Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Csc






Mathematica Notation

Traditional Notation









Elementary Functions > Csc[z] > Specific values > Values at fixed points





http://functions.wolfram.com/01.10.03.0035.01









  


  










Input Form





Csc[(3 Pi)/7] == (24 (7 - 21 I Sqrt[3])^(1/3))/ (4 7^(5/6) (1 - 3 I Sqrt[3])^(1/3) + 2 I Sqrt[7] (I + Sqrt[3]) (14 - I Sqrt[7] - 3 Sqrt[21])^(1/3) + 4 Sqrt[7] (14 + I Sqrt[7] + 3 Sqrt[21])^(1/3) - I (28 - 2 I Sqrt[7] - 6 Sqrt[21])^(1/3) (14 + I Sqrt[7] + 3 Sqrt[21])^ (2/3) + Sqrt[3] (28 - 2 I Sqrt[7] - 6 Sqrt[21])^(1/3) (14 + I Sqrt[7] + 3 Sqrt[21])^(2/3) - 2 I (14 - I Sqrt[7] - 3 Sqrt[21])^(2/3) (28 + 2 I Sqrt[7] + 6 Sqrt[21])^ (1/3))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["Csc", "[", FractionBox[RowBox[List["3", " ", "\[Pi]"]], "7"], "]"]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List["24", " ", SuperscriptBox[RowBox[List["(", RowBox[List["7", "-", RowBox[List["21", " ", "\[ImaginaryI]", " ", SqrtBox["3"]]]]], ")"]], RowBox[List["1", "/", "3"]]]]], ")"]], "/", RowBox[List["(", RowBox[List[RowBox[List["4", " ", SuperscriptBox["7", RowBox[List["5", "/", "6"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", RowBox[List["3", " ", "\[ImaginaryI]", " ", SqrtBox["3"]]]]], ")"]], RowBox[List["1", "/", "3"]]]]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", SqrtBox["7"], " ", RowBox[List["(", RowBox[List["\[ImaginaryI]", "+", SqrtBox["3"]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["14", "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox["7"]]], "-", RowBox[List["3", " ", SqrtBox["21"]]]]], ")"]], RowBox[List["1", "/", "3"]]]]], "+", RowBox[List["4", " ", SqrtBox["7"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["14", "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox["7"]]], "+", RowBox[List["3", " ", SqrtBox["21"]]]]], ")"]], RowBox[List["1", "/", "3"]]]]], "-", RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["28", "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", SqrtBox["7"]]], "-", RowBox[List["6", " ", SqrtBox["21"]]]]], ")"]], RowBox[List["1", "/", "3"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["14", "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox["7"]]], "+", RowBox[List["3", " ", SqrtBox["21"]]]]], ")"]], RowBox[List["2", "/", "3"]]]]], "+", RowBox[List[SqrtBox["3"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["28", "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", SqrtBox["7"]]], "-", RowBox[List["6", " ", SqrtBox["21"]]]]], ")"]], RowBox[List["1", "/", "3"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["14", "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox["7"]]], "+", RowBox[List["3", " ", SqrtBox["21"]]]]], ")"]], RowBox[List["2", "/", "3"]]]]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["14", "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox["7"]]], "-", RowBox[List["3", " ", SqrtBox["21"]]]]], ")"]], RowBox[List["2", "/", "3"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["28", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", SqrtBox["7"]]], "+", RowBox[List["6", " ", SqrtBox["21"]]]]], ")"]], RowBox[List["1", "/", "3"]]]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mi> csc </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mn> 7 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 24 </mn> <mo> &#8290; </mo> <mroot> <mrow> <mn> 7 </mn> <mo> - </mo> <mrow> <mn> 21 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mn> 3 </mn> </msqrt> </mrow> </mrow> <mn> 3 </mn> </mroot> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mn> 7 </mn> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 6 </mn> </mrow> </msup> <mo> &#8290; </mo> <mroot> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mn> 3 </mn> </msqrt> </mrow> </mrow> <mn> 3 </mn> </mroot> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msqrt> <mn> 7 </mn> </msqrt> <mo> &#8290; </mo> <mroot> <mrow> <mn> 14 </mn> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mn> 7 </mn> </msqrt> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <msqrt> <mn> 21 </mn> </msqrt> </mrow> </mrow> <mn> 3 </mn> </mroot> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 14 </mn> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mn> 7 </mn> </msqrt> </mrow> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <msqrt> <mn> 21 </mn> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> &#8290; </mo> <mroot> <mrow> <mn> 28 </mn> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mn> 7 </mn> </msqrt> </mrow> <mo> + </mo> <mrow> <mn> 6 </mn> <mo> &#8290; </mo> <msqrt> <mn> 21 </mn> </msqrt> </mrow> </mrow> <mn> 3 </mn> </mroot> </mrow> <mo> + </mo> <mrow> <msqrt> <mn> 3 </mn> </msqrt> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 14 </mn> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mn> 7 </mn> </msqrt> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <msqrt> <mn> 21 </mn> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> &#8290; </mo> <mroot> <mrow> <mn> 28 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mn> 7 </mn> </msqrt> </mrow> <mo> - </mo> <mrow> <mn> 6 </mn> <mo> &#8290; </mo> <msqrt> <mn> 21 </mn> </msqrt> </mrow> </mrow> <mn> 3 </mn> </mroot> </mrow> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mroot> <mrow> <mn> 28 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mn> 7 </mn> </msqrt> </mrow> <mo> - </mo> <mrow> <mn> 6 </mn> <mo> &#8290; </mo> <msqrt> <mn> 21 </mn> </msqrt> </mrow> </mrow> <mn> 3 </mn> </mroot> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 14 </mn> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mn> 7 </mn> </msqrt> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <msqrt> <mn> 21 </mn> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mn> 