html, body, form { margin: 0; padding: 0; width: 100%; } #calculate { position: relative; width: 177px; height: 110px; background: transparent url(/images/alphabox/embed_functions_inside.gif) no-repeat scroll 0 0; } #i { position: relative; left: 18px; top: 44px; width: 133px; border: 0 none; outline: 0; font-size: 11px; } #eq { width: 9px; height: 10px; background: transparent; position: absolute; top: 47px; right: 18px; cursor: pointer; }

 Coth

 http://functions.wolfram.com/01.22.21.0198.01

 Input Form

 Integrate[z^n E^(p z) Cosh[b z]^u Coth[c z], z] == (-2^(-u)) Binomial[u, u/2] n! (1 - Mod[u, 2]) (E^(p z) Sum[(1/(-j + n)!) ((-1)^j p^(-1 - j) z^(-j + n) HypergeometricPFQ[{Subscript[d, 1], \[Ellipsis], Subscript[d, 1 + j], 1}, {1 + Subscript[d, 1], \[Ellipsis], 1 + Subscript[d, 1 + j]}, E^(2 c z)]), {j, 0, n}] + E^((2 c + p) z) Sum[(1/(-j + n)!) ((-1)^j (2 c + p)^(-1 - j) z^(-j + n) HypergeometricPFQ[{Subscript[e, 1], \[Ellipsis], Subscript[e, 1 + j], 1}, {1 + Subscript[e, 1], \[Ellipsis], 1 + Subscript[e, 1 + j]}, E^(2 c z)]), {j, 0, n}]) - (n! Sum[Binomial[u, s] (E^((p + 2 b s - b u) z) Sum[(1/(-j + n)!) ((-1)^j (p + 2 b s - b u)^(-1 - j) z^(-j + n) HypergeometricPFQ[{Subscript[f, 1], \[Ellipsis], Subscript[f, 1 + j], 1}, {1 + Subscript[f, 1], \[Ellipsis], 1 + Subscript[f, 1 + j]}, E^(2 c z)]), {j, 0, n}] + E^((p - 2 b s + b u) z) Sum[(1/(-j + n)!) ((-1)^j (p - 2 b s + b u)^(-1 - j) z^(-j + n) HypergeometricPFQ[{Subscript[g, 1], \[Ellipsis], Subscript[g, 1 + j], 1}, {1 + Subscript[g, 1], \[Ellipsis], 1 + Subscript[g, 1 + j]}, E^(2 c z)]), {j, 0, n}] + E^((2 c + p + 2 b s - b u) z) Sum[(1/(-j + n)!) ((-1)^j (2 c + p + 2 b s - b u)^(-1 - j) z^(-j + n) HypergeometricPFQ[{Subscript[h, 1], \[Ellipsis], Subscript[h, 1 + j], 1}, {1 + Subscript[h, 1], \[Ellipsis], 1 + Subscript[h, 1 + j]}, E^(2 c z)]), {j, 0, n}] + E^((2 c + p - 2 b s + b u) z) Sum[(1/(-j + n)!) ((-1)^j (2 c + p - 2 b s + b u)^(-1 - j) z^(-j + n) HypergeometricPFQ[{Subscript[q, 1], \[Ellipsis], Subscript[q, 1 + j], 1}, {1 + Subscript[q, 1], \[Ellipsis], 1 + Subscript[q, 1 + j]}, E^(2 c z)]), {j, 0, n}]), {s, 0, Floor[(1/2) (-1 + u)]}])/2^u /; Subscript[d, 1] == Subscript[d, 2] == \[Ellipsis] == Subscript[d, n + 1] == p/(2 c) && Subscript[e, 1] == Subscript[e, 2] == \[Ellipsis] == Subscript[e, n + 1] == (p + 2 c)/(2 c) && Subscript[f, 1] == Subscript[f, 2] == \[Ellipsis] == Subscript[f, n + 1] == (p + 2 b s - b u)/(2 c) && Subscript[g, 1] == Subscript[g, 2] == \[Ellipsis] == Subscript[g, n + 1] == (p - 2 b s + b u)/(2 c) && Subscript[h, 1] == Subscript[h, 2] == \[Ellipsis] == Subscript[h, n + 1] == (p + 2 b s - b u + 2 c)/(2 c) && Subscript[q, 1] == Subscript[q, 2] == \[Ellipsis] == Subscript[q, n + 1] == (p - 2 b s + b u + 2 c)/(2 c) && Element[n, Integers] && n >= 0 && Element[u, Integers] && u > 0

 Standard Form

 Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["z", "n"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["p", " ", "z"]]], SuperscriptBox[RowBox[List["Cosh", "[", RowBox[List["b", " ", "z"]], "]"]], "u"], RowBox[List["Coth", "[", RowBox[List["c", " ", "z"]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox["2", RowBox[List["-", "u"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["u", ",", FractionBox["u", "2"]]], "]"]], " ", RowBox[List["n", "!"