqrt> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mrow> </msqrt> </mrow> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mi> Π </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mrow> <mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> + </mo> <msqrt> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mrow> </msqrt> </mrow> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> - </mo> <msqrt> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mrow> </msqrt> </mrow> </mfrac> <mo> ; </mo> <mrow> <mrow> <msup> <mi> sin </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> + </mo> <msqrt> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> tanh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> + </mo> <msqrt> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> tanh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </msqrt> <mo> ) </mo> </mrow> <mo> ❘ </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> + </mo> <mi> c </mi> <mo> + </mo> <msqrt> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mrow> </msqrt> </mrow> <mrow> <mi> a </mi> <mo> - </mo> <mi> c </mi> <mo> + </mo> <msqrt> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mrow> </msqrt> </mrow> </mfrac> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> tanh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> + </mo> <msqrt> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> tanh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> + </mo> <msqrt> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> tanh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mo> - </mo> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> - </mo> <mi> b </mi> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> + </mo> <msqrt> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> tanh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <msqrt> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mrow> </msqrt> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> tanh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mfrac> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> + </mo> <msqrt> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> tanh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <msqrt> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mrow> </msqrt> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> tanh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> - </mo> <msqrt> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> tanh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> cosh </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mi> sinh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> cosh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> sinh </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <coth /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> a </ci> <apply> <power /> <apply> <cosh /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <ci> b </ci> <apply> <sinh /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> <apply> <cosh /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <ci> c </ci> <apply> <power /> <apply> <sinh /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> <ci> c </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <ci> EllipticF </ci> <apply> <arcsin /> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> <ci> c </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <plus /> <apply> <tanh /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> <ci> c </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <plus /> <apply> <tanh /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <ci> c </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> <ci> c </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> <ci> c </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> EllipticPi </ci> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> <ci> c </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> <ci> c </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <arcsin /> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> <ci> c </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <plus /> <apply> <tanh /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> <ci> c </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <plus /> <apply> <tanh /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <ci> c </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> <ci> c </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> <ci> c </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <tanh /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> <ci> c </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <plus /> <apply> <tanh /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> <ci> c </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <plus /> <apply> <tanh /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> <ci> c </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <tanh /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> <ci> c </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <ci> c </ci> </apply> <apply> <plus /> <apply> <tanh /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> a </ci> </apply> <ci> b </ci> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> <ci> c </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <tanh /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> <ci> c </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <ci> c </ci> </apply> <apply> <plus /> <apply> <tanh /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> <ci> c </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <ci> e </ci> <apply> <plus /> <apply> <tanh /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> a </ci> <apply> <power /> <apply> <cosh /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <ci> b </ci> <apply> <sinh /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> <apply> <cosh /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <ci> c </ci> <apply> <power /> <apply> <sinh /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|