7 </mn> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#8520; </mi> <mo> + </mo> <msqrt> <mn> 3 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mroot> <mrow> <mn> 14 </mn> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mn> 7 </mn> </msqrt> </mrow> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <msqrt> <mn> 21 </mn> </msqrt> </mrow> </mrow> <mn> 3 </mn> </mroot> <mo> &#8290; </mo> <mi> &#8520; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <csc /> <apply> <times /> <cn type='integer'> 3 </cn> <pi /> <apply> <power /> <cn type='integer'> 7 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 24 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 7 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 21 </cn> <imaginaryi /> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 3 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <cn type='integer'> 7 </cn> <cn type='rational'> 5 <sep /> 6 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <imaginaryi /> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <cn type='integer'> 7 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 14 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <cn type='integer'> 7 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <cn type='integer'> 21 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <apply> <power /> <apply> <plus /> <cn type='integer'> 14 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <cn type='integer'> 7 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <cn type='integer'> 21 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 28 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <apply> <power /> <cn type='integer'> 7 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 6 </cn> <apply> <power /> <cn type='integer'> 21 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 3 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 14 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <cn type='integer'> 7 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <cn type='integer'> 21 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 28 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <apply> <power /> <cn type='integer'> 7 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 6 </cn> <apply> <power /> <cn type='integer'> 21 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <plus /> <cn type='integer'> 28 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <apply> <power /> <cn type='integer'> 7 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 6 </cn> <apply> <power /> <cn type='integer'> 21 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 14 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <cn type='integer'> 7 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <cn type='integer'> 21 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 2 <sep /> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <cn type='integer'> 7 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <imaginaryi /> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 14 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <cn type='integer'> 7 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <cn type='integer'> 21 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <imaginaryi /> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Csc", "[", FractionBox[RowBox[List["3", " ", "\[Pi]"]], "7"], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List["24", " ", SuperscriptBox[RowBox[List["(", RowBox[List["7", "-", RowBox[List["21", " ", "\[ImaginaryI]", " ", SqrtBox["3"]]]]], ")"]], RowBox[List["1", "/", "3"]]]]], RowBox[List[RowBox[List["4", " ", SuperscriptBox["7", RowBox[List["5", "/", "6"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", RowBox[List["3", " ", "\[ImaginaryI]", " ", SqrtBox["3"]]]]], ")"]], RowBox[List["1", "/", "3"]]]]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", SqrtBox["7"], " ", RowBox[List["(", RowBox[List["\[ImaginaryI]", "+", SqrtBox["3"]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["14", "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox["7"]]], "-", RowBox[List["3", " ", SqrtBox["21"]]]]], ")"]], RowBox[List["1", "/", "3"]]]]], "+", RowBox[List["4", " ", SqrtBox["7"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["14", "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox["7"]]], "+", RowBox[List["3", " ", SqrtBox["21"]]]]], ")"]], RowBox[List["1", "/", "3"]]]]], "-", RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["28", "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", SqrtBox["7"]]], "-", RowBox[List["6", " ", SqrtBox["21"]]]]], ")"]], RowBox[List["1", "/", "3"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["14", "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox["7"]]], "+", RowBox[List["3", " ", SqrtBox["21"]]]]], ")"]], RowBox[List["2", "/", "3"]]]]], "+", RowBox[List[SqrtBox["3"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["28", "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", SqrtBox["7"]]], "-", RowBox[List["6", " ", SqrtBox["21"]]]]], ")"]], RowBox[List["1", "/", "3"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["14", "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox["7"]]], "+", RowBox[List["3", " ", SqrtBox["21"]]]]], ")"]], RowBox[List["2", "/", "3"]]]]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["14", "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox["7"]]], "-", RowBox[List["3", " ", SqrtBox["21"]]]]], ")"]], RowBox[List["2", "/", "3"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["28", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", SqrtBox["7"]]], "+", RowBox[List["6", " ", SqrtBox["21"]]]]], ")"]], RowBox[List["1", "/", "3"]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29