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["u", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["p", " ", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], RowBox[List[FractionBox["1", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]], RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox["p", RowBox[List[RowBox[List["-", "1"]], "-", "j"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["d", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["d", RowBox[List["1", "+", "j"]]], ",", "1"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["d", "1"]]], ",", "\[Ellipsis]", ",", RowBox[List["1", "+", SubscriptBox["d", RowBox[List["1", "+", "j"]]]]]]], "}"]], ",", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]], "]"]]]], ")"]]]]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "c"]], "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], RowBox[List[FractionBox["1", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]], RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "c"]], "+", "p"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["e", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["e", RowBox[List["1", "+", "j"]]], ",", "1"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["e", "1"]]], ",", "\[Ellipsis]", ",", RowBox[List["1", "+", SubscriptBox["e", RowBox[List["1", "+", "j"]]]]]]], "}"]], ",", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]], "]"]]]], ")"]]]]]]]]]], ")"]]]], "-", RowBox[List[SuperscriptBox["2", RowBox[List["-", "u"]]], " ", RowBox[List["n", "!"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["s", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "u"]], ")"]]]], "]"]]], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["u", ",", "s"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", "b", " ", "s"]], "-", RowBox[List["b", " ", "u"]]]], ")"]], " ", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], RowBox[List[FractionBox["1", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]], RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", "b", " ", "s"]], "-", RowBox[List["b", " ", "u"]]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["f", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["f", RowBox[List["1", "+", "j"]]], ",", "1"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["f", "1"]]], ",", "\[Ellipsis]", ",", RowBox[List["1", "+", SubscriptBox["f", RowBox[List["1", "+", "j"]]]]]]], "}"]], ",", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]], "]"]]]], ")"]]]]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["p", "-", RowBox[List["2", " ", "b", " ", "s"]], "+", RowBox[List["b", " ", "u"]]]], ")"]], " ", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], RowBox[List[FractionBox["1", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]], RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["p", "-", RowBox[List["2", " ", "b", " ", "s"]], "+", RowBox[List["b", " ", "u"]]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["g", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["g", RowBox[List["1", "+", "j"]]], ",", "1"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["g", "1"]]], ",", "\[Ellipsis]", ",", RowBox[List["1", "+", SubscriptBox["g", RowBox[List["1", "+", "j"]]]]]]], "}"]], ",", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]], "]"]]]], ")"]]]]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "c"]], "+", "p", "+", RowBox[List["2", " ", "b", " ", "s"]], "-", RowBox[List["b", " ", "u"]]]], ")"]], " ", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], RowBox[List[FractionBox["1", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]], RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "c"]], "+", "p", "+", RowBox[List["2", " ", "b", " ", "s"]], "-", RowBox[List["b", " ", "u"]]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["h", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["h", RowBox[List["1", "+", "j"]]], ",", "1"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["h", "1"]]], ",", "\[Ellipsis]", ",", RowBox[List["1", "+", SubscriptBox["h", RowBox[List["1", "+", "j"]]]]]]], "}"]], ",", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]], "]"]]]], ")"]]]]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "c"]], "+", "p", "-", RowBox[List["2", " ", "b", " ", "s"]], "+", RowBox[List["b", " ", "u"]]]], ")"]], " ", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], RowBox[List[FractionBox["1", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]], RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "c"]], "+", "p", "-", RowBox[List["2", " ", "b", " ", "s"]], "+", RowBox[List["b", " ", "u"]]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["q", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["q", RowBox[List["1", "+", "j"]]], ",", "1"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["q", "1"]]], ",", "\[Ellipsis]", ",", RowBox[List["1", "+", SubscriptBox["q", RowBox[List["1", "+", "j"]]]]]]], "}"]], ",", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]], "]"]]]], ")"]]]]]]]]]], ")"]]]]]]]]]]]], "/;", RowBox[List[RowBox[List[SubscriptBox["d", "1"], "\[Equal]", SubscriptBox["d", "2"], "\[Equal]", "\[Ellipsis]", "\[Equal]", SubscriptBox["d", RowBox[List["n", "+", "1"]]], "\[Equal]", FractionBox["p", RowBox[List["2", " ", "c"]]]]], "\[And]", RowBox[List[SubscriptBox["e", "1"], "\[Equal]", SubscriptBox["e", "2"], "\[Equal]", "\[Ellipsis]", "\[Equal]", SubscriptBox["e", RowBox[List["n", "+", "1"]]], "\[Equal]", FractionBox[RowBox[List["p", "+", RowBox[List["2", "c"]]]], RowBox[List["2", " ", "c"]]]]], "\[And]", RowBox[List[SubscriptBox["f", "1"], "\[Equal]", SubscriptBox["f", "2"], "\[Equal]", "\[Ellipsis]", "\[Equal]", SubscriptBox["f", RowBox[List["n", "+", "1"]]], "\[Equal]", FractionBox[RowBox[List["p", "+", RowBox[List["2", " ", "b", " ", "s"]], "-", RowBox[List["b", " ", "u"]]]], RowBox[List["2", " ", "c"]]]]], "\[And]", RowBox[List[SubscriptBox["g", "1"], "\[Equal]", SubscriptBox["g", "2"], "\[Equal]", "\[Ellipsis]", "\[Equal]", SubscriptBox["g", RowBox[List["n", "+", "1"]]], "\[Equal]", FractionBox[RowBox[List["p", "-", RowBox[List["2", " ", "b", " ", "s"]], "+", RowBox[List["b", " ", "u"]]]], RowBox[List["2", " ", "c"]]]]], "\[And]", RowBox[List[SubscriptBox["h", "1"], "\[Equal]", SubscriptBox["h", "2"], "\[Equal]", "\[Ellipsis]", "\[Equal]", SubscriptBox["h", RowBox[List["n", "+", "1"]]], "\[Equal]", FractionBox[RowBox[List["p", "+", RowBox[List["2", " ", "b", " ", "s"]], "-", RowBox[List["b", " ", "u"]], "+", RowBox[List["2", "c"]]]], RowBox[List["2", " ", "c"]]]]], "\[And]", RowBox[List[SubscriptBox["q", "1"], "\[Equal]", SubscriptBox["q", "2"], "\[Equal]", "\[Ellipsis]", "\[Equal]", SubscriptBox["q", RowBox[List["n", "+", "1"]]], "\[Equal]", FractionBox[RowBox[List["p", "-", RowBox[List["2", " ", "b", " ", "s"]], "+", RowBox[List["b", " ", "u"]], "+", RowBox[List["2", "c"]]]], RowBox[List["2", " ", "c"]]]]], "\[And]", RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]], "\[And]", RowBox[List["u", "\[Element]", "Integers"]], "\[And]", RowBox[List["u", ">", "0"]]]]]]]]