|

|

|

|

| 
| 
| 
| 
| | 
| 
| 
| 
| 
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List["Coth", "[", RowBox[List["e_", " ", "z_"]], "]"]], SqrtBox[RowBox[List[RowBox[List["a_", " ", SuperscriptBox[RowBox[List["Cosh", "[", RowBox[List["e_", " ", "z_"]], "]"]], "2"]]], "+", RowBox[List["b_", " ", RowBox[List["Cosh", "[", RowBox[List["e_", " ", "z_"]], "]"]], " ", RowBox[List["Sinh", "[", RowBox[List["e_", " ", "z_"]], "]"]]]], "+", RowBox[List["c_", " ", SuperscriptBox[RowBox[List["Sinh", "[", RowBox[List["e_", " ", "z_"]], "]"]], "2"]]]]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "-", RowBox[List["2", " ", "c"]], "-", SqrtBox[RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["4", " ", "a", " ", "c"]]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["EllipticF", "[", RowBox[List[RowBox[List["ArcSin", "[", SqrtBox[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "-", RowBox[List["2", " ", "c"]], "+", SqrtBox[RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["4", " ", "a", " ", "c"]]]]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["Tanh", "[", RowBox[List["e", " ", "z"]], "]"]]]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", RowBox[List["2", " ", "c"]], "+", SqrtBox[RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["4", " ", "a", " ", "c"]]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["Tanh", "[", RowBox[List["e", " ", "z"]], "]"]]]], ")"]]]]]], "]"]], ",", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["-", "a"]], "+", "c", "+", SqrtBox[RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["4", " ", "a", " ", "c"]]]]]]], RowBox[List["a", "-", "c", "+", SqrtBox[RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["4", " ", "a", " ", "c"]]]]]]]]]]]], "]"]], "-", RowBox[List["2", " ", RowBox[List["EllipticPi", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["-", "b"]], "+", RowBox[List["2", " ", "c"]], "+", SqrtBox[RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["4", " ", "a", " ", "c"]]]]]]], RowBox[List["b", "+", RowBox[List["2", " ", "c"]], "-", SqrtBox[RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["4", " ", "a", " ", "c"]]]]]]]], ",", RowBox[List["ArcSin", "[", SqrtBox[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "-", RowBox[List["2", " ", "c"]], "+", SqrtBox[RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["4", " ", "a", " ", "c"]]]]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["Tanh", "[", RowBox[List["e", " ", "z"]], "]"]]]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", RowBox[List["2", " ", "c"]], "+", SqrtBox[RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["4", " ", "a", " ", "c"]]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["Tanh", "[", RowBox[List["e", " ", "z"]], "]"]]]], ")"]]]]]], "]"]], ",", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["-", "a"]], "+", "c", "+", SqrtBox[RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["4", " ", "a", " ", "c"]]]]]]], RowBox[List["a", "-", "c", "+", SqrtBox[RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["4", " ", "a", " ", "c"]]]]]]]]]]]], "]"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["Tanh", "[", RowBox[List["e", " ", "z"]], "]"]]]], ")"]], " ", SqrtBox[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "-", RowBox[List["2", " ", "c"]], "+", SqrtBox[RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["4", " ", "a", " ", "c"]]]]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["Tanh", "[", RowBox[List["e", " ", "z"]], "]"]]]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", RowBox[List["2", " ", "c"]], "+", SqrtBox[RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["4", " ", "a", " ", "c"]]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["Tanh", "[", RowBox[List["e", " ", "z"]], "]"]]]], ")"]]]]]], " ", SqrtBox[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["2", " ", "a"]], "-", "b", "+", SqrtBox[RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["4", " ", "a", " ", "c"]]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["b", "-", RowBox[List["2", " ", "c"]], "+", SqrtBox[RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["4", " ", "a", " ", "c"]]]]]]], ")"]], " ", RowBox[List["Tanh", "[", RowBox[List["e", " ", "z"]], "]"]]]]]], RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b", "+", "c"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["Tanh", "[", RowBox[List["e", " ", "z"]], "]"]]]], ")"]]]]]]]], " ", SqrtBox[FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "+", "b", "+", SqrtBox[RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["4", " ", "a", " ", "c"]]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", RowBox[List["2", " ", "c"]], "+", SqrtBox[RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["4", " ", "a", " ", "c"]]]]]]], ")"]], " ", RowBox[List["Tanh", "[", RowBox[List["e", " ", "z"]], "]"]]]]]], RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b", "+", "c"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["Tanh", "[", RowBox[List["e", " ", "z"]], "]"]]]], ")"]]]]]]]], RowBox[List[RowBox[List["(", RowBox[List["b", "+", RowBox[List["2", " ", "c"]], "-", SqrtBox[RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["4", " ", "a", " ", "c"]]]]]]], ")"]], " ", "e", " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["Tanh", "[", RowBox[List["e", " ", "z"]], "]"]]]], ")"]], " ", SqrtBox[RowBox[List[RowBox[List["a", " ", SuperscriptBox[RowBox[List["Cosh", "[", RowBox[List["e", " ", "z"]], "]"]], "2"]]], "+", RowBox[List["b", " ", RowBox[List["Cosh", "[", RowBox[List["e", " ", "z"]], "]"]], " ", RowBox[List["Sinh", "[", RowBox[List["e", " ", "z"]], "]"]]]], "+", RowBox[List["c", " ", SuperscriptBox[RowBox[List["Sinh", "[", RowBox[List["e", " ", "z"]], "]"]], "2"]]]]]]]]]]]]] |
| 
| 
| 
| 
|
|

|

|

|

|
Date Added to functions.wolfram.com (modification date)
|
|

|

|

|

|

|
|

|

|

|

|
|
 |
|
|