 MathML Form

 z n p z cosh u ( b z ) coth ( c z ) z - 2 - u ( u u 2 ) TagBox[RowBox[List["(", GridBox[List[List[TagBox["u", Identity, Rule[Editable, True]]], List[TagBox[FractionBox["u", "2"], Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] n ! ( 1 - u mod 2 \$CellContext`u 2 ) ( p z j = 0 n ( - 1 ) j p - j - 1 z n - j ( n - j ) ! j + 2 F j + 1 ( p 2 c , , p 2 c , 1 ; p 2 c + 1 , , p 2 c + 1 ; 2 c z ) TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox[RowBox[List["j", "+", "2"]], TraditionalForm]], SubscriptBox["F", FormBox[RowBox[List["j", "+", "1"]], TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox["p", RowBox[List["2", " ", "c"]]], HypergeometricPFQ], ",", TagBox["\[Ellipsis]", HypergeometricPFQ], ",", TagBox[FractionBox["p", RowBox[List["2", " ", "c"]]], HypergeometricPFQ], ",", TagBox["1", HypergeometricPFQ]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List[FractionBox["p", RowBox[List["2", " ", "c"]]], "+", "1"]], HypergeometricPFQ], ",", TagBox["\[Ellipsis]", HypergeometricPFQ], ",", TagBox[RowBox[List[FractionBox["p", RowBox[List["2", " ", "c"]]], "+", "1"]], HypergeometricPFQ]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], ";", TagBox[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]], HypergeometricPFQ]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], HypergeometricPFQ] + ( 2 c + p ) z j = 0 n ( - 1 ) j ( 2 c + p ) - j - 1 z n - j ( n - j ) ! j + 2 F j + 1 ( 2 c + p 2 c , , 2 c + p 2 c , 1 ; 2 c + p 2 c + 1 , , 2 c + p 2 c + 1 ; 2 c z ) TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox[RowBox[List["j", "+", "2"]], TraditionalForm]], SubscriptBox["F", FormBox[RowBox[List["j", "+", "1"]], TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List[RowBox[List["2", " ", "c"]], "+", "p"]], RowBox[List["2", " ", "c"]]], HypergeometricPFQ], ",", TagBox["\[Ellipsis]", HypergeometricPFQ], ",", TagBox[FractionBox[RowBox[List[RowBox[List["2", " ", "c"]], "+", "p"]], RowBox[List["2", " ", "c"]]], HypergeometricPFQ], ",", TagBox["1", HypergeometricPFQ]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List[FractionBox[RowBox[List[RowBox[List["2", " ", "c"]], "+", "p"]], RowBox[List["2", " ", "c"]]], "+", "1"]], HypergeometricPFQ], ",", TagBox["\[Ellipsis]", HypergeometricPFQ], ",", TagBox[RowBox[List[FractionBox[RowBox[List[RowBox[List["2", " ", "c"]], "+", "p"]], RowBox[List["2", " ", "c"]]], "+", "1"]], HypergeometricPFQ]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], ";", TagBox[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]], HypergeometricPFQ]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], HypergeometricPFQ] ) - 2 - u n ! s = 0 u - 1 2 ( u s ) TagBox[RowBox[List["(", GridBox[List[List[TagBox["u", Identity, Rule[Editable, True]]], List[TagBox["s", Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] ( ( p + 2 b s - b u ) z j = 0 n ( - 1 ) j ( p + 2 b s - b u ) - j - 1 z n - j ( n - j ) ! j + 2 F j + 1 ( p + 2 b s - b u 2 c , , p + 2 b s - b u 2 c , 1 ; p + 2 b s - b u 2 c + 1 , , p + 2 b s - b u 2 c + 1 ; 2 c z ) TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox[RowBox[List["j", "+", "2"]], TraditionalForm]], SubscriptBox["F", FormBox[RowBox[List["j", "+", "1"]], TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List["p", "+", RowBox[List["2", " ", "b", " ", "s"]], "-", RowBox[List["b", " ", "u"]]]], RowBox[List["2", " ", "c"]]], HypergeometricPFQ], ",", TagBox["\[Ellipsis]", HypergeometricPFQ], ",", TagBox[FractionBox[RowBox[List["p", "+", RowBox[List["2", " ", "b", " ", "s"]], "-", RowBox[List["b", " ", "u"]]]], RowBox[List["2", " ", "c"]]], HypergeometricPFQ], ",", TagBox["1", HypergeometricPFQ]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List[FractionBox[RowBox[List["p", "+", RowBox[List["2", " ", "b", " ", "s"]], "-", RowBox[List["b", " ", "u"]]]], RowBox[List["2", " ", "c"]]], "+", "1"]], HypergeometricPFQ], ",", TagBox["\[Ellipsis]", HypergeometricPFQ], ",", TagBox[RowBox[List[FractionBox[RowBox[List["p", "+", RowBox[List["2", " ", "b", " ", "s"]], "-", RowBox[List["b", " ", "u"]]]], RowBox[List["2", " ", "c"]]], "+", "1"]], HypergeometricPFQ]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], ";", TagBox[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]], HypergeometricPFQ]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], HypergeometricPFQ] + ( 2 c + p + 2 b s - b u ) z j = 0 n ( - 1 ) j ( 2 c + p + 2 b s - b u ) - j - 1 z n - j ( n - j ) ! j + 2 F j + 1 ( 2 c + p + 2 b s - b u 2 c , , 2 c + p + 2 b s - b u 2 c , 1 ; 2 c + p + 2 b s - b u 2 c + 1 , , 2 c + p + 2 b s - b u 2 c + 1 ; 2 c z ) TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox[RowBox[List["j", "+", "2"]], TraditionalForm]], SubscriptBox["F", FormBox[RowBox[List["j", "+", "1"]], TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List[RowBox[List["2", " ", "c"]], "+", "p", "+", RowBox[List["2", " ", "b", " ", "s"]], "-", RowBox[List["b", " ", "u"]]]], RowBox[List["2", " ", "c"]]], HypergeometricPFQ], ",", TagBox["\[Ellipsis]", HypergeometricPFQ], ",", TagBox[FractionBox[RowBox[List[RowBox[List["2", " ", "c"]], "+", "p", "+", RowBox[List["2", " ", "b", " ", "s"]], "-", RowBox[List["b", " ", "u"]]]], RowBox[List["2", " ", "c"]]], HypergeometricPFQ], ",", TagBox["1", HypergeometricPFQ]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List[FractionBox[RowBox[List[RowBox[List["2", " ", "c"]], "+", "p", "+", RowBox[List["2", " ", "b", " ", "s"]], "-", RowBox[List["b", " ", "u"]]]], RowBox[List["2", " ", "c"]]], "+", "1"]], HypergeometricPFQ], ",", TagBox["\[Ellipsis]", HypergeometricPFQ], ",", TagBox[RowBox[List[FractionBox[RowBox[List[RowBox[List["2", " ", "c"]], "+", "p", "+", RowBox[List["2", " ", "b", " ", "s"]], "-", RowBox[List["b", " ", "u"]]]], RowBox[List["2", " ", "c"]]], "+", "1"]], HypergeometricPFQ]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], ";", TagBox[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]], HypergeometricPFQ]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], HypergeometricPFQ] + ( p - 2 b s + b u ) z j = 0 n ( - 1 ) j ( p - 2 b s + b u ) - j - 1 z n - j ( n - j ) ! j + 2 F j + 1 ( p - 2 b s + b u 2 c , , p - 2 b s + b u 2 c , 1 ; p - 2 b s + b u 2 c + 1 , , p - 2 b s + b u 2 c + 1 ; 2 c z ) TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox[RowBox[List["j", "+", "2"]], TraditionalForm]], SubscriptBox["F", FormBox[RowBox[List["j", "+", "1"]], TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List["p", "-", RowBox[List["2", " ", "b", " ", "s"]], "+", RowBox[List["b", " ", "u"]]]], RowBox[List["2", " ", "c"]]], HypergeometricPFQ], ",", TagBox["\[Ellipsis]", HypergeometricPFQ], ",", TagBox[FractionBox[RowBox[List["p", "-", RowBox[List["2", " ", "b", " ", "s"]], "+", RowBox[List["b", " ", "u"]]]], RowBox[List["2", " ", "c"]]], HypergeometricPFQ], ",", TagBox["1", HypergeometricPFQ]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List[FractionBox[RowBox[List["p", "-", RowBox[List["2", " ", "b", " ", "s"]], "+", RowBox[List["b", " ", "u"]]]], RowBox[List["2", " ", "c"]]], "+", "1"]], HypergeometricPFQ], ",", TagBox["\[Ellipsis]", HypergeometricPFQ], ",", TagBox[RowBox[List[FractionBox[RowBox[List["p", "-", RowBox[List["2", " ", "b", " ", "s"]], "+", RowBox[List["b", " ", "u"]]]], RowBox[List["2", " ", "c"]]], "+", "1"]], HypergeometricPFQ]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], ";", TagBox[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]], HypergeometricPFQ]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], HypergeometricPFQ] + ( 2 c + p - 2 b s + b u ) z j = 0 n ( - 1 ) j ( 2 c + p - 2 b s + b u ) - j - 1 z n - j ( n - j ) ! j + 2 F j + 1 ( 2 c + p - 2 b s + b u 2 c , , 2 c + p - 2 b s + b u 2 c , 1 ; 2 c + p - 2 b s + b u 2 c + 1 , , 2 c + p - 2 b s + b u 2 c + 1 ; 2 c z ) TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox[RowBox[List["j", "+", "2"]], TraditionalForm]], SubscriptBox["F", FormBox[RowBox[List["j", "+", "1"]], TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List[RowBox[List["2", " ", "c"]], "+", "p", "-", RowBox[List["2", " ", "b", " ", "s"]], "+", RowBox[List["b", " ", "u"]]]], RowBox[List["2", " ", "c"]]], HypergeometricPFQ], ",", TagBox["\[Ellipsis]", HypergeometricPFQ], ",", TagBox[FractionBox[RowBox[List[RowBox[List["2", " ", "c"]], "+", "p", "-", RowBox[List["2", " ", "b", " ", "s"]], "+", RowBox[List["b", " ", "u"]]]], RowBox[List["2", " ", "c"]]], HypergeometricPFQ], ",", TagBox["1", HypergeometricPFQ]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List[FractionBox[RowBox[List[RowBox[List["2", " ", "c"]], "+", "p", "-", RowBox[List["2", " ", "b", " ", "s"]], "+", RowBox[List["b", " ", "u"]]]], RowBox[List["2", " ", "c"]]], "+", "1"]], HypergeometricPFQ], ",", TagBox["\[Ellipsis]", HypergeometricPFQ], ",", TagBox[RowBox[List[FractionBox[RowBox[List[RowBox[List["2", " ", "c"]], "+", "p", "-", RowBox[List["2", " ", "b", " ", "s"]], "+", RowBox[List["b", " ", "u"]]]], RowBox[List["2", " ", "c"]]], "+", "1"]], HypergeometricPFQ]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], ";", TagBox[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]], HypergeometricPFQ]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], HypergeometricPFQ] ) /; n u + Condition z z n p z b z u c z -1 2 -1 u Binomial u u 2 -1 n 1 -1 \$CellContext`u 2 p z j 0 n -1 j p -1 j -1 z n -1 j n -1 j -1 HypergeometricPFQ p 2 c -1 p 2 c -1 1 p 2 c -1 1 p 2 c -1 1 2 c z 2 c p z j 0 n -1 j 2 c p -1 j -1 z n -1 j n -1 j -1 HypergeometricPFQ 2 c p 2 c -1 2 c p 2 c -1 1 2 c p 2 c -1 1 2 c p 2 c -1 1 2 c z -1 2 -1 u n s 0 u -1 2 -1 Binomial u s p 2 b s -1 b u z j 0 n -1 j p 2 b s -1 b u -1 j -1 z n -1 j n -1 j -1 HypergeometricPFQ p 2 b s -1 b u 2 c -1 p 2 b s -1 b u 2 c -1 1 p 2 b s -1 b u 2 c -1 1 p 2 b s -1 b u 2 c -1 1 2 c z 2 c p 2 b s -1 b u z j 0 n -1 j 2 c p 2 b s -1 b u -1 j -1 z n -1 j n -1 j -1 HypergeometricPFQ 2 c p 2 b s -1 b u 2 c -1 2 c p 2 b s -1 b u 2 c -1 1 2 c p 2 b s -1 b u 2 c -1 1 2 c p 2 b s -1 b u 2 c -1 1 2 c z p -1 2 b s b u z j 0 n -1 j p -1 2 b s b u -1 j -1 z n -1 j n -1 j -1 HypergeometricPFQ p -1 2 b s b u 2 c -1 p -1 2 b s b u 2 c -1 1 p -1 2 b s b u 2 c -1 1 p -1 2 b s b u 2 c -1 1 2 c z 2 c p -1 2 b s b u z j 0 n -1 j 2 c p -1 2 b s b u -1 j -1 z n -1 j n -1 j -1 HypergeometricPFQ 2 c p -1 2 b s b u 2 c -1 2 c p -1 2 b s b u 2 c -1 1 2 c p -1 2 b s b u 2 c -1 1 2 c p -1 2 b s b u 2 c -1 1 2 c z n u SuperPlus [/itex]

 Rule Form

 Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["z_", "n_"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["p_", " ", "z_"]]], " ", SuperscriptBox[RowBox[List["Cosh", "[", RowBox[List["b_", " ", "z_"]], "]"]], "u_"], " ", RowBox[List["Coth", "[", RowBox[List["c_", " ", "z_"]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox["2", RowBox[List["-", "u"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["u", ",", FractionBox["u", "2"]]], "]"]], " ", RowBox[List["n", "!"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["u", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["p", " ", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox["p", RowBox[List[RowBox[List["-", "1"]], "-", "j"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["Join", "[", RowBox[List[RowBox[List["Table", "[", RowBox[List[FractionBox["p", RowBox[List["2", " ", "c"]]], ",", RowBox[List["{", RowBox[List["K\$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], ",", RowBox[List["{", "1", "}"]]]], "]"]], ",", RowBox[List["Join", "[", RowBox[List["Table", "[", RowBox[List[RowBox[List["1", "+", FractionBox["p", RowBox[List["2", " ", "c"]]]]], ",", RowBox[List["{", RowBox[List["K\$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], "]"]], ",", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "c"]], "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "c"]], "+", "p"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["Join", "[", RowBox[List[RowBox[List["Table", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["2", " ", "c"]], "+", "p"]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["{", RowBox[List["K\$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], ",", RowBox[List["{", "1", "}"]]]], "]"]], ",", RowBox[List["Join", "[", RowBox[List["Table", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["2", " ", "c"]], "+", "p"]], RowBox[List["2", " ", "c"]]]]], ",", RowBox[List["{", RowBox[List["K\$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], "]"]], ",", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]]]]]]]], ")"]]]], "-", RowBox[List[SuperscriptBox["2", RowBox[List["-", "u"]]], " ", RowBox[List["n", "!"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["s", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "u"]], ")"]]]], "]"]]], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["u", ",", "s"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", "b", " ", "s"]], "-", RowBox[List["b", " ", "u"]]]], ")"]], " ", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", "b", " ", "s"]], "-", RowBox[List["b", " ", "u"]]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["Join", "[", RowBox[List[RowBox[List["Table", "[", RowBox[List[FractionBox[RowBox[List["p", "+", RowBox[List["2", " ", "b", " ", "s"]], "-", RowBox[List["b", " ", "u"]]]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["{", RowBox[List["K\$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], ",", RowBox[List["{", "1", "}"]]]], "]"]], ",", RowBox[List["Join", "[", RowBox[List["Table", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List["p", "+", RowBox[List["2", " ", "b", " ", "s"]], "-", RowBox[List["b", " ", "u"]]]], RowBox[List["2", " ", "c"]]]]], ",", RowBox[List["{", RowBox[List["K\$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], "]"]], ",", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["p", "-", RowBox[List["2", " ", "b", " ", "s"]], "+", RowBox[List["b", " ", "u"]]]], ")"]], " ", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["p", "-", RowBox[List["2", " ", "b", " ", "s"]], "+", RowBox[List["b", " ", "u"]]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["Join", "[", RowBox[List[RowBox[List["Table", "[", RowBox[List[FractionBox[RowBox[List["p", "-", RowBox[List["2", " ", "b", " ", "s"]], "+", RowBox[List["b", " ", "u"]]]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["{", RowBox[List["K\$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], ",", RowBox[List["{", "1", "}"]]]], "]"]], ",", RowBox[List["Join", "[", RowBox[List["Table", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List["p", "-", RowBox[List["2", " ", "b", " ", "s"]], "+", RowBox[List["b", " ", "u"]]]], RowBox[List["2", " ", "c"]]]]], ",", RowBox[List["{", RowBox[List["K\$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], "]"]], ",", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "c"]], "+", "p", "+", RowBox[List["2", " ", "b", " ", "s"]], "-", RowBox[List["b", " ", "u"]]]], ")"]], " ", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "c"]], "+", "p", "+", RowBox[List["2", " ", "b", " ", "s"]], "-", RowBox[List["b", " ", "u"]]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["Join", "[", RowBox[List[RowBox[List["Table", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["2", " ", "c"]], "+", "p", "+", RowBox[List["2", " ", "b", " ", "s"]], "-", RowBox[List["b", " ", "u"]]]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["{", RowBox[List["K\$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], ",", RowBox[List["{", "1", "}"]]]], "]"]], ",", RowBox[List["Join", "[", RowBox[List["Table", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["2", " ", "c"]], "+", "p", "+", RowBox[List["2", " ", "b", " ", "s"]], "-", RowBox[List["b", " ", "u"]]]], RowBox[List["2", " ", "c"]]]]], ",", RowBox[List["{", RowBox[List["K\$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], "]"]], ",", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "c"]], "+", "p", "-", RowBox[List["2", " ", "b", " ", "s"]], "+", RowBox[List["b", " ", "u"]]]], ")"]], " ", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "c"]], "+", "p", "-", RowBox[List["2", " ", "b", " ", "s"]], "+", RowBox[List["b", " ", "u"]]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["Join", "[", RowBox[List[RowBox[List["Table", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["2", " ", "c"]], "+", "p", "-", RowBox[List["2", " ", "b", " ", "s"]], "+", RowBox[List["b", " ", "u"]]]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["{", RowBox[List["K\$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], ",", RowBox[List["{", "1", "}"]]]], "]"]], ",", RowBox[List["Join", "[", RowBox[List["Table", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["2", " ", "c"]], "+", "p", "-", RowBox[List["2", " ", "b", " ", "s"]], "+", RowBox[List["b", " ", "u"]]]], RowBox[List["2", " ", "c"]]]]], ",", RowBox[List["{", RowBox[List["K\$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], "]"]], ",", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]]]]]]]], ")"]]]]]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]], "&&", RowBox[List["u", "\[Element]", "Integers"]], "&&", RowBox[List["u", ">", "0"]]]]]]]]]]

 Date Added to functions.wolfram.com (modification date)

 2002-12-18